
sensors

Article

PSANet: Pyramid Splitting and Aggregation Network for 3D
Object Detection in Point Cloud

Fangyu Li 1 , Weizheng Jin 1,* , Cien Fan 1 , Lian Zou 1, Qingsheng Chen 1 , Xiaopeng Li 1, Hao Jiang 1

and Yifeng Liu 2

����������
�������

Citation: Li, F.; Jin, W.; Fan, C.; Zou,

L.; Chen, Q.; Li, X.; Jiang, H.; Liu, Y.

PSANet: Pyramid Splitting and

Aggregation Network for 3D Object

Detection in Point Cloud. Sensors

2021, 21, 136. https://dx.doi.org/

10.3390/s21010136

Received: 24 November 2020

Accepted: 23 December 2020

Published: 28 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: c© 2020 by the authors. Li-

censee MDPI, Basel, Switzerland. This

article is an open access article distributed

under the terms and conditions of the

Creative Commons Attribution (CC BY)

license (https://creativecommons.org/

licenses/by/4.0/).

1 School of Electronic Information, Wuhan University, Wuhan 430072, China; 2019202120065@whu.edu.cn (F.L.);
fce@whu.edu.cn (C.F.); zoulian@whu.edu.cn (L.Z.); 2019202120064@whu.edu.cn (Q.C.);
xiaopengli2014@whu.edu.cn (X.L.); jh@whu.edu.cn (H.J.)

2 National Engineering Laboratory for Risk Perception and Prevention (NEL-RPP), Beijing 100041, China;
liuyifeng3@cetc.com.cn

* Correspondence: jwz@whu.edu.cn; Tel.: +86-1387-132-6306

Abstract: 3D object detection in LiDAR point clouds has been extensively used in autonomous driv-
ing, intelligent robotics, and augmented reality. Although the one-stage 3D detector has satisfactory
training and inference speed, there are still some performance problems due to insufficient utilization
of bird’s eye view (BEV) information. In this paper, a new backbone network is proposed to complete
the cross-layer fusion of multi-scale BEV feature maps, which makes full use of various information
for detection. Specifically, our proposed backbone network can be divided into a coarse branch
and a fine branch. In the coarse branch, we use the pyramidal feature hierarchy (PFH) to generate
multi-scale BEV feature maps, which retain the advantages of different levels and serves as the input
of the fine branch. In the fine branch, our proposed pyramid splitting and aggregation (PSA) module
deeply integrates different levels of multi-scale feature maps, thereby improving the expressive ability
of the final features. Extensive experiments on the challenging KITTI-3D benchmark show that our
method has better performance in both 3D and BEV object detection compared with some previous
state-of-the-art methods. Experimental results with average precision (AP) prove the effectiveness of
our network.

Keywords: 3D object detection; LiDAR; voxel; convolutional neural networks; autonomous driving

1. Introduction

In recent years, convolutional neural networks (CNNs) have played a pivotal role in
addressing the issues of object detection [1–3], semantic segmentation [4–6], and image
super-resolution [7–9]. Although the average precision (AP) of 2D car detection is relatively
considerable, autonomous driving is still a challenging task. As stated by Janai et al. [10],
3D object detection in the field of autonomous driving needs to find all objects in a given 3D
scene, and determine their extent, direction, and classification. Therefore, the accuracy of 3D
object detection directly impacts the safety and reliability of autonomous driving. As RGB
images lack the necessary depth information, many researchers turn their attention to
point cloud data, which retains accurate spatial information of objects. With the popularity
of LiDAR and RGB-D cameras, the acquisition of point cloud data has become more
convenient and feasible. However, point clouds are usually sparse, disordered, and
unevenly distributed. How to effectively utilize the reliable information of the point
cloud data for 3D object detection is a challenging task.

In the field of autonomous driving, data acquisition platforms are usually equipped
with dual RGB color cameras and a LiDAR. The collected data includes the images taken
by the left and right cameras and the point clouds scanned by LiDAR. Researchers can
choose to use RGB images or point clouds for 3D object detection. Due to the modal
difference between RGB image and point cloud data, many state-of-the-art 2D object

Sensors 2021, 21, 136. https://dx.doi.org/10.3390/s21010136 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4908-1150
https://orcid.org/0000-0001-9993-8821
https://orcid.org/0000-0002-4973-6444
https://orcid.org/0000-0002-4441-3769
https://www.mdpi.com/1424-8220/21/1/136?type=check_update&version=1
https://dx.doi.org/10.3390/s21010136
https://dx.doi.org/10.3390/s21010136
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://dx.doi.org/10.3390/s21010136
https://www.mdpi.com/journal/sensors


Sensors 2021, 21, 136 2 of 21

detection methods cannot be directly applied to point clouds. For the RGB image and the
corresponding point cloud data of a given scene, various strategies are proposed to solve
the problem of 3D object detection. These schemes can be divided into the following three
categories: (a) monocular image-based methods, which use RGB images containing rich
color and texture information as the network input. However, in the process of converting
a 3D scene into a 2D image by a color camera, the spatial depth information of the objects
will inevitably be lost. Therefore, the performance of only using images for detection is
far from reaching the safety standards for autonomous driving. (b) Multi-sensor fusion-
based methods, most of which usually fuse point clouds with images through simple
projections. As point clouds are usually sparse and unevenly distributed, it is difficult
to ensure complete alignment when fusing with images. Although the point cloud data
scanned by LiDAR contain accurate depth information, there are still few frameworks that
can elegantly integrate multimodal data. (c) Point cloud-based methods, which use the
original point clouds as input and extract the point-wise or voxel-wise features for detection.
This kind of scheme shows excellent performance and even surpasses the methods based
on multi-sensor fusion.

Recently, the voxel-based method has shown its unique speed advantage, and many
advanced methods use it as their baseline. VoxelNet [11] is the pioneer of voxel-based
methods. It proposes an end-to-end 3D object detection framework using point clouds as
the only input. After dividing the point cloud space into regular voxels and extracting the
voxel-wise features, a 3D backbone network is used to process these features for object
detection. However, the computational cost of 3D CNN is too expensive to achieve the
expected speed in the industrial field. For this reason, SECOND [12] proposes 3D sparse
convolution for object detection and optimizes the 3D backbone network; this is a milestone
that significantly improves the speed of network training and inference. Many follow-up
works are carried out on this basis. For example, Pointpillars [13] and TANet [14] optimize
the point cloud encoder and abandon the 3D backbone network, thereby further improving
the inference speed of the network.

In this paper, we propose a novel detection framework called PSANet (Pyramid
Splitting and Aggregation Network), which skillfully combines a 3D backbone network
and a 2D backbone network. Inspired by TANet [14] and FPTNet [15], we propose a new
2D backbone network to complete the cross-layer fusion of multi-scale feature maps and
extract robust features of BEV. Specifically, our proposed backbone network can be divided
into a coarse branch and a fine branch. In the coarse branch, we use a pyramidal feature
hierarchy to obtain multi-scale feature maps, which contain low-level features with rich
texture information and high-level features with rich semantic information. This branch
can effectively reduce the false detection caused by complex background and noise points.
In the fine branch, we use our proposed pyramid splitting and aggregation (PSA) module
to fuse different layers of multi-scale features cleverly. By fully fusing the feature maps
of different levels, more expressive feature maps can be obtained, which enhances the
robustness of the network. After merging these two branches, we can obtain a final feature
map that integrates various information advantages for object detection. Experimental
results on the KITTI dataset indicate that our detection framework has a good performance.

