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Abstract: This contribution investigates fatigue crack detection, localization and quantification in
idealized necked double shear lugs using piezoelectric transducers attached to the lug shaft and
analyzed by the electro-mechanical impedance (EMI) method. The considered idealized necked lug
sample has a simplified geometry and does not includes the typical bearing. Numerical simulations
with coupled-field finite element (FE) models are used to study the frequency response behavior of
necked lugs. These numerical analyses include both pristine and cracked lug models. Through-cracks
are located at 90° and 145° to the lug axis, which are critical spots for damage initiation. The results
of FE simulations with a crack location at 90° are validated with experiments using an impedance
analyzer and a scanning laser Doppler vibrometer. For both experiments, the lug specimen is excited
and measured using a piezoelectric active wafer sensor in a frequency range of 1 kHz to 100 kHz.
The dynamic response of both numerical calculations and experimental measurements show good
agreement. To identify (i.e., detect, locate, and quantify) cracks in necked lugs a two-step analysis is
performed. In the first step, a crack is detected data-based by calculating damage metrics between
pristine and damaged state frequency spectra and comparing the resulting values to a pre-defined
threshold. In the second step the location and size of the detected crack is identified by evaluation
of specific resonance frequency shifts of the necked lug. Both the search for frequencies sensitive
to through-cracks that allow a distinction between the two critical locations and the evaluation of
the crack size are model-based. This two-step analysis based on the EMI method is demonstrated
experimentally at the considered idealized necked lug, and thus, represents a promising way to
reliably detect, locate and quantify fatigue cracks at critical locations of real necked double shear lugs.

Keywords: necked double shear lug; aircraft structure; fatigue; model-based; crack identification;
electro-mechanical impedance method; coupled-field FEM

1. Introduction

Lug type joints represent a common way to connect structural parts in many fields of
engineering, e.g., aircraft and automotive. Compared to riveted and adhesively bonded
joints, lug joints are detachable connections which allow an easy assembling and disas-
sembling. Furthermore, without clamping of the fork these connections act as pivot points
and avoid the introduction of bending moments in the surrounding structure. However,
one major disadvantage of such structural parts is their poor fatigue strength, as high stress
concentrations and fretting at the bolt hole of lugs can lead to early crack initiation [1].
For the specific shape of necked double shear lugs the situation is even more critical.
Crack initiation does not only occur at the bolt hole but also on the outer surface at the
transition region between shaft and largest diameter of the necked lug [2]. If such lugs are
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used at single load path locations, their complete failure can lead to catastrophic events.
Given the obvious advantages and disadvantages of lug joints and their essential role for
the safe operation of vehicles a reliable method to detect damages in such components is of
paramount interest.

Structural Health Monitoring (SHM) promises to solve such safety issues of necked
double shear lugs by retaining the simple geometry and advantageous assembling pos-
sibilities. SHM developed from non-destructive testing (NDT) and additionally enables
the onboard monitoring of mechanical structures during operation. This is possible due to
integrated and lightweight sensors mounted directly and permanently on the monitored
structure. Sensor readings are processed and analyzed according to the applied SHM
method [3]. Examples of state-of-the-art monitoring methods are guided waves [4–7],
conductive surface layers [8–10], direct measurements of the electrical impedance of a
structure [11] and the electro-mechanical impedance (EMI) method [12–15].

Piezoelectric transducers are used in a wide range of SHM application due to their
small size, low cost, the possibility to be embedded into the structure and the fact that
they can act as sensor and actuator simultaneously. SHM methods based on piezoelectric
transducers can be classified in passive, such as acoustic emission [16], and active methods,
such as guided waves [17–19] and the EMI method [20]. The acoustic emission proved
to be successful for, e.g., the monitoring of rolling contact fatigue damage [21], fatigue
cracks in thin metallic plates [22] and additively manufactured components [23]. However,
the interpretation of acoustic emission parameters for damage evaluation in complex
geometries exposed to operational loads still remains as a challenge to be solved.

SHM based on guided waves can be used to monitor large thin-walled structures, as
guided waves have the ability to travel over long distances with little loss of energy [24]
and strongly interact with structural changes. Hence, guided waves can be used to detect
structural damages of many kinds, such as cracks in riveted plates [25], delaminations in
composite materials [26], debondings in carbon fiber reinforced concrete structures [27],
among many others. However, guided wave-based SHM methods need advanced sig-
nal processing to correctly interpret the complex signals back-scattered from structural
boundaries and potential damages, which is particularly challenging for complex and
small structural components as the necked double shear lug considered in the present in-
vestigation.

