Model of the Vibration Signal of the Vibrating Sieving Screen Suspension for Condition Monitoring Purposes
Abstract
:1. Introduction
1.1. Machines for Raw Materials Processing
1.2. Processing, Modeling, and Analysis of Vibrations—A Brief State of the Art
2. Measurement Description
3. Methodology
3.1. Identification and Removal of the Main Sine Component
- Calculating the Fourier spectrum of the signal [46],
- Finding the amplitude and frequency of the strongest component on the real (amplitude) part of the spectrum, and the phase value at the identified frequency on the imaginary (phase) part,
- Generating the identified component and subtracting it from the signal.
3.2. The Segments Selection
3.3. The Estimation of the Autoregressive Model Coefficients
- Agglomerative: also known as “bottom-up” approach. In this scenario, every observation begins as its own cluster. As the algorithm progresses pairs of clusters closest to each other are merged into larger clusters.
- Divisive: also known as “top-down” approach. For this scenario, all observations begin as one cluster. As the algorithm progresses clusters are split recursively producing a larger amount of smaller clusters.
3.4. The Signal Construction
- the main sine component is related to the rotation of the shaft,
- the Gaussian noise is related to general external environmental conditions,
- the transfer function (see Equation (5)) is prepared to obtain the response of the machine to the falling ore pieces,
- the convolution of the Gaussian noise and the transfer function is performed to obtain the response of the machine to the external noise,
- the convolution of the -stable noise (which imitates the large observations in the signal related to falling oversized lumps) with the transfer function is performed to obtain the response of the machine to the high-energy impact excitations.
4. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wyłomańska, A.; Zimroz, R.; Janczura, J.; Obuchowski, J. Impulsive noise cancellation method for copper ore crusher vibration signals enhancement. IEEE Trans. Ind. Electron. 2016, 63, 5612–5621. [Google Scholar] [CrossRef]
- Wylomanska, A.; Zimroz, R.; Janczura, J. Identification and stochastic modelling of sources in copper ore crusher vibrations. J. Phys. Conf. Ser. 2015, 628, 012125. [Google Scholar] [CrossRef] [Green Version]
- Krot, P.; Zimroz, R.; Michalak, A.; Wodecki, J.; Ogonowski, S.; Drozda, M.; Jach, M. Development and Verification of the Diagnostic Model of the Sieving Screen. Shock Vib. 2020, 2020, 8015465. [Google Scholar]
- Smolinski, T.; Wawszczak, D.; Deptula, A.; Lada, W.; Olczak, T.; Rogowski, M.; Pyszynska, M.; Chmielewski, A.G. Solvent extraction of Cu, Mo, V, and U from leach solutions of copper ore and flotation tailings. J. Radioanal. Nucl. Chem. 2017, 314, 69–75. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.J.; Fan, S.K.S.; Hsu, C.Y. A Review on Fault Detection and Process Diagnostics in Industrial Processes. Processes 2020, 8, 1123. [Google Scholar] [CrossRef]
- De Azevedo, H.; Araújo, A.; Bouchonneau, N. A review of wind turbine bearing condition monitoring: State of the art and challenges. Renew. Sustain. Energy Rev. 2016, 56, 368–379. [Google Scholar] [CrossRef]
- Wang, T.; Han, Q.; Chu, F.; Feng, Z. Vibration based condition monitoring and fault diagnosis of wind turbine planetary gearbox: A review. Mech. Syst. Signal Process. 2019, 126, 662–685. [Google Scholar] [CrossRef]
- Rai, A.; Upadhyay, S. A review on signal processing techniques utilized in the fault diagnosis of rolling element bearings. Tribol. Int. 2016, 96, 289–306. [Google Scholar] [CrossRef]