Benefiting from the rich information obtained by the deep fusion of multi-scale feature
maps, our network can complete 3D and BEV detection tasks with high precision and
achieve a good balance between the speed and the accuracy of detection. Specifically, our
main contributions can be summarized as follows.

• We propose a new method to complete the cross-layer fusion of multi-scale feature
maps, which uses the pyramid splitting and aggregation (PSA) module to integrate
different levels of information.

• We propose a novel backbone network to extract the robust features from the bird’s
eye view, which combines the advantages of cross-layer fusion features and original
multi-scale features.



Sensors 2021, 21, 136 3 of 21

• Our proposed PSANet achieves competitive detection performance in both 3D and
BEV detection tasks, and the inference speed can reach 11 FPS on a single GTX
1080Ti GPU.

2. Related Work

According to the representation of network input, 3D object detection methods can
be divided into three categories: monocular image-based, multi-sensor fusion-based, and
point cloud-based.

2.1. Monocular Image-Based Methods

Image-based 2D object detectors have been very mature, and the average precision can
reach 94% on the KITTI-2D benchmark. As RGB images have the advantages of low cost,
convenient acquisition, and easy processing, many researchers try to find some effective
image-based 3D detection methods. Among them, the most concerned method is based on
monocular images.

Mono3D [16] samples 3D candidate boxes in 3D space and projects them back to the
image to generate 2D candidate boxes. These 2D candidate boxes are scored by using
shape, context information, class semantics, instance semantics, and location. Then, a
small number of high-quality object proposals are obtained by non-maximum suppression
(NMS). As the exhaustive method is used to collect candidate boxes, a large number of
proposals need to be searched in the 3D space, which causes certain efficiency problems.

GS3D [17] uses a 2D detector to predict the category, bounding box, and orientation
of objects in RGB images. These detection results are used to guide the position and
orientation of objects in 3D space. According to the prior knowledge of the scene, 3D
guidance is generated by using 2D bounding boxes and projection matrix. After extracting
the features of 3D guidance, the refined 3D bounding boxes can be obtained by using a 3D
subnet. Compared with other 3D object detection methods based on monocular images, it
can well balance the inference speed and detection accuracy. However, there is still a big
gap between the detection performance and the safety standard of autonomous driving.

AM3D [18] combines the advantages of 3D reconstruction and proposes a novel
monocular 3D object detection framework, which includes a 2D detector and a depth
estimation network. It converts the 2D image into a 3D point cloud space to obtain pseudo-
point clouds that are more conducive to detection, and then PointNet [19] performs 3D
detection on the reconstructed pseudo-point clouds. To improve the recognition ability of
point clouds, AM3D [18] proposes a multimodal feature fusion module, which comple-
ments the information of the RGB image with the pseudo-point cloud information. Unlike
previous monocular image-based methods, it combines depth estimation information and
significantly improves the detection performance.

2.2. Multi-Sensor Fusion-Based Methods

The point clouds of objects far away from LiDAR are sparse and difficult to distinguish,
but these objects are very obvious in the image. Therefore, some methods based on multi-
sensor fusion are proposed, and the most representative one is the fusion of point clouds
and RGB images.

MV3D [20] takes the point clouds and RGB images as inputs. After projecting the
point clouds to the bird’s eye view (BEV) and front view (FV), a 2D convolution neural
network is used to extract image features and LiDAR multi-view features. As there are
fewer occlusions in BEV, a small number of high-quality 3D proposals can be generated by
using BEV features. Then, the multi-view features of the corresponding regions are deeply
fused for object classification and detection. AVOD [21] further simplifies the input data,
and only uses LiDAR BEV and RGB image for fusion. Moreover, a novel feature extractor
is proposed to obtain high-resolution feature maps for small object detection. As point
clouds are usually sparse, unevenly distributed, and may contain noise points, this fusion



Sensors 2021, 21, 136 4 of 21

method cannot align the point clouds with the images well, which has a certain impact on
the detection performance.

F-PointNet [22] improves the multi-sensor fusion method and proposes a 2D-detection-
driven detector for 3D object detection. In the first stage, a 2D convolution neural network
is used to generate 2D object region proposals in RGB images. In the second stage, these 2D
region proposals are projected into the 3D point cloud space to form 3D viewing frustums.
The point clouds in the 3D viewing frustums are divided into foreground objects and
background objects. Moreover, only the segmented foreground points are used to predict
objects. As this method relies too much on the performance of the 2D detector, it may lead
to a wide range of missed detections.

ContFuse [23] proposes a novel fusion method for cameras and LiDAR, which realizes
the precise positioning of 3D objects. This is an end-to-end trainable detection framework
that uses a continuous fusion layer to encode discrete-state image features and continuous
geometric structure information cleverly. As the multi-scale features of the image are
fused into point cloud features, ContFuse [23] achieves competitive performance on the
KITTI benchmark.

2.3. Point Cloud-Based Methods

Compared with RGB images, point cloud data with precise depth information can
accurately estimate the 3D position of the object, which facilitates autonomous vehicles
and robots to plan their behavior and paths. Due to the modal difference between point
cloud data and RGB images, 2D CNNs cannot be directly used for point cloud processing.
Therefore, PointNet-based [19,24] methods and voxel-based methods are proposed to
process point clouds and complete 3D object detection.

The methods based on PointNet [19,24] usually extract point-wise features from the
original point clouds and use a two-stage detector to classify the objects and predict the
bounding boxes. In the first stage of PointRCNN [25], PointNet++ [24] extracts the features
of the global point clouds and segments the foreground points belonging to the object.
A small number of high-quality 3D proposals are generated by using the foreground points
as the center. In the second stage, these 3D proposals are converted into a regular coordinate
system and refined to obtain the final detection results. Although the performance of the
PointNet-based [19,24] methods is very superior, it is difficult to guarantee the inference
speed due to the huge amount of calculation for extracting the original point cloud features.

The voxel-based methods divide the 3D space into regular voxels or pillars and group
the point clouds distributed in the space into corresponding voxels. After extracting the
features of each voxel, the four-dimensional (4D) tensors representing the whole point
cloud space are obtained by using sparse convolution middle layers, and an RPN [26] is
used to implement the detection. VoxelNet [11] uses simplified PointNet [19] and voxel
feature encoding (VFE) layers to extract voxel-wise features, and then a 3D convolution
middle extractor is used to aggregate sparse four-dimensional tensors. To reduce the huge
amount of calculation caused by 3D convolution, SECOND [12] applies sparse convolution
to 3D object detection. As sparse convolution only operates on non-empty voxels, it
dramatically improves the training and inference speed of the network.