Among the many SHM methods introduced in recent years, some have been applied
to detect and track cracks in lugs and similar structures. A guided wave-based method
in combination with a particle filter was used by Yuan et al. [28] for online monitoring of
crack propagation in straight attachment lugs. The lug joint was equipped with multiple
piezoelectric sensors on both sides and signals were measured in the pitch-catch approach.
This proposed method facilitates multiple piezoelectric transducers in a certain distance and
thus, needs relatively large space, i.e., for small components where multiple sensors cannot
be applied this method is hardly applicable. Another SHM approach using piezoelectric
sensors to track the crack growth process was applied by Lim and Soh [29] on simple
aluminum beams under cyclic loading. There they used the electro-mechanical impedance
method to estimate the remaining fatigue life by facilitating just a single piezoelectric patch
bonded to the beams surface. In a recently published article Wang et al. [30] used a similar
specimen and test setup. However, in both articles [29,30] it is pointed out that the proof-
of-concept study of the beam has yet to be expanded to real-life structural components.

This contribution investigates the crack detection capabilities on comparatively small
and simplified necked lugs with the EMI method, as a first step towards the damage
evaluation of real lugs at operational conditions. By employing the EMI method, only one
piezoelectric wafer active sensor (PWAS) is sufficient to excite different resonances of the
structure and to measure its response at the same time. Hence, little space, cabling and
additional weight is required on the structure.

Related to the application of a single PWAS this contribution aims to answer the
following questions, c.f. [7] (p. 809ff): (i) Is it possible to detect cracks in necked lugs with
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the EMI method at all? (ii) Which concept should be used to identify the crack? Are damage
indicators as damage metrics (e.g., RMSD, MAPD, CCD) or spectral features (e.g., specific
resonant peak amplitudes, resonant frequencies, mode shapes) sensitive enough to reliably
detect the cracks? (iii) Which frequency range is most sensitive to the crack and gives
most reliable results. (iv) Is it possible to distinguish between different locations of crack
initiation and crack sizes in necked lugs with just one PWAS?

The present investigation tries to answer these questions for a simplified necked lug
geometry, which is similar in shape and dimensions to lugs in real application. For such
lugs exposed to cyclic loading, crack initiation was observed in a previous study [2] to take
place either at the inside at the bolt hole (90° to the loading direction) or at the outside
at the transition region between bolt hole and shaft, see Figure 1b. Typical crack types
observed in fatigue loaded lugs are through-cracks, quarter circular and elliptical corner
cracks. However, in this study only through-cracks are investigated as they represent
a worst case scenario for cracks in lugs [1]. Consequently, these critical locations of
crack initiation and crack shape are investigated in the present work. Coupled-field
finite element (FE) models are developed to simulate the PWAS response for each crack
location. Additionally, the results obtained for cracks at the bolt hole are validated and
compared with measurements of an impedance analyzer (IMA) and a scanning laser
Doppler vibrometer (SLDV). Finally, conclusions are drawn about the crack monitoring
capabilities with EMI measurements of a single PWAS on a necked lug by combining all
these results.
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Figure 1. Geometry of simple lug, (a) dimensions of the lug and PWAS positions; (b) size and
locations of investigated through-cracks.

2. Lug Geometry and Material

The investigated idealized lug has a simple flat geometry, see Figure 1. The dimensions
are given as D = 29 mm, d = 20.64 mm, L = 85 mm, w = 10.31 mm, t = 6 mm and
Rt = 10 mm, which are similar to necked double shear lugs in real applications, e.g., lugs
of interior tie-rods in aircraft [2].

