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Abstract: Electric energy consumption forecasting is an interesting, challenging, and important issue
in energy management and equipment efficiency improvement. Existing approaches are predictive
models that have the ability to predict for a specific profile, i.e., a time series of a whole building
or an individual household in a smart building. In practice, there are many profiles in each smart
building, which leads to time-consuming and expensive system resources. Therefore, this study
develops a robust framework for the Multiple Electric Energy Consumption forecasting (MEC) of
a smart building using Transfer Learning and Long Short-Term Memory (TLL), the so-called MEC-TLL
framework. In this framework, we first employ a k-means clustering algorithm to cluster the daily
load demand of many profiles in the training set. In this phase, we also perform Silhouette analysis
to specify the optimal number of clusters for the experimental datasets. Next, this study develops
the MEC training algorithm, which utilizes a cluster-based strategy for transfer learning the Long
Short-Term Memory models to reduce the computational time. Finally, extensive experiments are
conducted to compare the computational time and different performance metrics for multiple electric
energy consumption forecasting on two smart buildings in South Korea. The experimental results
indicate that our proposed approach is capable of economical overheads while achieving superior
performances. Therefore, the proposed approach can be applied effectively for intelligent energy
management in smart buildings.

Keywords: multiple electric energy consumption forecasting; long short-term memory
networks; transfer learning; the cluster-based strategy for transfer learning; intelligent energy
management system

1. Introduction

Nowadays, many applications of artificial intelligence have been developed in various areas,
such as business intelligence [1–4], intelligent systems in construction [5,6], medical and health care [7,8],
trash classification [9], facial analysis [10–12], intelligent energy management system [13,14], and energy
consumption forecasting [15,16]. Recently, energy consumption forecasting has been attracting massive
research interest due to the importance of the sustainable environment as well as the benefits brought
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to consumers and suppliers. Electrical energy consumption forecasting can be considered as the most
crucial task in the intelligent energy management domain. Electrical energy consumption forecasting
can be employed as users’ energy demands. Therefore, electrical energy consumption forecasting was
usually implemented as an incorporated module in energy management systems [17]. Then, based on
the forecasting values, suppliers may change the production of electric energy generators. Likewise,
suppliers can detect abnormal usage patterns, which deviate totally from the predicted values [18].
These abnormal patterns probably indicate energy leakages.

There are two main approaches that use Machine Learning to solve the electrical
energy consumption forecasting problem in smart buildings, including occupant-centric and
energy/devices-centric [17]. The first approach considers occupant aspects, including occupancy
estimation and identification, human activity recognition, and preference estimation. In contrast,
the second approach considers device and energy aspects, including energy profiling, demand
estimation, devices profiling, and inference on sensors. The first approach employs both users’
information in buildings (e.g., the number of people, gender, and usage type) and sensors’
information (e.g., humidity, temperature, and brightness) to estimate the energy consumption [19].
Human behaviors, such as meeting schedules [20], sleep patterns [21], movement patterns [22],
and daily activities [23], are also harvested to improve the quality of the estimation. In addition,
user preferences such as a comfortable temperature [24] and friendly brightness [25] are employed to
enhance learning models. The second approach directly considers the energy consumption of devices,
such as appliances [26], devices’ functions [27], interview-based load profiles [28], and individual
apartment/building profiles [29], to build an estimator. It is worth noting that a large number of machine
learning algorithms are applied to both aforementioned approaches, such as k Nearest Neighbors
(kNN), Support Vector Machines (SVMs), and Neural Networks (NNs). Among all algorithms,
ANNs dominate the number of studies due to their impressive performance. Recently, inspired
by biological processes, a totally new approach, so-called energy homeostasis, has been proposed
to build a complete energy management system where consumption prediction is an incorporated
module [30,31]. In this paper, we propose an energy-centric-based method for electric energy
consumption using an NN-based method.