Pointpillars [13] optimizes the encoder of SECOND [12] and encodes the point cloud
space into pillars. Then, the simplified PointNet [19] is used to learn the features and
convert the sparse 3D data into 2D pseudo-images for detection. Taking advantage of
Pointpillars [13], TANet [14] studies the robustness of point cloud-based 3D object detection.
A triple attention module is proposed to suppress the unstable point clouds, and the coarse-
to-fine regression (CFR) module is used to refine the position of objects. After adding
extra noise points, it can still ensure high-accuracy detection. However, due to the loss of
point cloud information caused by spatial voxelization and insufficient utilization of 2D
BEV information, the voxel-based method has a performance bottleneck, and the detection
performance is not comparable to the PointNet-based [19,24] method.



Sensors 2021, 21, 136 5 of 21

3. PSANet Detector

In this section, we introduce the proposed PSANet detector, including the network
architecture and implementation details.

3.1. Motivation

To solve the performance problem of the voxel-based method, we have investigated
many related schemes and found that most of the current studies focus on how to reduce
the information loss during spatial voxelization or design a two-stage detector to refine
the results. Most of these detectors choose to simplify the RPN [26]. However, as an
essential part of the 3D detector, an oversimplified RPN [26] will lose the details of the BEV
information. For distant objects, they usually contain very sparse point clouds, and the
detector is susceptible to the interference of noise points and background points, which may
lead to false detections. Similarly, for objects that are severely truncated or occluded, the
contour of their point clouds is usually incomplete. Therefore, it is necessary to determine
the category according to the context information contained in the multi-scale feature maps.

PIXOR [27] proves that BEV information is beneficial for object detection in the field of
autonomous driving. It converts point clouds into a BEV representation and designs a one-
stage detector to complete high-precision detection of objects. Inspired by this, we propose
a novel detector called PSANet and design a new backbone network to extract and fuse
multi-scale BEV feature maps. The backbone network can be divided into two branches: a
coarse branch and a fine branch. In the coarse branch, we extract features with different
scales, including low-level features with rich texture information and high-level features
with rich semantic information. In the fine branch, the PSA module implements the cross-
layer fusion of multi-scale features and improves the expression ability of feature maps.

3.2. Network Architecture

As shown in Figure 1, the proposed detector mainly includes five essential parts:
(1) Data Preprocessing, (2) Voxel-wise Feature Extractor, (3) 3D Sparse Convolutional
Middle Extractor, (4) Reshaping to BEV, and (5) Cross-Layer Fusion of Multi-Scale BEV
Features (PFH-PSA).

Figure 1. The structure of our PSANet. The detector divides the original point cloud space into
regular voxels and extracts voxel-wise features by using a mean voxel-wise feature extractor. Af-
ter the 3D sparse convolutional middle extractor learns the information along the Z-axis, the 3D
sparse data is converted into a dense 2D bird’s eye view (BEV) pseudo-image. Finally, PFH-PSA
completes the cross-layer fusion of multi-scale BEV features and obtains more expressive features for
subsequent detection.



Sensors 2021, 21, 136 6 of 21

3.3. Data Preprocessing

According to the coordinate transformation matrix, we project the point clouds into
the image taken by the left camera and filter out the point clouds outside the image. As
the original point clouds are usually irregularly distributed, the 3D convolutional neural
network cannot directly process them. According to VoxelNet [11], we divide point cloud
space into regular voxels. Specifically, for a given 3D scene, we only retain the part of
point clouds that contain objects. The entire space is cropped to obtain an effective point
cloud space within the range of D× H ×W, where D represents the range of point clouds
along the Z-axis (vertical direction), H represents the range of point clouds along the Y-axis
(left and right of the car), and W represents the range of point clouds along the X-axis
(the front of the car). For the KITTI dataset, we only process the point clouds within the
range of [−3, 1]× [−40, 40]× [0, 70.4] m3 and divide the cropped point clouds into voxels
of size vD × vH × vW . We choose 0.1× 0.05× 0.05 m3 as the voxel size, and a total of
40× 1600× 1408 voxels can be obtained. Generally, a high-definition point cloud scene
may contain about 100k points. As the density of point clouds is related to many factors,
the most common situation is that the point clouds of distant objects are usually very
sparse. The number of points contained in different voxels varies greatly, so it is expensive
to process all points in the voxel directly. For car detection, we set the number of points in
each non-empty voxel not to exceed N(N = 5). For voxels containing more than N points,
we randomly sample N points to represent them. Conversely, for voxels that contain less
than N points, we fill them with 0. This strategy brings two benefits: one is to use a small
number of points to represent voxels, which greatly reduces the amount of computation,
and the other is to avoid the negative impact caused by the unbalanced number of point
clouds in different voxels.

3.4. Voxel-Wise Feature Extractor

We use a simple mean voxel-wise feature extractor to obtain the features of each voxel.
Specifically, each non-empty voxel after data preprocessing contains N points, and we
average the information of these N representative point clouds and take the results as the
voxel-wise features. Remarkably, although the mean voxel-wise feature extractor has a
simple structure, it can effectively extract features and avoid using complex PointNet [19]
to extract voxel-wise features.

3.5. 3D Sparse Convolutional Middle Extractor

To improve the computational efficiency of 3D convolution, we use the sparse convo-
lution proposed by SECOND [12] to process non-empty voxels. As shown in Figure 2, we
take the voxel-wise features obtained by mean voxel-wise feature extractor as input and
then convert them into four-dimensional (4D) sparse tensors by using a sparse convolu-
tional tensor layer. The 4D sparse tensors can be expressed as C′ ×D′ × H′ ×W ′, where C′

is the number of channels, and the initial D′, H′, and W ′ are D
vD

, H
vH

, and W
vW

, respectively.
Then, the sparse tensor representing the whole space is eight times downsampled by sparse
convolutional layers and submanifold convolutional layers. In this process, the network
learns the information along the Z-axis in space and downsamples the Z-dimensionality to
2. This part implements the compression of height, which facilitates converting sparse 3D
data into dense 2D pseudo-images.



Sensors 2021, 21, 136 7 of 21

Figure 2. The structure of the 3D sparse convolutional middle extractor. The orange box is the
sparse convolutional tensor layer, which is used to convert voxel features into 4D sparse tensors. The
blue boxes are sparse convolutional layers with stride = 2, and the green boxes are submanifold
convolutional layers. The gray cuboids are used to show the changes in the spatial dimension.

3.6. Reshaping To BEV

We use the 4D tensor expressed as C′ ×D′ × H′ ×W ′ to represent the sparse data that
is downsampled eight times, where C′ is the number of channels, and D′ × H′ ×W ′ is the
spatial dimension of sparse data. After the dense operation on the 4D sparse tensor, the
dimensions of C′ and D′ are fused to obtain a 2D pseudo-image for PFH-PSA. The point
cloud space with a shape of 128× 2× 200× 176 is mapped to the BEV pseudo-image with
a shape of 256× 200× 176.