The lug specimen is milled out of aluminum EN-AW 7075 plate material. The hole
with a diameter of 3.3 mm in the lugs shaft was necessary for clamping of the lug during
milling. In contrast to the flat lug considered in this contribution lugs in real applications are
commonly made by turning with a following milling process. Furthermore, necked double
shear lugs in real applications usually have a threaded shaft and are equipped with
spherical bearings [31]. However, the simplified shape of the chosen lug has multiple
advantages for presented investigations: (i) the production effort is minimized, (ii) the
simple shape can be easily meshed for FE simulations, (iii) the application of PWAS is
eased due to flat surfaces and (iv) the possibility to use simple analytical approaches for
investigation. Additionally, no spherical bearing is put into the lug hole of the investigated
necked double shear lug to avoid uncertainty factors such as unknown additional damping
and residual stresses. Such idealized lug was chosen to isolate the effects of growing
cracks, and hence, to be able to develop the basic principles of a methodology for crack
identification in these components. Thus, the present study represents a first step to identify
crack monitoring features at an idealized setup before adding further complexity until
crack identification in operated necked double shear lugs is achieved.
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Figure 1b depicts the investigated critical locations of crack initiation, which are
chosen based on a recently published profound analysis of the lugs fatigue behavior [2].
The specified angles βin = 90° and βout = 145° define the locations of crack initiation at the
inside and outside surface of the lug with respect to the x-axis. Independent of the location
the investigated through-cracks in this study are defined normal to the corresponding
surface of crack initiation. Individual investigations of each crack location (only one crack
in the lug at a time) are performed in FE simulations. For experimental measurements a
crack at a location of βin = 90° and a length of 2 mm is introduced using a mechanical fret
saw. The lengths of the through-cracks were defined to be rather large in order to obtain
significant results to prove the concept of crack detection and identification in necked
double shear lugs. Therefore, in FE simulations the crack lengths ain = aout = 1 mm–3 mm
are chosen for the present investigations. However, for a fatigue cyclic loading these cracks
are expected to be still within the stable crack growth regime [1,2].

Two PWAS were applied on the top and bottom side of the lug’s shaft at xp = 33.5 mm
away from the bolt axis, see Figure 1. The two component epoxy adhesive Loctite EA 9466
was used to apply both PWAS. However, only PWAS1 is used (exited and measured in
order to detect the defined cracks with the EMI method) in the present study.

3. Finite Element Simulations

FE simulations are performed in Abaqus 2019 to numerically calculate the resonance
mode shapes as well as the impedance spectra captured by the PWAS. Furthermore, velocity
results of parts of the lug are used to get mean transfer functions comparable with results
of the SLDV.

3.1. Definition of FE Models and Analysis Setup

A three dimensional FE model of the simple necked lug with a PWAS mounted to
the upper and lower surface of the shaft is set up, see Figure 2. All dimensions including
the position of the two PWAS are given in Figure 1a. To simulate the through-cracks,
open seams are defined at two locations, see Figure 1b. The mesh of the lug exclusively
consists of 8-node linear brick elements. For the PWAS special 8-node linear piezoelectric
(coupled-field) brick elements are used. The overall mesh consists of 30,852 elements with
an average edge length of 0.6 mm, see Figure 2.

Figure 2. Mesh of complete assembly of pristine necked lug FE model.

The models with an inside crack at βin = 90° and an outside crack at βout = 145°
incorporate an identical mesh as the pristine FE model except the additional nodes at the
crack locations, due to the defined seams.

For the lug a linear elastic material model is defined according to the material data
sheet with a Young’s modulus and a Poisson’s ratio of E = 71.7 GPa and ν = 0.33, respec-
tively. The density for aluminum is set to ρ = 2810 kg/m3. The used Rayleigh damping
coefficients for aluminum are α = 293.215 s−1 and β = 4.126 24× 10−10 s, which are empir-
ical values found by manual fitting of experimental results [32]. The piezoelectric material
behavior of the PWAS polarized in z-direction is implemented in Abaqus 2019 by providing
three matrices: the piezoelectric matrix [d], the orthotropic elasticity matrix

[
cE] at constant

electric field and the electric permittivity matrix
[
εS] at constant strain. The assumptions

used to form the piezoelectric matrix [d] and the orthotropic elasticity matrix are taken
from [33] (p. 44f). The electric permittivity matrix at constant strain is defined according



Sensors 2021, 21, 44 5 of 20

to [7] (p. 27ff). The PWAS’ material properties are taken from the supplier’s datasheet and
are given in Table 1.

Table 1. Properties of PWAS (material: PIC151) according to supplier [34].

Physical and dielectrial properties
Edge length wp 10 mm
Thickness tp 0.25 mm
Density ρp 7800 kg/m3

Poisson’s ratio νp 0.34 -
Elastic compliance coefficient in-plane sE

11 15× 10−12 m2/N
Elastic compliance coefficient out-of-plane sE

33 19× 10−12 10−12 m2/N
Relative permittivity in the polarization εT

33 2400 ε0 As/Vm
Relative permittivity in direction perpendicular to polarity εT

11 1980 ε0 As/Vm
Dielectric loss factor tan δ 20× 10−3 -

Electro-mechanical properties
Piezoelectric charge coefficient d31 −210× 10−12 C/N
Piezoelectric charge coefficient d33 500× 10−12 C/N

The PWAS are connected to the lug upper and lower surface using tie constraints.
On the lower surface of each PWAS a constant electric potential of 0 V is applied. On the
upper surface of just one of the two PWAS a harmonic electric potential with an amplitude
of 5 V is defined (value in the same order of magnitude as experimental excitation; due to
the investigation of normalized results the deviation of the excitation is negligible for little
damped structures), which results in a combined axial and bending (around the y-axis)
excitation of the shaft.