- Lei, Y.; Yang, B.; Jiang, X.; Jia, F.; Li, N.; Nandi, A. Applications of machine learning to machine fault diagnosis: A review and roadmap. Mech. Syst. Signal Process. 2020, 138. [Google Scholar] [CrossRef]
- Liu, R.; Yang, B.; Zio, E.; Chen, X. Artificial intelligence for fault diagnosis of rotating machinery: A review. Mech. Syst. Signal Process. 2018, 108, 33–47. [Google Scholar] [CrossRef]
- Li, C.; Zhang, S.; Qin, Y.; Estupinan, E. A systematic review of deep transfer learning for machinery fault diagnosis. Neurocomputing 2020, 407, 121–135. [Google Scholar] [CrossRef]
- Bachschmid, N.; Pennacchi, P.; Tanzi, E. Cracked Rotors: A Survey on Static and Dynamic Behaviour Including Modelling and Diagnosis; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Kiciński, J. Model Based diagnostics-today and tomorrow. Diagnostyka 2004, 30, 241–248. [Google Scholar]
- Makowski, R.A.; Zimroz, R. Adaptive bearings vibration modelling for diagnosis. In Proceedings of the Second International Conference, Klagenfurt, Austria, 6–8 September 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 248–259. [Google Scholar]
- Antoni, J.; Bonnardot, F.; Raad, A.; El Badaoui, M. Cyclostationary modelling of rotating machine vibration signals. Mech. Syst. Signal Process. 2004, 18, 1285–1314. [Google Scholar] [CrossRef]
- Sun, R.B.; Yang, Z.B.; Gryllias, K.; Chen, X.F. Cyclostationary modeling for local fault diagnosis of planetary gear vibration signals. J. Sound Vib. 2020, 471, 115175. [Google Scholar] [CrossRef]
- Wodecki, J.; Stefaniak, P.; Michalak, A.; Wylomanska, A. Automatic calculation of thresholds for load dependent condition indicators by modelling of probability distribution functions–maintenance of gearboxes used in mining conveying system. Vibroeng. Procedia 2017, 13, 67–72. [Google Scholar] [CrossRef] [Green Version]
- Michalak, A.; Wylomanska, A.; Wodecki, J.; Zimroz, R. Integration approach for local damage detection of vibration signal from gearbox based on KPSS test. In Proceedings of the 6th International Conference on Condition Monitoring of Machinery in Non-Stationary Operations, Santander, Spain, 20–22 June 2018; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; Volume 15, pp. 330–339. [Google Scholar] [CrossRef]
- Skliros, C.; Esperon Miguez, M.; Fakhre, A.; Jennions, I. A review of model based and data driven methods targeting hardware systems diagnostics. Diagnostyka 2019, 20, 3–21. [Google Scholar] [CrossRef]
- Bartelmus, W.; Chaari, F.; Zimroz, R.; Haddar, M. Modelling of gearbox dynamics under time-varying nonstationary load for distributed fault detection and diagnosis. Eur. J. Mech.-A/Solids 2010, 29, 637–646. [Google Scholar] [CrossRef]
- Krot, P.V. Dynamical processes in a multi-motor gear drive of heavy slabbing mill. J. Vibroeng. 2019, 21, 2064–2081. [Google Scholar] [CrossRef] [Green Version]
- Sampath, M.; Sengupta, R.; Lafortune, S.; Sinnamohideen, K.; Teneketzis, D. Diagnosability of discrete-event systems. IEEE Trans. Autom. Control 1995, 40, 1555–1575. [Google Scholar] [CrossRef] [Green Version]
- Basseville, M.; Nikiforov, I.V. Detection of Abrupt Changes: Theory and Application; Prentice Hall: Englewood Cliffs, NJ, USA, 1993; Volume 104. [Google Scholar]
- Reiter, R. A theory of diagnosis from first principles. Artif. Intell. 1987, 32, 57–95. [Google Scholar] [CrossRef]
- Hebda-Sobkowicz, J.; Gola, S.; Zimroz, R.; Wyłomańska, A. Identification and Statistical Analysis of Impulse-Like Patterns of Carbon Monoxide Variation in Deep Underground Mines Associated with the Blasting Procedure. Sensors 2019, 19, 2757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, Q.; Meng, F.; Hu, T.; Chu, F. Non-parametric hybrid models for wind speed forecasting. Energy Convers. Manag. 2017, 148, 554–568. [Google Scholar] [CrossRef]