3.7. Cross-Layer Fusion of Multi-Scale BEV Features (PFH-PSA)

RPN [26] is an important part of many high-precision object detectors, which directly
affects the detection performance. To this end, we propose a novel backbone network to
implement the cross-layer fusion of multi-scale BEV features, so as to make full use of
the advantages of various features. As shown in Figure 3, the backbone network contains
two branches: a coarse branch and a fine branch. The coarse branch is composed of a
pyramidal feature hierarchy (PFH), and the fine branch is composed of a pyramid splitting
and aggregation (PSA) module. In this paper, the backbone network can be referred to
simply as PFH-PSA. Specifically, in the coarse branch, several consecutive convolutional
layers with strides of 1 and 2 are used to obtain multi-scale feature maps. We can obtain the
feature maps F11, F12, and F13 with sizes S, S/2, and S/4, respectively. Then, the multi-scale
feature maps are deconvolved back to the same size S and fused to obtain the output
Fc containing multiple information. In the fine branch, the multi-scale feature maps of
the coarse branch are sampled to reconstruct three new pyramidal feature hierarchies.
This whole process is implemented by deconvolution layers and max-pooling layers, and
the feature maps with the corresponding size are fused to form a reorganized pyramidal
feature hierarchy. Finally, the multi-scale feature maps are deconvolved to F21, F22, F23 with
the same size, and fused with Fc as the final feature Fout.

The pyramidal feature hierarchy contains low-level features with rich texture informa-
tion and high-level features with rich semantic information, which can effectively avoid
false detections caused by background points and noise points. Moreover, the multi-scale
feature maps have different resolutions and receptive fields, which is conducive to the
detection of small objects. The pyramid splitting and aggregation module implements the
cross-layer fusion of multi-scale feature maps and obtains more expressive feature maps.
After element-wise summing the outputs of these two branches, we can obtain a feature
map that combines various information for the detection task.



Sensors 2021, 21, 136 8 of 21

Figure 3. The structure of our proposed backbone network PFH-PSA. The red arrows indicate
deconvolution layers, purple boxes indicate 1× 1 convolutional layers, light yellow boxes indicate
3× 3 convolutional layers, orange boxes indicate 5× 5 convolutional layers, brown boxes indicate
7× 7 convolutional layers, and blue boxes indicate the convolutional layers with stride = 2. Different
colors indicate feature maps with different scales, and different textures indicate feature maps
obtained through deconvolution layers or max-pooling layers.

The following are the implementation details. We use a BatchNorm layer and a ReLU
layer after each convolutional layer, so we can use Conv2d(Cin, Cout, K, S) to represent the
Conv2D-BatchNorm-ReLU layer, where Cin is the number of input channels, Cout is the
number of output channels, K is the size of the convolutional kernel, and S is the stride.
We take the BEV pseudo-image with a shape of (C′ × D′)× H′ ×W ′ as input, the number
of channels is (C′ × D′) = 256, and the scale is H′ ×W ′ = 200× 176. In the coarse branch,
the BEV pseudo-image generates multi-scale feature maps through three blocks. The first
block contains a Conv2d(256, 128, 3, 1), which reduces the number of channels to 128, and
then three continuous Conv2d(128, 128, 3, 1) are used to obtain the feature map F11. The
second block contains a Conv2d(128, 256, 3, 2) for downsampling F11, and then we use
five continuous Conv2d(256, 256, 3, 1) to obtain F12. The third block is identical to the
second block, and the feature map F13 with a size of S/4 is obtained. For F11, F12, and F13,
we also use three blocks to implement upsampling. These three blocks are composed of
deconvolution layers with stride 1, 2, and 4. Each deconvolution layer is followed by a
BatchNorm layer and a ReLU layer. We use a Conv2d (768, 256, 1, 1) to reduce the number
of channels and obtain the output Fc of the upper half branch. The coarse branch has the
following forms,

Fc = W1×1 ⊗ (U1(F11)⊕U2(F12)⊕U4(F13)) (1)

where W1×1⊗ represents the 1× 1 convolutional layer, Uβ represents the deconvolution
layer with stride = β, and ⊕ represents concatenation.

In the fine branch, we use deconvolution layers and max-pooling layers to process F11,
F12, and F13, and generate feature maps with three different scales. Then, we concatenate
the feature maps of the corresponding size to form a new pyramidal feature hierarchy, and
the number of channels is 256, 512, and 640, respectively. We use three 1× 1 convolutional
layers to reduce the number of channels, and then we use kernels of sizes 3× 3, 5× 5, and
7× 7 to process these multi-scale feature maps and obtain different receptive fields. To
ensure the calculation speed, we use two 3× 3 convolutional layers instead of the 5× 5
convolutional layer and three 3× 3 convolutional layers instead of the 7× 7 convolutional
layer. After deconvolution layers with stride 1, 2, and 4, we can get F21, F22, and F23 with
the same size. We sum them with Fc to complete the fusion of the two branches. Then,
a Conv2d(256, 256, 3, 1) is used to further fuse the features. Finally, we concatenate the



Sensors 2021, 21, 136 9 of 21

above features to get the final output Fout. This process is called the pyramid splitting and
aggregation module, which has the following form:

F21 = W7×7 ⊗ (W1×1 ⊗ (F11 ⊕U2(F12)⊕U4(F13))) (2)

F22 = W5×5 ⊗ (W1×1 ⊗ (D2(F11)⊕ F12 ⊕U2(F13))) (3)

F23 = W3×3 ⊗ (W1×1 ⊗ (D4(F11)⊕ D2(F12)⊕ F13)) (4)

Fout = (W3×3 ⊗ (F21 + Fc))⊕ (W3×3 ⊗ (F22 + Fc))⊕ (W3×3 ⊗ (F23 + Fc)) (5)

where Wα×α⊗ represents the α× α convolutional layer, Uβ represents the deconvolution
layer with stride = β , Dγ represents the max-pooling layer with kernel size = γ, ⊕
represents concatenation, and + represents element-wise summation.

In the detection head, we inherit the method proposed by SECOND [12] and determine
the fixed-size anchors according to the average size of the ground truths in the KITTI dataset.
We choose a set of anchors with a size of w × l × h = 1.6× 3.9× 1.56m3 to detect cars.
Finally, we use three 1× 1 convolutional layers to implement object classification, bounding
box regression, and direction classification.

3.8. Loss Function

Our loss function Ltotal consists of three parts: Focal loss Lcls for object classification,
Smooth-L1 loss Lreg for angle and position regression, and Softmax loss Ldir for direction
classification.

In one-stage detectors, the proportion of positive and negative samples is extremely
unbalanced. To reduce the weight of negative samples during training, RetinaNet [28] pro-
poses effective Focal loss. We use it as our classification loss, which has the following form,

Lcls = −αt(1− Pt)
γlog(Pt) (6)

where Pt is the model’s estimated probability for the corresponding bounding box, and α
and γ are the hyperparameters of the loss function. We use α = 0.25 and γ = 2.