The cracks of length 2 mm at locations βin = 90° and βout = 145° are defined using
the Abaqus seam functionality. Nodes at defined seams are duplicated, which creates an
idealized crack without any gap [35]. Contact forces between crack faces are neglected.

The Abaqus simulation includes a coupled-field FE model within a direct-solution
steady-state dynamics analysis (for further information see [35]). With this type of sim-
ulation the steady-state response of a harmonic loading is calculated for a given set of
frequencies. The chosen frequency range is 1 kHz to 100 kHz. Additionally, in order
to compare the simulations with the experimental measurements the same step size of
125 Hz was chosen. Hence, for each model 793 uniformly distributed frequency responses
were calculated.

3.2. Processing of Raw FE Field Output

The raw FE field output cannot be directly used for comparison with experimen-
tal results [7]. Therefore, to compare the electrical impedance responses in this paper
the conductance

G(ω) = Re{Y(ω)} = Re
{

I(ω)

U(ω)

}
, (1)

is calculated using the exciting voltage U(ω) and the resulting current I(ω) for each
specified angular frequency ω = 2π f . As already mentioned above the defined boundary
condition at the upper surface of PWAS1 is a harmonic electric potential U(ω) with an
amplitude of Û = 5 V. The complex current I(ω) results from the derivation with respect to
time of the harmonic electric charge Q. Thus, in the frequency domain it can be calculated
with I(ω) = jω ∑NIMA

n=1 Qn, where j =
√
−1 is the imaginary unit and NIMA is the number

of nodes on the upper surface of PWAS1 [7]. For each node n of the upper surface of PWAS1
in the FE model the electrical charge Qn is provided as field output (reactive electrical
nodal charge RCHG) by Abaqus [35]. However, Abaqus uses the constitutive equations
without considering electric losses [35], see first two terms of Equation (2). To calculate
more accurate results the electrical damping has to be considered, which is given by the
dielectric loss factor δ [13]. According to [7] the piezoelectric constitutive equation with
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considering electrical damping for the electrical displacement Di is calculated for each
material direction i, k, l = 1, 2, 3 with

Di = diklTkl + εT
ikEk︸ ︷︷ ︸

used by Abaqus
to calculate Qn

− jδεT
ikEk︸ ︷︷ ︸

electrical
damping

, (2)

where dikl is the piezoelectric matrix, Tkl is the stress tensor and εT
ik is the permittivity

matrix at constant stress. Assuming a constant electrical field between the PWAS surface
electrodes (with area Ap) that is only oriented in z-direction (E3 = Û/tp) and normal to Ap
the electrical charge is calculated with [36]

Q =

¨

Ap

D3 dA. (3)

Hence, by inserting Equation (2) into Equation (3) and replacing the double integral
by the sum of the numerically calculated Qn yields the current I(ω) corrected by the
electrical damping

I(ω) = jω

[
NIMA

∑
n=1

(Qn)− jδεT
33

Û
tp

Ap

]
. (4)

Dielectric loss factor δ, permittivity εT
33, and the thickness of the PWAS tp are given

in Table 1. Due to the peripheral conducting and a conducted area of the quadratic PWAS,
which is smaller than its outer dimensions, the effective conducted surface of the PWAS
yields Ap = 79.875 mm2.

4. Experiments

Two experimental setups are used to measure the frequency response of the consid-
ered simplified necked lug in the pristine and subsequently in the damaged state. In all
experiments only one of the PWAS installed is excited within a frequency range of 1 kHz to
100 kHz (the second PWAS is not connected and intended for future studies). Furthermore,
the sample was placed on foamed polymer typical for packing material as depicted in
Figure 3.

(a) (b)

scan grid for SLDV
measurements

(identical with FE mesh nodes)

Figure 3. Test setups for measurements of a simplified lug (exitation at PWAS1) with (a) IMA (Hioki
IM 3570), (b) SLDV (Polytec PSV-500-HV).