Currently, many studies have utilized NNs, especially a specialized recurrent unit, namely Long
Short-Term Memory networks (LSTMs), to forecast electric energy consumption. However, they only
focus on forecasting for a specific profile, i.e., the electric energy consumption of an individual apartment
in smart buildings. In practice, a smart building has many apartments; hence, there are a large number
of profiles. The existing models are not effective in terms of computational time for forecasting multiple
profiles because it repeats the training process with different profiles. Therefore, this study develops an
effective framework for multiple electric energy consumption forecasting in smart buildings by using
a cluster-based strategy for transfer learning between LSTM models to reduce the computational time.
To the best of our knowledge, this is the first study that employs a cluster-based strategy and transfer
learning to improve performances and reduce computational overheads of LSTMs for electrical energy
consumption forecasting. The main contributions of our research are as follows: (1) This study develops
a time series clustering module using a k-means clustering algorithm to divide the training dataset into
disjoint clusters. (2) A Multiple Electric Energy Consumption forecasting (MEC) training algorithm is
then introduced. (3) Next, an effective framework for multiple electric energy consumption forecasting
is developed by using transfer learning and cluster-based strategies for training LSTM models to
reduce the computational time. (4) Finally, experiments are conducted on the energy consumption
datasets of two smart buildings located in South Korea. The experimental results indicate that the
MEC-TLL framework outperforms two baseline approaches, including a traditional machine learning
approach and an approach that employs transfer learning without the cluster-based strategy in terms
of the computational time, while retaining a predictive performance based on Mean Absolute Error
(MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE) metrics.
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The remaining of this article is structured as follows. Section 2 introduces related studies on electric
energy consumption prediction and time series prediction. Section 3 summarizes the basic concepts,
including k-means clustering algorithm, LSTM networks for time series analysis, and transfer learning.
The proposed framework named MEC-TLL for multiple electric energy consumption forecasting,
is introduced in Section 4. Next, Section 5 shows the first experiment to select the optimal number of
clusters for each dataset. Besides, Section 5 also provides the experimental results of the experimental
approaches for multiple electric energy consumption forecasting on two energy consumption datasets
collected from two smart buildings in South Korea. The conclusions and several future directions are
presented in Section 6.

2. Related Works

2.1. Electric Energy Consumption Prediction

Hebrail and Berard [32] release an individual household electric power consumption (IEC) dataset
available on the UCI Machine Learning Repository. This dataset is collected from an individual house
located in France. The dataset is utilized in many research studies. Kim and Cho [15,16] develop
two efficient models to predict the electric energy consumption for the IEC dataset; The former [15]
proposes a machine learning approach that can be explained by not only predicting future electric
energy consumption but also identifying the current demand patterns. The latter [16] proposes
an effective model, namely CNN-LSTM, that combines Convolutional Neural Networks (CNNs) with
LSTMs to extract spatial and temporal features, which in turn stably predict energy consumption.
Le et al. [33] develop the EECP-CBL model, which is a combination of CNNs and Bi-directional Long
Short-Term Memory networks (Bi-LSTMs). The experimental results in [33] indicated that EECP-CBL is
better than state-of-the-art models in terms of accuracy and computational time on the IEC dataset with
various timespan settings. In addition, there are several other interesting studies [34–38] for building
energy consumption on other datasets. Tian et al. [34] utilize the parallel learning theory to develop
a parallel prediction strategy for building energy consumption forecasting. Specifically, they utilize
Generative Adversarial Networks (GANs), which comprise two adversarial sub-models, including
a generator and a discriminator. The experimental results in this study indicate that their proposed
approach outperforms state-of-the-art methods on two real-world datasets, including a retail building
in Fremont, CA and a new-built commercial office building located in Beijing. Yan et al. [35] introduce
a hybrid deep learning model, which combines an ensemble model of LSTMs with a stationary wavelet
transform technique to improve the predictive performance on five different family houses’ energy
consumption datasets in London. Wang et al. [36] propose a novel integration model for building
energy prediction on two educational buildings in Tianjin, China. Park et al. [37] propose a two-stage
short-term demand prediction (STDP) model that combines popular STDP models by using a deep
neural network, thus further expanding the domain of applicability. To demonstrate the proposed
model performance, the authors compare several machine learning methods with the proposed
approach for one-day-ahead forecasting on a factory electric energy consumption dataset. Liu et
al. [38] utilize three famous deep reinforcement learning techniques, including Advantage Actor-Critic,
Deep Deterministic Policy Gradient (DDPG), and Recurrent Deterministic Policy Gradient (RDPG) for
the problem of building energy consumption forecasting on an office building located in Henan, China.
The experiment study shows that DDPG and RDPG are the best approaches in terms of predictive
performance. A critical disadvantage of DDPG and RDPG is that they have a large computational time.