Regression loss includes angle regression and bounding box regression. For the
anchor used for detection, its center can be expressed as xa, ya, za, and its length, width,
and height can be expressed as la, wa, and ha, respectively. In addition, we define the
yaw rotation around the z-axis as θa. Therefore, the bounding box can be expressed
as [xa, ya, za, la, wa, ha, θa]. Correspondingly, the bounding box of the ground truth can
be expressed as [xg, yg, zg, lg, wg, hg, θg]. The subscripts a and g are used to distinguish
between the anchor and the ground truth, respectively. We define the seven regression
targets [∆x, ∆y, ∆z, ∆l , ∆w, ∆h, ∆θ ] as follows,

∆x =
xg − xa√

(la)2 + (wa)2
, ∆y =

yg − ya√
(la)2 + (wa)2

, ∆z =
zg − za

ha
, (7)

∆l = log(
lg

la
), ∆w = log(

wg

wa
), ∆h = log(

hg

ha
), (8)

∆θ = sin(θg − θa), (9)

The regression loss has the following form,

Lreg = ∑
u∈[x,y,z,l,w,h,θ]

SmoothL1(∆u) (10)

The total loss function for training is as follows,

Ltotal = β1Lcls + β2Lreg + β3Ldir (11)



Sensors 2021, 21, 136 10 of 21

where Ldir is the Softmax loss for direction classification. β1, β2, and β3 are hyperparame-
ters, and we use β1 = 1.0, β2 = 2.0, and β3 = 0.2.

4. Experiments

In this section, our PSANet is trained and evaluated on the challenging KITTI-3D
benchmark [29]. First, we compare the performance of 3D and BEV object detection with
other methods and then we list some ablation experiments to prove the effectiveness of our
network. Finally, we show some visualizations of detection results and compare them with
some state-of-the-art voxel-based methods.

4.1. Dataset

In the field of autonomous driving, the KITTI dataset is currently the world’s largest
dataset for evaluating 3D object detection algorithm. Specifically, it contains real image data
collected from different scenes such as urban areas, rural areas, and highways. As each
image may contain up to fifteen cars, object detection on the KITTI dataset becomes a
very challenging task. We train and evaluate our network using the KITTI dataset, which
contains 7481 pairs of training samples and 7518 pairs of test samples. As the ground
truth of the test set is not public, we use the method proposed by MV3D [20] to divide
the 7481 pairs of samples into a training set containing 3712 samples and a validation set
containing 3769 samples. According to the occlusion level, the degree of truncation, and
the height of the bounding box in the 2D image, the KITTI benchmark divides objects into
three difficulty levels: easy, moderate, and hard. Therefore, we evaluate the performance
of the detector from these three different levels of difficulty. All the following experiments
are performed on a single GTX 1080 Ti GPU.

4.2. Implementation Details
4.2.1. Network Details

For car detection, we select the point cloud space in the range of D × H ×W =
[−3, 1]× [−40, 40]× [0, 70.4] m3 as the network input. Moreover, we use vD × vH × vW =
0.1 × 0.05 × 0.05 m3 as the voxel size and divide the cropped point cloud space into
40× 1600× 1408 voxels. To ensure the computational efficiency of training and inference,
we set each voxel to contain no more than N(N = 5) points. During training, we stipulate
that the entire space contains no more than 16,000 non-empty voxels. For scenes where
the number of voxels exceeds the specified maximum number, we use random sampling
to process them. Similarly, during the test, we stipulate that the scene contains no more
than 40,000 non-empty voxels. Finally, we choose w× l × h = 1.6× 3.9× 1.56 m3 as the
anchor size.

4.2.2. Training Details

During the training process, we use Kaiming initialization to configure the parameters
of our network. The initial learning rate is 0.0003, and we use an Adam optimizer to train
the network on a single GTX 1080Ti GPU with a batch size of 2. Our proposed network
is trained for 80 epochs (150k iterations), and it takes 27 h in total. We use the value of
beta1 is 0.9, the value of beta2 is 0.999, and the value of epsilon is 10 × 10−8. The total loss
during the entire training process is shown in Figure 4, where the abscissa is the number of
iterations, and the ordinate is the loss value. It can be seen from Figure 4a that the total loss
of the network converges relatively well. Figure 4b–d show the object classification loss,
direction classification loss, and location regression loss, respectively.



Sensors 2021, 21, 136 11 of 21

(a) Total loss

(b) Object classification loss

(c) Direction classification loss

(d) Location regression loss

Figure 4. The changes of loss value during network training.

As the test set is not public, we divided 7481 pairs of labeled samples to obtain a
training set containing 3712 samples. To prevent the network from overfitting due to too
few training samples, we augment the database according to SECOND [12], including
random flip, global rotation, and global scaling. Moreover, we sample ground truths from
the training set to build an augmented database that includes labels and point clouds



Sensors 2021, 21, 136 12 of 21

in ground truths. During training, several ground truths are randomly selected from
the augmented database and spliced into the real point cloud scene being trained. Here,
we constrain the spliced ground truth and the real ground truth to have no intersection.
To show the variation tendency of the detector performance more intuitively, we save
the model parameters in different epochs during the training process and draw two
performance line graphs. As shown in Figure 5, our network has no obvious overfitting,
and the final performance remains stable at a high level.

(a) 3D detection performance

(b) BEV detection performance

Figure 5. The 3D and BEV average precision (AP) (%) of different epochs on the KITTI validation set.

4.3. Comparisons on the KITTI Validation Set

We compare our PSANet with some previous state-of-the-art methods, which are the
most representative algorithms in recent years. According to the structure, these methods
can be divided into two categories, one is based on the two-stage detector, and the other is
based on the one-stage detector. According to the representation of the input data, some
of them are based on point cloud and image fusion, while others only use point clouds
as input. It is worth noting that our PSANet is a one-stage detector that only takes point
clouds as input. The detailed comparison is shown in Table 1. We conduct a comprehensive



Sensors 2021, 21, 136 13 of 21

comparison from the two aspects of 3D and BEV object detection, in which the boldface
indicates the best performance among the current evaluation indicators.

Table 1. 3D detection and bird’s eye view detection performance: Average precision (AP) (%) of the car on the KITTI
validation set.

Type Method Modality
3D Detection (IoU = 0.7) BEV Detection (IoU = 0.7)

FPS
Easy Moderate Hard Easy Moderate Hard

2-stage

MV3D [20] RGB + LiDAR 71.29 62.68 56.56 86.55 78.10 76.67 3
AVOD-FPN [21] RGB + LiDAR 84.41 74.44 68.65 N/A N/A N/A 10
F-PointNet [22] RGB + LiDAR 83.76 70.92 63.65 88.16 84.02 76.44 6

IPOD [30] RGB + LiDAR 84.10 76.40 75.30 88.30 86.40 84.60 N/A
PointRCNN [25] LiDAR 88.88 78.63 77.38 N/A N/A N/A 10

1-stage

VoxelNet [11] LiDAR 81.97 65.46 62.85 89.60 84.81 78.57 4
SECOND [12] LiDAR 87.43 76.48 69.10 89.96 87.07 79.66 25

Pointpillars [13] LiDAR 86.13 77.03 72.43 89.93 86.92 84.97 62
3DBN [31] LiDAR 87.98 77.89 76.35 N/A N/A N/A 8
TANet [14] LiDAR 88.21 77.85 75.62 N/A N/A N/A 29

Voxel-FPN [32] LiDAR 88.27 77.86 75.84 90.20 87.92 86.27 50
PSANet (Ours) LiDAR 89.02 78.70 77.57 90.20 87.88 86.20 11

KITTI uses the 3D object detection average precision of moderate difficulty as the
most important evaluation criterion, but the detection of hard objects is more challenging.
From Table 1, we can find that our PSANet achieves the best performance in different levels
of 3D object detection tasks, and even surpassing the two-stage methods. In the task of
BEV object detection, our method is very close to the current optimal method and obtains
sub-optimal results.