- Sikora, G.; Michalak, A.; Bielak, L.; Mista, P.; Wylomanska, A. Stochastic modelling of currency exchange rates with novel validation techniques. Phys. A Stat. Mech. Its Appl. 2019, 523, 1202–1215. [Google Scholar] [CrossRef]
- Nowicka-Zagrajek, J.; Weron, R. Modeling electricity loads in California: ARMA models with hyperbolic noise. Signal Process. 2002, 82, 1903–1915. [Google Scholar] [CrossRef] [Green Version]
- Kowalik-Urbaniak, I.A.; Castelli, J.; Hemmati, N.; Koff, D.; Smolarski-Koff, N.; Vrscay, E.R.; Wang, J.; Wang, Z. Modelling of subjective radiological assessments with objective image quality measures of brain and body CT images. In Proceedings of the 12th International Conference, Niagara Falls, ON, Canada, 22–24 July 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 3–13. [Google Scholar]
- Postawka, A.; Śliwiński, P. Averaged Hidden Markov Models in Kinect-Based Rehabilitation System. In Proceedings of the 17th International Conference, Zakopane, Poland, 3–7 June 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 229–239. [Google Scholar]
- Zhuge, Q.; Lu, Y.; Yang, S. Non-stationary modelling of vibration signals for monitoring the condition of machinery. Mech. Syst. Signal Process. 1990, 4, 355–365. [Google Scholar] [CrossRef]
- Poulimenos, A.; Fassois, S. Parametric time-domain methods for non-stationary random vibration modelling and analysis—A critical survey and comparison. Mech. Syst. Signal Process. 2006, 20, 763–816. [Google Scholar] [CrossRef]
- Wang, S.; Huang, W.; Zhu, Z. Transient modeling and parameter identification based on wavelet and correlation filtering for rotating machine fault diagnosis. Mech. Syst. Signal Process. 2011, 25, 1299–1320. [Google Scholar] [CrossRef]
- Avendaño-Valencia, L.; Fassois, S. Stationary and non-stationary random vibration modelling and analysis for an operating wind turbine. Mech. Syst. Signal Process. 2014, 47, 263–285. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, B. Rolling element bearing vibration modeling with applications to health monitoring. J. Vib. Control 2011, 18, 1768–1776. [Google Scholar] [CrossRef]
- Franco, R.; Flores, P.A.; Peinado, A.A. Fatigue failure analysis of vibrating screen spring by means of finite element simulation: A case study. In Proceedings of the XIV International Conference on Computational Plasticity: Fundamentals and Applications, Barcelona, Spain, 5–7 September 2017; CIMNE: Barcelona, Spain, 2017; pp. 766–775. [Google Scholar]
- Liu, Y.; Meng, G.; Suo, S.; Li, D.; Wang, A.; Cheng, X.; Yang, J. Spring Failure Analysis of Mining Vibrating Screens: Numerical and Experimental Studies. Appl. Sci. 2019, 9, 3224. [Google Scholar] [CrossRef] [Green Version]
- Shevchenko, H.; Shevchenko, V.; Holobokyi, S. Development of a mathematical model of a vibrating polyfrequency screen as a dynamic system with distributed parameters. In Proceedings of the II International Conference Essays of Mining Science and Practice (RMGET 2020), Dnipro, Ukraine, 22–24 April 2020; Volume 168, p. 00062. [Google Scholar]
- Zhao, X.M.; Guo, B.L.; Duan, Z.S. Research on Pitting Corrosion Fault Model of Vibrating Screens Rolling Element Bearing. In Applied Mechanics and Materials; Trans Tech Publications Ltd: Stafa-Zurich, Switzerland, 2013; Volume 401, pp. 254–266. [Google Scholar]
- Peng, L.; Jiang, H.; Chen, X.; Liu, D.; Feng, H.; Zhang, L.; Zhao, Y.; Liu, C. A review on the advanced design techniques and methods of vibrating screen for coal preparation. Powder Technol. 2019, 347, 136–147. [Google Scholar] [CrossRef]