2.2. Time Series Prediction

The problem of time series prediction is considered as the most important problem in machine
learning, with a large number of practical applications such as stock price trend prediction [39],
housing price prediction [40], sensor data analysis [41], and water price prediction [42]. LSTMs are the
most popular specialized model of recurrent neural networks (RNNs) for the time series forecasting
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problem. LSTMs are better than traditional RNNs because LSTMs are capable of learning long-term
dependencies. Unlike traditional RNN models, which usually face the problem of vanishing gradients
on long sequential data, LSTM overcomes the vanishing gradient problem by introducing three gates,
including the input gate, output gate, and forget gate, in each cell. These gates have the ability to
capture the temporal changes for extremely long sequential data. Because of its advantages, it has been
utilized widely in various applications such as text [43], videos [44], time series analysis [39,40], traffic
forecast [45], speech recognition [46], and time series anomaly detection [47]. Lin et al. [43] introduce
an application of LSTMs on the task of mention extraction, where LSTMs extract and classify overlapped
and nested structure mentions. Dai et al. [44] utilize LSTMs to propose a two-stream attention-based
LSTM approach for the problem of action recognition in videos. In addition, Ta et al. [39] utilize LSTMs
to predict stock movement based on historical data. Recently, Liu et al. [40] developed an LSTM
approach that incorporated a modified genetic algorithm with multi-level probability crossover to select
appropriate features and the optimal hyper-parameters to predict the housing price of a city by using
historical data. This model was verified on a housing price dataset in Shenzhen, China. The results
confirmed that their approach has a good performance in modeling housing prices and obviously
outperforms state-of-the-art algorithms. Zhao et al. [45] apply LSTMs to the problem of traffic forecast
to achieve better performances on the data collected by the Beijing Traffic Management Bureau. Yang et
al. [46] combine a Bi-LSTM network with a Conditional Random Field (CRF) model for Chinese speech
recognition. The above studies give a fruitful insight into how LSTMs are effective models, and into
how there are many practical applications related to the problem of time series analysis.

3. Basic Concepts

3.1. k-Means Clustering Algorithm

Unsupervised learning is one category of machine learning tasks, which is used to draw
inferences from unlabeled datasets. Typically, unsupervised learning employs a clustering technique
to group unlabeled observations based on one of several similarity measures such as Euclidean, Cosine,
Jaccard, and Manhattan distances. The most popular unsupervised learning algorithm is the k-means
clustering algorithm. The k-means algorithm has been successfully used in customer segmentation in
economics [48,49], computer vision [50], and many other domains. Basically, the k-means algorithm
aims to assign n observations in the dataset into k (≤ n) disjoint sets, S = {S1, S2, . . . , Sk}, by solving the
optimization problem as follows:

J =
m∑

i=1

K∑
k=1

wik‖xi
− µk‖

2, (1)

where wik = 1 for the observation xi belonging to the cluster Sk; otherwise, wik = 0. Meanwhile, µk is
the centroid of the cluster Sk, which consists of the observation xi. Figure 1 shows an example of
the k-means clustering algorithm that utilizes Euclidean distance on an example dataset with various
k values.
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Figure 1. Results of the k-means clustering algorithm with various k values on an example dataset.

3.2. Long Short-Term Memory Networks

The Long Short-Term Memory (LSTM) network, a special kind of RNN, is capable of learning
long-term dependencies. LSTM was first introduced by Hochreiter and Schmidhuber [51]. An LSTM
model utilizes a unique set of memory cells instead of the hidden layer neurons in traditional RNN
models. LSTM filters information through the gate structure to maintain and update the state of
memory cells. There are three types of gate structures, including input, forget, and output gates.
Each memory cell employs two types of nonlinear activation functions, including a sigmoid (σ(·))
function and a tanh function. Figure 2 presents the diagram for an LSTM memory cell at the time step t.
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First, the forget gate in an LSTM memory cell identifies which cell state information will be
discarded. As shown in Figure 2, the memory cell takes the output of the previous step ht−1 and the
external information at the current step xt as inputs. Then, this gate combines them into a long vector
through the sigmoid function as follows:
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ft = σ
(
W f ·[ht−1, xt] + b f

)
. (2)

In Equation (2), W f and b f are the weight matrix and bias vector of the forget gate, respectively.
The forget gate’s main function is to record how much the cell state Ct−1 of the previous step is reserved
to the cell state Ct of the current step. The output of this gate is a value ranging from 0 to 1, where 1
indicates the complete reservation while 0 indicates the complete discernment.