To show the superiority of our method more intuitively, we draw the performance
line charts of 3D and BEV detection tasks. As shown in Figure 6, the abscissa represents
different levels of difficulty, and the ordinate represents the average precision of 3D and
BEV object detection. As can be seen from Figure 6a, our method is significantly better
than other one-stage algorithms in 3D object detection tasks. Moreover, by comparing
the slope of the broken line between the moderate level and hard level, we can find that
when the detection difficulty increases, the performance of our method will not decrease
significantly, which further indicates that our network is more robust. Furthermore, as
shown in Figure 6b, our method also achieves outstanding performance in the BEV object
detection task, which is almost comparable to the most advanced methods.

4.4. Ablation Studies
4.4.1. Different Backbone Networks

Our proposed backbone network integrates multi-scale and cross-layer features.
To prove its superiority, we test the influence of different backbone networks on detection
performance. We use SECOND [12] as our baseline, which uses the most common structure
as the backbone network. It downsamples the BEV features once, then converts the two
feature maps to the same size through deconvolution layers, and the result is directly used
for detection. Our coarse branch further downsamples the BEV features, and fuse the
multi-scale feature maps for detection. After generating multi-scale feature maps, the fine
branch completes the cross-layer fusion of the obtained features, but the original multi-scale
features will not be fused. Our network uses a new structure that combines these two
branches. This structure not only uses the fine branch to fuse the multi-scale feature maps
but also retains the independent fusion of the coarse branch. The detailed experimental
results are shown in Table 2, where PFH indicates the coarse branch, and PSA indicates the
fine branch. We bold the relevant values to highlight the optimal value of each metric.



Sensors 2021, 21, 136 14 of 21

(a) 3D detection performance

(b) BEV detection performance

Figure 6. The average precision (AP) (%) of different methods on the KITTI validation set.

Table 2. Performance comparison of different backbone networks on the KITTI
validation set.

Method
3D Detection (IoU = 0.7) BEV Detection (IoU = 0.7)

Easy Moderate Hard Easy Moderate Hard

Baseline 88.46 78.15 76.68 90.01 87.45 85.08
Baseline+Coarse Branch 88.73 78.24 76.50 90.07 87.51 85.56

Baseline+Fine Branch 88.52 77.98 76.62 90.15 87.63 86.14
Baseline+PFH-PSA 89.02 78.70 77.57 90.20 87.88 86.20

Improvement +0.56 +0.55 +0.89 +0.19 +0.43 +1.12

It can be seen from the above table that only adding the coarse branch to obtain
multi-scale feature maps can hardly improve the performance of the detector, which also
explains why the latest detectors choose to simplify the structure of multi-scale feature
extraction. When the fine branch is added to the backbone network, the PSA module deeply
integrates the texture information of the low-level features and the semantic information of
the high-level features. It greatly enhances the expressive ability of feature maps, thereby
significantly improving the performance of BEV detection. However, after discarding
the coarse branch, the average precision of the 3D object detection is slightly reduced,
which indicates that the coarse branch output Fc contains the information required for 3D
detection. When the two branches work at the same time, the accuracy of 3D and BEV
object detection is significantly improved, which proves that these two branches have their
advantages for different detection tasks, and their advantages have a synergistic effect.



Sensors 2021, 21, 136 15 of 21

4.4.2. Different Fusion Methods

The feature maps obtained from the two branches contain effective information for
3D and BEV object detection. To effectively fuse them and obtain features with stronger
expressive ability, we design four different fusion methods to fuse the advantages of these
two branches. At present, the most common fusion method is the element-wise summation
and channel concatenation. As the two branches contain six outputs, direct concatenation
will cause a certain computational burden. We fuse the coarse branch separately to obtain
Fc and then fuse it with each output of the fine branch. Therefore, according to whether the
coarse branches are fused separately, we divide these four fusion methods into early fusion
and late fusion. As shown in Figure 7, the method using Fc is called late fusion, and the
opposite is called early fusion. Table 3 shows the impact of different fusion methods on
performance. We bold the relevant values to highlight the optimal value of each metric.

Figure 7. Different fusion methods of the two branches, where C represents concatenation, ⊕
represents the element-wise summation, and ⊗ represents the convolutional layer.

From Table 3, we can find that in the same case of early fusion or late fusion, the
channel concatenation fusion method is more conducive to BEV detection, while the
element-wise summation is more conducive to 3D object detection. Similarly, when using
concatenation or element-wise summation, we can see that the later fusion method is
always better than early fusion. Compared with BEV detection, this article pays more
attention to the performance of 3D object detection, so we choose the late sum fusion
method as the final model of the network.

Table 3. Performance comparison of different fusion methods on the KITTI validation set.

Method
3D Detection (IoU = 0.7) BEV Detection (IoU = 0.7)

Easy Moderate Hard Easy Moderate Hard

Baseline 88.46 78.15 76.68 90.01 87.45 85.08
Early Concat Fusion 88.44 78.27 77.09 90.10 87.83 86.28

Early Sum Fusion 89.10 78.68 77.35 90.21 87.82 85.99
Late Concat Fusion 88.66 78.55 77.25 90.12 88.05 86.80

Late Sum Fusion 89.02 78.70 77.57 90.20 87.88 86.20



Sensors 2021, 21, 136 16 of 21

4.5. Analysis of the Detection Results
4.5.1. Detection Results on the KITTI Validation Set

We draw the bounding box of the ground truth and our detection results with green
lines and red lines, respectively. Each detection bounding box has a short red line to
indicate the result of our direction classification. To observe the results more intuitively, we
project the detection results from the point cloud space to the RGB image and generate the
corresponding bounding boxes. Each scene in Figure 8 contains three parts: the top shows
the 3D bounding boxes in the RGB image, the picture on the bottom left is the visualization
of the detection results in real point cloud space, and the picture on the bottom right is the
results of BEV detection.

(a) Scene 1039

(b) Scene 1012

(c) Scene 1771

Figure 8. Cont.



Sensors 2021, 21, 136 17 of 21

(d) Scene 7233

Figure 8. Detection results on the KITTI validation set, where the green boxes represent the bounding
boxes of the ground truth, the red boxes represent our detection results, and the short red lines
indicate the results of our direction classification.