- Makinde, O.; Ramatsetse, B.; Mpofu, K. Review of vibrating screen development trends: Linking the past and the future in mining machinery industries. Int. J. Miner. Process. 2015, 145, 17–22. [Google Scholar] [CrossRef]
- Safranyik, F.; Csizmadia, B.M.; Hegedus, A.; Keppler, I. Optimal oscillation parameters of vibrating screens. J. Mech. Sci. Technol. 2019, 33, 2011–2017. [Google Scholar] [CrossRef]
- Samorodnitsky, G.; Taqqu, M.S. Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance; Chapman & Hall: New York, NY, USA, 1994. [Google Scholar]
- Wodecki, J.; Michalak, A.; Wylomanska, A.; Zimroz, R. Influence of non-Gaussian noise on the effectiveness of cyclostationary analysis–Simulations and real data analysis. Measurement 2021, 171, 108814. [Google Scholar] [CrossRef]
- Gasior, K.; Urbanska, H.; Grzesiek, A.; Zimroz, R.; Wylomanska, A. Identification, decomposition and segmentation of impulsive vibration signals with deterministic components—a sieving screen case study. Sensors 2020, 20, 5648. [Google Scholar] [CrossRef] [PubMed]
- Rader, C.; Brenner, N. A new principle for fast Fourier transformation. IEEE Trans. Acoust. Speech Signal Process. 1976, 24, 264–266. [Google Scholar] [CrossRef]
- Zimroz, R.; Wodecki, J.; Krol, R.; Andrzejewski, M.; Sliwinski, P.; Stefaniak, P. Self-Propelled Mining Machine Monitoring System–Data Validation, Processing and Analysis; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1285–1294. [Google Scholar] [CrossRef]
- Zimroz, R.; Madziarz, M.; Żak, G.; Wyłomańska, A.; Obuchowski, J. Seismic signal segmentation procedure using time-frequency decomposition and statistical modelling. J. Vibroeng. 2015, 17, 3111–3121. [Google Scholar]
- Brockwell, P.J.; Davis, R.A. Introduction to Time series and Forecasting; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Friedlander, B.; Porat, B. The modified Yule-Walker method of ARMA spectral estimation. IEEE Trans. Aerosp. Electron. Syst. 1984, AES-20, 158–173. [Google Scholar] [CrossRef]
- Ward Jr, J.H. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Maimon, O.; Rokach, L. Data Mining and Knowledge Discovery Handbook; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Weron, A. Stable processes and measures; A survey. In Probability Theory on Vector Spaces III; Szynal, D., Weron, A., Eds.; Springer: Berlin/Heidelberg, Germany, 1984; pp. 306–364. [Google Scholar]
- Zolotarev, V.M. One-Dimensional Stable Distributions; Translations of Mathematical Monographs; American Mathematical Society: Providence, RI, USA, 1986. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michalak, A.; Wodecki, J.; Drozda, M.; Wyłomańska, A.; Zimroz, R. Model of the Vibration Signal of the Vibrating Sieving Screen Suspension for Condition Monitoring Purposes. Sensors 2021, 21, 213. https://doi.org/10.3390/s21010213
Michalak A, Wodecki J, Drozda M, Wyłomańska A, Zimroz R. Model of the Vibration Signal of the Vibrating Sieving Screen Suspension for Condition Monitoring Purposes. Sensors. 2021; 21(1):213. https://doi.org/10.3390/s21010213
Chicago/Turabian StyleMichalak, Anna, Jacek Wodecki, Michał Drozda, Agnieszka Wyłomańska, and Radosław Zimroz. 2021. "Model of the Vibration Signal of the Vibrating Sieving Screen Suspension for Condition Monitoring Purposes" Sensors 21, no. 1: 213. https://doi.org/10.3390/s21010213
APA StyleMichalak, A., Wodecki, J., Drozda, M., Wyłomańska, A., & Zimroz, R. (2021). Model of the Vibration Signal of the Vibrating Sieving Screen Suspension for Condition Monitoring Purposes. Sensors, 21(1), 213. https://doi.org/10.3390/s21010213