Furthermore, the input gate decides how much of the current moment input xt is reserved into the
cell state Ct. This gate prevents useless information entering the memory cells. This gate consists of
two functions, as follows. Equation (3) aims to find the state of the cell that must be updated, which is
determined by the sigmoid function. Equation (4) serves to update the information to the cell state.
In this function, a new candidate vector C′t is created through the tanh function to control how much
new information will be added. Equation (5) is utilized to update the cell state of the memory cells.

it = σ(Wt·[ht−1, xt] + bt), (3)

C′t = tan h(Wc·[ht−1, xt] + bc), (4)

Ct = ft·Ct−1 + it·C
′

t . (5)

Finally, the output gate controls how much of the current cell state is discarded. The output
information, ot, is first identified by the sigmoid function:

ot = σ(Wo·[ht−1, xt] + bo). (6)

Then the cell state is processed by tanh and multiplied by the output information ot to obtain the
final output portion, which is formulated as:

ht = ot ∗ tan h(Ct). (7)

3.3. Transfer Learning

Training neural networks have faced two critical problems, including expensive resources and
computational costs. Because training a neural network requires numerous matrix operations and
expensive resources, the resource costs would be extremely high if we performed a similar process
again for different models. Besides, the computational time to train a number of deep learning
models increases exponentially when the deep neural networks become deeper and more complex.
The idea of transfer learning [52–54] is introduced to overcome the problems of expensive resources
and computational costs for training multiple deep learning models. Transfer learning methodology
focuses on applying the gained knowledge of deep learning models from a trained architecture to
train another deep learning model on a different task. Specifically, this methodology first trains a base
network on a source dataset, and then it transfers the weights of the base network to a target network.
In conclusion, instead of training the new neural network model from scratch, this methodology
“transfers” the learned knowledge from a base network model. In our study, we assume that each
time series shares characteristics such as trends and periodicities with the remaining one. For example,
every Saturday and Sunday the energy consumption of all smart buildings is decreased; hence,
the decreasing trend and the repeated demand patterns on the weekend are shared between all building
apartments. Therefore, it is intuitive to apply the transfer learning mechanism to our problem.

Figure 3 shows the comparison between traditional machine learning and transfer learning.
Traditional machine learning algorithms (Figure 3A) learn from an individual dataset, and each traditional
machine learning model works independently. Meanwhile, transfer learning (Figure 3B) utilizes the
knowledge gained from multiple source domains’ datasets to transfer to the target domain. Hence,
transfer learning reduces the computational time, while also improving the predictability performances.
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In the problem of multiple electric energy consumption forecasting in smart buildings raised
in this article, training multiple LSTM models is dramatically time and system resource consuming.
Therefore, this study employs the concept of transfer learning and combines transfer learning with
a cluster-based strategy for training LSTM models to overcome the time-consumption problem.

4. Materials and Methods

4.1. The Experimental Datasets

The experimental datasets are collected from two smart buildings located in South Korea.
These datasets contain 15-min demand loads of a number of apartments (profiles) in these buildings
over three years, from January 2016 to December 2018. The first building consists of 96 profiles (B1
dataset), whereas the second building has 91 profiles (B2 dataset). The demand of a profile is the
amount of energy used by all electronic devices such as computers, office equipment, lighting and air
conditioning, etc. at a specific time; it is measured in kilowatts (kW). In the transformation module,
this study converts these datasets to daily demand loads by summing all 15-min demand loads of all
profiles on the same date. Figures 4 and 5 show the daily-load profiles in the first 30 days of the B1
dataset and of the B2 dataset, respectively. In the B1 dataset, there are several profiles with a huge
daily power consumption of over 5000 kW, while most other profiles are around 100 kW per day.
Meanwhile, the profiles in the B1 dataset are evenly distributed from 0 to 1000 kW per day. From the
above analysis, the optimal number of clusters is different for each experimental dataset. Therefore,
we perform the first experiment to identify the best number of clusters. Note that this study utilizes
the time series in the first two years for training and in the last year for testing. This experiment only
considers the training datasets to find the optimal number of clusters.
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4.2. The MEC-TLL Framework