As shown in Figure 8a, the cars in this scene are not severely occluded or truncated,
and these targets can be easily detected. Figure 8b,c have several heavily occluded cars.
Although they are ignored by the ground truth, we can still accurately detect them and
determine their direction. Figure 8d shows the detection results of a complex scene. The
cars in this scene are arranged very densely, and there are several occluded and partially
truncated cars. Nevertheless, we can still complete accurate detection.

4.5.2. Comparison with Some State-of-the-Art Voxel-Based Methods

To show the effectiveness of our method more fairly, we compare our method with
some state-of-the-art voxel-based methods. The detection results of Pointpillars [13],
SECOND [12], and our method are visualized as shown in Figure 9.

From the point cloud detection results on the left of Figure 9a, we can see that the
bounding box regression of Pointpillars [13] is not satisfactory, while SECOND [12] is
more susceptible to interference from complex backgrounds, and both of them have some
false detections. In comparison, our method exhibits stronger robustness and does not
mistakenly detect distant background points as vehicles, thereby reducing false alarms
to a certain extent. In a complex scene like Figure 9b, the vehicles are severely occluded
and truncated. All three methods successfully detect vehicles in this scene. However, for
the bushes and signs on the side of the highway, Pointpillars [13] has two prominently
false detections, and SECOND [12] incorrectly identifies the left side guardrail as a vehicle.
However, our method exhibits excellent performance and perfectly avoids background
interference. The above visualization results show that our network is more robust to
detection tasks in complex scenes.



Sensors 2021, 21, 136 18 of 21

(a)

(b)

Figure 9. Comparison of detection results from Pointpillars [13] (top), SECOND [12] (middle), and ours (bottom) for two different
scenes (a,b).

5. Discussion

Our method is not only suitable for car detection, but also suitable for various objects
in real autonomous driving scenes. Besides, our proposed one-stage detector fully extracts
and integrates different levels of BEV feature information, so it can be used to generate high-
quality proposals and be expanded into a higher-precision two-stage detector. Of course,
our method also has some shortcomings: (1) as shown in Section 4, we only compared
the 3D and BEV detection performance of cars, but not pedestrians and cyclists. This
is because the detection accuracy of pedestrians and cyclists has not been significantly



Sensors 2021, 21, 136 19 of 21

improved. For small targets that are easily overlooked, it is not enough to use point cloud
BEV information for optimization. On the one hand, these small targets contain fewer
point clouds, which are easily ignored or affected by complex backgrounds. On the other
hand, unlike rigid objects such as cars, the point cloud contours of pedestrians are usually
complex and changeable, which also brings some challenges to anchor-based methods. (2)
As shown in Table 1, the inference speed of our proposed detector can reach 11FPS on a
single GTX 1080Ti GPU. However, for vehicles traveling at high speed in real scenes, such
inference speed is still insufficient to complete the detection and tracking tasks. As stated
by Gaussian YOLOv3 [33], a real-time detection speed of above 30 FPS is a prerequisite
for autonomous driving applications. To this end, we tried to perform inference on a
better-performing GPU. Although the inference speed can reach 22 FPS on TITAN XP
GPU, there is still a certain gap with industrial model deployment. For the above two
problems, we will consider fusing images and point clouds to improve the detection of
small targets and long-distance targets. Moreover, for the deployment of our model, we
will try to use TensorRT to accelerate the inference of the model and realize the detection of
high-speed vehicles.

With the development of autonomous driving technology, model deployment requires
detectors to have stronger generalization ability, but we observe that most of the state of
the arts are only trained and evaluated on the KITTI benchmark, which is not conducive to
the application of 3D object detection technology in the industrial field. Recently, more and
more datasets are open to the public, such as Waymo and nuScence. To enrich the diversity
of training scenarios, we need to design a standardized and unified 3D object detection
framework to cleverly combine these datasets and improve the generalization ability of the
model. This is also an inevitable development trend in the field of autonomous driving.

6. Conclusions

SECOND [12] proposes a pioneering one-stage detection framework, which uses a 3D
sparse convolutional backbone network to learn the information of the point cloud space,
and then converts it into a pseudo-image and uses a simple 2D RPN network to detect
the object. The method based on point cloud voxels shows a unique speed advantage.
Many state-of-the-art methods carry out follow-up work based on SECOND [12]. They are
mainly divided into two directions: (1) optimizing SECOND [12] and designing a novel
one-stage detector. For example, Pointpillars [13] and TANet [14] simplify the encoding
method of SECOND [12]. They chose to abandon the 3D sparse convolutional backbone
network, and use a pillar encoder to convert point clouds into a pseudo-image of the BEV,
and finally use the 2D backbone network to generate the detection results. This method
has the advantage of high efficiency, but due to partial loss of point cloud information, it
has a performance bottleneck. (2) Taking SECOND [12] as the baseline and expanding it
to a two-stage detector. For example, PartA2 [34] and PV-RCNN [35] use SECOND [12]
as the first stage of the detector and refine the high-quality proposals in the second stage.
This type of method has a complicated structure and requires longer training and inference
time on the same GPU.

Most of the existing 3D object detection methods belong to the second category.
However, our work belongs to the first category. In this paper, we introduce a new BEV
feature extraction network, which uses the PSA module to ingeniously fuse multi-scale
feature maps and enhance the expression ability of BEV features. Although the BEV
pseudo-image obtained by the 3D backbone network is only one-eighth the size of the
real scene, the feature map is still very sparse for 3D object detection. We find that simple
multi-scale feature fusion does not show its due advantages, but after full cross-layer
fusion, it can give full play to its advantages of information fusion. Extensive experiments
on the challenging KITTI dataset show that our method has better performance in both 3D
and BEV object detection compared with some previous state-of-the-art methods.

We can find that our method shows certain limitations in detecting small objects.
Therefore, our future research direction is to design a multi-sensor fusion method with a



Sensors 2021, 21, 136 20 of 21

faster detection speed to improve the detection performance of small objects. We observe
that limited by the scanning resolution of LiDAR, small targets and distant objects usually
have very sparse point clouds. We consider fusing color image data to optimize the detector.
Due to the fundamental modal differences between images and point clouds, directly fusing
cross-modal data usually has obvious performance bottlenecks. This is also the primary
reason why the current multi-sensor methods are not effective. To this end, we will devote
ourselves to exploring more effective multi-sensor fusion methods with a unified modality,
such as generating high-quality pseudo-point clouds from color images and use them for
point cloud completion of distant targets. For real point cloud processing, we will also
introduce point cloud attention and voxel attention to avoid sampling background points
or noise points. Furthermore, for the speed defects of model deployment, we will try to
use ONNX-TensorRT to accelerate the inference of the model on industrial computers.

Author Contributions: F.L. and Q.C. completed the main work, including proposing the idea,
coding, training the model, and writing the paper. X.L., H.J., and Y.L. collected and analyzed the
data. W.J., C.F., and L.Z. reviewed and edited the paper. All authors participated in the revision of
the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Key Research and Development Program of
China(No. 2018YFB1201602-05) and the National Natural Science Foundation of China Enterprise
Innovation and Development Joint Fund(No. U19B2004).