This section introduces an effective framework for Multiple Electric Energy Consumption
forecasting in a smart building using Transfer Learning and LSTM, denoted by MEC-TLL. The overall
architecture of the proposed framework is shown in Figure 6. In the preprocessing phase, MEC-TLL
first converts the data from multiple historical energy consumption datasets to numbers of time series
in the daily demand load that indicate the daily energy consumption of all profiles in the smart building.
Next, we apply several noise treatment techniques to remove noise or incomplete data.

To evaluate our proposed framework, this study then divides the time series energy consumption
datasets into training and testing data. In the next phase, we use the k-means clustering algorithm
to cluster the training data into several clusters. To determine the number of clusters, we perform
a Silhouette analysis [55,56], which is to interpret and to validate the consistency within clusters of
data. Silhouette is a measure of how similar a point is to its own cluster compared to other clusters.
This method provides a graph containing several scores, which range from −1 to 1. A high score
indicates that a point has a good match with the cluster it belongs to. The detailed analysis of this
experiment for each dataset is presented in Section 4.2. After this step, the training data is divided into
disjoint clusters, which will be passed to the Multiple Electric Energy Consumption prediction (MEC)
training algorithm. The pseudocode of this algorithm is presented in Algorithm 1.
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The computation of the MEC training algorithm is summarized as follows. The input of this
algorithm is n clusters, which are processed in the previous step. For each cluster in the training
dataset, the algorithm will train an LSTM model using the center point time series, which is denoted as
LSTM_Modelbase (Lines 2–4). Then, the algorithm uses LSTM_Modelbase as a base model for training
the remaining profiles by using transfer learning to reduce the computation time (Line 5). Finally,
the algorithm returns the LSTM models of all profiles (Line 6). Due to the advantages of transfer
learning, our proposed framework reduces the overall computation time. Hence, our method
reasonably outperforms traditional machine learnings w.r.t. computational time.

Finally, the trained LSTM models are used to predict the testing data. The validation module
compares the predicted values and the actual values to validate the proposed framework by several
performance metrics as well as the computational time.

Algorithm 1. MEC training algorithm

Input: n clusters
Output: n trained LSTM models
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This section conducts the comparisons of the above metrics and the computational time on the 
two experimental datasets between MEC-TLL and the two following approaches to show the 
effectiveness of the proposed approach. The first approach, namely TML-LSTM, is a traditional 
machine learning and employs LSTM models to predict the electric energy consumption for each 
profile. Therefore, the TML-LSTM approach has to train 96 LSTM models in the B1 dataset and 91 
LSTM models in the B2 dataset. The second approach, TL-LSTM, employs transfer learning without 
any cluster-based algorithm for clustering profiles. In this approach, we randomly choose a profile 
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5. Results

5.1. Experimental Setting

LSTM models are implemented with Keras library, an open-source neural-network library in
Python. In addition, the k-means clustering algorithm with the Silhouette analysis is provided by
Scikit-learn package [57], an open-source machine learning library. All experimental methods are
performed on a server containing four GTX 1080 Ti. LSTM models in all experimental approaches
are trained in 30 epochs, and a batch size at 30 using Adam optimization [58], an adaptive learning
rate optimization algorithm, with the initial learning rate as 0.005. Meanwhile, the transferred LSTM
models are also trained in 30 epochs, and a batch size of 30 using Adam optimization with the initial
learning rate as 0.001. It is better to choose a small learning rate for transfer learning because high
learning rates increase the risk of losing previous knowledge. Therefore, we use the learning rate at
0.001 for transfer learning and 0.005 for traditional LSTM models.