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

BEV Bird’s Eye View
PFH Pyramidal Feature Hierarchy
PSA Pyramid Splitting and Aggregation
RPN Region Proposal Network
VFE Voxel Feature Encoding

References
1. Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 11–18

December 2015; pp. 1440–1448.
2. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of

the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 21–37.
3. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 779–788.
4. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.
5. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Semantic image segmentation with deep convolutional nets

and fully connected crfs. arXiv 2014, arXiv:1412.7062.
6. Lin, G.; Milan, A.; Shen, C.; Reid, I. Refinenet: Multi-path refinement networks for high-resolution semantic segmentation.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017;
pp. 1925–1934.

7. Dong, C.; Loy, C.C.; He, K.; Tang, X. Learning a deep convolutional network for image super-resolution. In Proceedings of the
European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 184–199.

8. Kim, J.; Kwon Lee, J.; Mu Lee, K. Accurate image super-resolution using very deep convolutional networks. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 1646–1654.

9. Lim, B.; Son, S.; Kim, H.; Nah, S.; Mu Lee, K. Enhanced deep residual networks for single image super-resolution. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July
2017; pp. 136–144.

10. Janai, J.; Güney, F.; Behl, A.; Geiger, A. Computer vision for autonomous vehicles: Problems, datasets and state of the art. Found.
Trends Comput. Graph. Vis. 2020, 12, 1–308. [CrossRef]

http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d
http://dx.doi.org/10.1561/0600000079


Sensors 2021, 21, 136 21 of 21

11. Zhou, Y.; Tuzel, O. Voxelnet: End-to-end learning for point cloud based 3d object detection. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 4490–4499.

12. Yan, Y.; Mao, Y.; Li, B. Second: Sparsely embedded convolutional detection. Sensors 2018, 18, 3337. [CrossRef] [PubMed]
13. Lang, A.H.; Vora, S.; Caesar, H.; Zhou, L.; Yang, J.; Beijbom, O. Pointpillars: Fast encoders for object detection from point clouds.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019;
pp. 12697–12705.

14. Liu, Z.; Zhao, X.; Huang, T.; Hu, R.; Zhou, Y.; Bai, X. TANet: Robust 3D Object Detection from Point Clouds with Triple
Attention. In Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February
2020; pp. 11677–11684.

15. Zhang, D.; Zhang, H.; Tang, J.; Wang, M.; Hua, X.; Sun, Q. Feature Pyramid Transformer. arXiv 2020, arXiv:2007.09451.
16. Chen, X.; Kundu, K.; Zhang, Z.; Ma, H.; Fidler, S.; Urtasun, R. Monocular 3d object detection for autonomous driving.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016;
pp. 2147–2156.

17. Li, B.; Ouyang, W.; Sheng, L.; Zeng, X.; Wang, X. Gs3d: An efficient 3d object detection framework for autonomous driving.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019;
pp. 1019–1028.

18. Ma, X.; Wang, Z.; Li, H.; Zhang, P.; Ouyang, W.; Fan, X. Accurate monocular 3d object detection via color-embedded 3d
reconstruction for autonomous driving. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea,
27 October–2 November 2019; pp. 6851–6860.

19. Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 652–660.

20. Chen, X.; Ma, H.; Wan, J.; Li, B.; Xia, T. Multi-view 3d object detection network for autonomous driving. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1907–1915.

21. Ku, J.; Mozifian, M.; Lee, J.; Harakeh, A.; Waslander, S.L. Joint 3d proposal generation and object detection from view aggregation.
In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5
October 2018; pp. 1–8.

22. Qi, C.R.; Liu, W.; Wu, C.; Su, H.; Guibas, L.J. Frustum pointnets for 3d object detection from rgb-d data. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 918–927.

23. Liang, M.; Yang, B.; Wang, S.; Urtasun, R. Deep continuous fusion for multi-sensor 3d object detection. In Proceedings of the
European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 641–656.

24. Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. In Proceedings
of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 5099–5108.

25. Shi, S.; Wang, X.; Li, H. Pointrcnn: 3d object proposal generation and detection from point cloud. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 770–779.

26. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587.

27. Yang, B.; Luo, W.; Urtasun, R. Pixor: Real-time 3d object detection from point clouds. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7652–7660.

28. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International
Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988.

29. Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for autonomous driving? the kitti vision benchmark suite. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 3354–3361.

30. Yang, Z.; Sun, Y.; Liu, S.; Shen, X.; Jia, J. Ipod: Intensive point-based object detector for point cloud. arXiv 2018, arXiv:1812.05276.
31. Li, X.; Guivant, J.; Kwok, N.; Xu, Y.; Li, R.; Wu, H. Three-dimensional Backbone Network for 3D Object Detection in Traffic Scenes.

arXiv 2019, arXiv:1901.08373.
32. Kuang, H.; Wang, B.; An, J.; Zhang, M.; Zhang, Z. Voxel-FPN: Multi-Scale Voxel Feature Aggregation for 3D Object Detection

from LIDAR Point Clouds. Sensors 2020, 20, 704. [CrossRef] [PubMed]
33. Choi, J.; Chun, D.; Kim, H.; Lee, H.J. Gaussian yolov3: An accurate and fast object detector using localization uncertainty for

autonomous driving. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27–28 October
2019; pp. 502–511.

34. Shi, S.; Wang, Z.; Shi, J.; Wang, X.; Li, H. From points to parts: 3d object detection from point cloud with part-aware and
part-aggregation network. IEEE Trans. Pattern Anal. Mach. Intell. 2020. [CrossRef] [PubMed]

35. Shi, S.; Guo, C.; Jiang, L.; Wang, Z.; Shi, J.; Wang, X.; Li, H. Pv-rcnn: Point-voxel feature set abstraction for 3d object detection.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020;
pp. 10529–10538.

http://dx.doi.org/10.3390/s18103337
http://www.ncbi.nlm.nih.gov/pubmed/30301196
http://dx.doi.org/10.3390/s20030704
http://www.ncbi.nlm.nih.gov/pubmed/32012863
http://dx.doi.org/10.1109/TPAMI.2020.2977026
http://www.ncbi.nlm.nih.gov/pubmed/32142423

	Introduction
	Related Work
	Monocular Image-Based Methods
	Multi-Sensor Fusion-Based Methods
	Point Cloud-Based Methods

	PSANet Detector
	Motivation
	Network Architecture
	Data Preprocessing
	Voxel-Wise Feature Extractor
	3D Sparse Convolutional Middle Extractor
	Reshaping To BEV
	Cross-Layer Fusion of Multi-Scale BEV Features (PFH-PSA)
	Loss Function

	Experiments
	Dataset
	Implementation Details
	Network Details
	Training Details

	Comparisons on the KITTI Validation Set
	Ablation Studies
	Different Backbone Networks
	Different Fusion Methods

	Analysis of the Detection Results
	Detection Results on the KITTI Validation Set
	Comparison with Some State-of-the-Art Voxel-Based Methods


	Discussion
	Conclusions
	References