To compare the predictive performance, this study uses three common metrics, namely RMSE,
MAE, and MAPE, which are usually used to evaluate time series forecasting models. The first metric,
RMSE, is the standard deviation of prediction errors. Let the residuals be a measure of how far from
the regression line the data samples are. RMSE is a measure of how spread out these residuals are,
which is formulated as:

RMSE =

√√
1
n

n∑
1

(
y−

^
y
)2

. (8)

The second metric, MAE, measures the average magnitude of the prediction errors without
considering their directions. This metric uses the same weight for all prediction errors as follows:

MAE =
1
n

n∑
1

∣∣∣∣y− ^
y
∣∣∣∣. (9)

The third metric, MAPE, is a measure of the prediction accuracy in percentage of the following
equation:

MAPE =
100%

n

n∑
1

∣∣∣∣∣∣∣y−
^
y

y

∣∣∣∣∣∣∣. (10)

This section conducts the comparisons of the above metrics and the computational time on the two
experimental datasets between MEC-TLL and the two following approaches to show the effectiveness
of the proposed approach. The first approach, namely TML-LSTM, is a traditional machine learning
and employs LSTM models to predict the electric energy consumption for each profile. Therefore,
the TML-LSTM approach has to train 96 LSTM models in the B1 dataset and 91 LSTM models in the
B2 dataset. The second approach, TL-LSTM, employs transfer learning without any cluster-based
algorithm for clustering profiles. In this approach, we randomly choose a profile and train the base
model using this profile. Then, we use the base model as the pre-trained model for the transfer learning
module. TL-LSTM is created to show the effectiveness of the cluster-based strategy for transfer learning
that is applied in the MEC-TLL approach.

5.2. Silhouette Analysis

This section performs the Silhouette analysis for two experimental datasets. Silhouette analysis serves
to find the separation distances between resulting clusters. The result of this analysis, the Silhouette plot,
shows a measure of the closeness between each sample in one cluster and samples in the neighboring
clusters. Based on this plot, we can identify the best number of clusters. We perform the Silhouette
analysis for the first two years of the B1 dataset, i.e., the training the B1 dataset, and we obtain the
graph result in Figure 7. Based on the results, we choose the optimal number of clusters for the B1
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dataset at 11 because the average Silhouette score reached the highest value with the cluster number
of 11. For the B2 dataset, the result of the Silhouette analysis for the training set of the B2 dataset is
presented in Figure 8. Obviously, we set the optimal number of clusters for the B2 dataset to 6 because
the graph in Figure 8 peaks at this value.
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In conclusion, this experiment indicates that the optimal numbers of clusters are different values
with different datasets. For this study, this experiment selected the optimal numbers of clusters at 11
and 6 from the training sets for the B1 dataset and B2 dataset, respectively. These values are also used
in the second experiment.

5.3. Experimental Results and Discussions

The second experiment is conducted to compare the averages of several performance metrics,
including RMSE, MAE, MAPE, and the computational time among the experimental methods.

This study first plots the average learning and predicting times of TML-LSTM, TL-LSTM,
and MEC-TLL approaches for each cluster on the B1 dataset (see Figure 9) and B2 dataset (see Figure 10).
Note that these graphs only consider the training and predicting time for each cluster in the B1 dataset
and B2 dataset. In general, the results in both figures are consistent, where TL-LSTM and MEC-TLL
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obviously outperform TML-LSTM. In particular, Figure 9 shows that the average computational times
of TML-LSTM range from 57 s to 123 s, whereas the average computational times of TL-LSTM and
MEC-TLL range from 15 s to 23 s. Therefore, the transfer learning-based approaches improve at
least 75% of the computational time compared to the traditional machine learning approach on the
B1 dataset. In Figure 10, the average computational times of TML-LSTM range from 30 s to 54 s,
whereas the average computational times of TL-LSTM and MEC-TLL range from 15 s to 19 s. Therefore,
the transfer learning-based approaches improve at least 50% of the computational time compared to
the traditional machine learning approach on the B2 dataset.

Tables 1 and 2 show the averages of RMSE, MAE, MAPE, and the computational time of
the experimental methods on the B1 dataset and B2 dataset, respectively. To obtain the average
computational time of MEC-TLL, this study first computes the computational time that includes the
clustering time with the optimal number of clusters (11 for the B1 dataset and 6 for the B2 dataset),
the learning time, and the prediction time for the whole dataset. Then, the computational time of
MEC-TLL will be divided by the number of profiles (96 for the B1 dataset and 91 for the B2 dataset) to
obtain the averages. In other words, we include the cluster time with the optimal number of clusters
(7.2 s for the B1 dataset, and 2.9 s for the B2 dataset) in the overall computational time of MEC-TLL,
and then take the average.

For the B1 dataset, the proposed approach, MEC-TLL, is the best approach in terms of predictive
performances with 1.142, 0.670, and 34.32 for RMSE, MAE, and MAPE, respectively. In addition,
MEC-TLL also achieves impressive results on the average computational time on the B1 dataset
compared with the TML-LSTM approach. For details, the TML-LSTM approach is extremely
time-consuming with 101.4 s for each profile in the B1 dataset. Therefore, TML-LSTM takes 2.7 h on the
entire B1 dataset. Meanwhile, the proposed method and TL-LSTM take around 25 min for the whole
B1 dataset.
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Table 1. Performance results of the experimental methods on the B1 dataset.

Approaches The Average Computational Time (Seconds) RMSE MAE MAPE

TML-LSTM 95.4 1.172 0.721 35.24
TL-LSTM 17.2 1.564 0.821 40.34
MEC-TLL 15.7 1.142 0.670 34.32

In Table 2, the achieved results for the B2 dataset are similar to the B1 dataset. The MEC-TLL
framework obtains a 60% reduction in the average computational time compared with the TML-LSTM
approach. Meanwhile, the average computational times of MEC-TLL and TL-LSTM are almost
equivalent to 15.4 s and 16.8 s, respectively. In addition, the predictive performances of TML-LSTM
and MEC-TLL are almost the same in terms of RMSE, MAE, and MAPE. Meanwhile, TL-LSTM has
a poor predictability compared to TML-LSTM and MEC-TLL.

Table 2. Performance results of the experimental methods on the B2 dataset.

Approaches The Average Computational Time (Seconds) RMSE MAE MAPE

TML-LSTM 48.2 1.425 0.912 41.42
TL-LSTM 16.8 1.718 1.054 45.21
MEC-TLL 15.4 1.368 0.891 41.07

In summary, the experimental results indicate that the transfer learning-based approaches, i.e.,
TL-LSTM and MEC-TLL, show a great improvement in computational time compared with traditional
machine learning approaches, i.e., TML-LSTM. The cluster-based strategy helps the MEC-TLL approach
in achieving better predictive performances than the TL-LSTM approach. In addition, the predictive
performances of TML-LSTM and MEC-TLL, including RMSE, MAE, and MAPE, are almost the same,
while the predictive performances of TL-LSTM decrease insignificantly. Therefore, our method
(MEC-TLL) is the best of the empirical methods in terms of computational time, limited resources,
and predictability.

6. Conclusions

This study develops an effective framework for multiple electric energy consumption forecasting
in smart buildings, namely MEC-TLL, which utilizes the concept of transfer learning and a cluster-based
strategy for training the LSTM models to reduce the computational time. This framework first clusters
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the time series training set to several clusters using the k-means clustering algorithm. For each cluster
obtained from the previous phase, we train the LSTM model using the centroid and use the trained
model as the base model for transfer learning to the remaining profiles. To verify the effectiveness of
our framework, we conduct two experiments on two real-world datasets collected from two smart
buildings in South Korea. The first experiment, based on a Silhouette analysis, is to identify the
optimal number of clusters for each experiment dataset. This experiment found that the optimal
number of clusters is 11 and 6 for the B1 dataset and B2 dataset, respectively. Then, we utilize the
optimal number of clusters for the MEC training algorithm in the second experiment. The results
of the second experiment confirm that our approach outperforms the traditional machine learning
approach and an approach employing transfer learning without the cluster-based strategy for multiple
electric energy consumption forecasting in terms of the computational time, while also retaining
a predictive performance.

In the future, we will continue to enhance the performance of multiple electric energy consumption
forecasting in terms of computational time as well as the predictive performance by using several
modern techniques such as Bi-directional Long Short-Term Memory for time series forecasting,
Discrete Wavelet Transform (DWT), and Discrete Fourier Transform (DFT) for time series feature
extraction. In addition, we will try to adapt the proposed framework to real-time environments for
industrial applications.
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