4.1. Experimental Setups

The first experimental setup is depicted in Figure 3a. The excitation amplitude for
the measurement with the IMA (Hioki IM 3570) is Û = 5

√
2 V. The frequency spectra

(spectrum elements: conductance G and B) of PWAS1 are measured with a resolution of
125 Hz and for each frequency step 16 single measurement values are averaged. Figure 3b
depicts the second measurement setup with the SLDV (Polytec PSV-500-HV). The excitation
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used for these measurements is a so-called periodic chirp signal (duration 64 ms) with an
amplitude of Û = 9 V. The frequency spectra (spectrum element: out-of-plane velocity
vn) were measured with a sample rate of fS = 250 kHz (yielding a frequency resolution of
15.625 Hz). The normal distance between SLDV laser head and the necked lug sample was
400 mm. The coordinates of NSLDV = 1005 scan points on the upper surface (i.e., the surface
in positive z-direction on which PWAS1 is applied, see Figure 3b) and lower surface are
exported from the FE mesh. For each scan point five measurements were taken and
averaged to minimize the signal-to-noise ratio.

4.2. Experimental Sequence

The conducted experimental investigation can be subdivided into the following three
parts, which were carried out consecutively.

1. The pristine sample was measured by connecting PWAS1 to the IMA as depicted in
Figure 3a. Then the pristine sample was investigated by measuring vn at the defined
NSLDV scan points on the upper surface using the SLDV, see Figure 3b. Subsequently,
the sample was turned and the lower surface with the same amount of scan points
was measured in order to better visualize the exited mode shapes.

2. After initial measurements an artificial crack of length 2 mm at βin = 90° was intro-
duced into the necked lug sample using a mechanical fret saw (blade thickness of
0.322 mm measured with an commercial outside micrometer).

3. Finally, the artificially damaged sample was measured in the same way as described
for the pristine sample, see point 1 of this list.

5. Results and Discussion

The results calculated with the finite element method (FEM) and measured with
the IMA as well as with the SLDV are simple frequency spectra. For comparison of
calculated and measured resonance frequencies these spectra are plotted in Figure 4 on two
different logarithmic scales. On the left y-axis the calculated and measured conductance
G = G(ω) according to Equation (1) of the PWAS are compared. The right y-axis presents
the calculated and measured mean amplitudes of the transfer function H1 = H1(ω)
defined as

H1(ω) =
1

NSLDV

NSLDV

∑
n=1

abs
{

vn(ω)

U(ω)

}
, (5)

where vn(ω) is the complex out-of-plane velocity of each scan point n of the upper surface
of the lug (see detail of front section of the lug in Figure 3b). Figure 4 shows that most
resonance peaks of all four spectra fit well to each other.

The calculated spectra (FEM: G and FEM: H1) yield identical resonance frequencies.
Between measured and calculated pristine spectra a deviation less than 1 % is observed
for most of the resonance frequencies. Only two resonances at 42.5 kHz and 77.875 kHz
show a larger deviation of up to 2.6 %. These two modes are mainly dominated by flexural
in-plane bending of the ring-shaped part of the lug. The overall shapes of calculated and
measured pristine spectra fit qualitatively well together. Furthermore, calculated and
measured amplitudes of the pristine spectra yield values in the same order of magnitude.
Therefore, the numerical model is considered to represent the real measurement setups in
terms of electrical and mechanical responses in a satisfactory manner.

However, the authors emphasize that this study is based on an idealized lug (simpli-
fied geometry, no bearing in the lug hole, no residual stresses, clamping or external loading
of the lug considered). While expected deviations of a true geometry to the idealized
necked lug, residual stresses and the clamping of the lug’s shaft are believed to have little
effect on the proposed crack identification method, the authors assume that the additional
weight, stiffness and damping due to a press-fitted bearing affects the crack monitoring
methodology significantly. However, the proposed method is expected to still allow an
evaluation as an initiating and propagating crack would loosen the bearing, and thus,
affect the dynamic response strongly due to stiffness and damping changes. This would



Sensors 2021, 21, 44 8 of 20

have high impact on an applied damage metric. Furthermore, it is believed that frequency
features of the lug become more prominent for an increasingly loose bearing. Therefore,
this investigation represents a first step towards a crack identification for necked double
shear lugs in real applications.
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Figure 4. Frequency spectra of the pristine necked lug calculated with the FEM and measured with
the IMA as well as with the SLDV.

To address the initial questions regarding crack detection and identification possibili-
ties with PWAS in necked lugs, a two-step analysis of the EMI measurement results is used.
First, common damage metrics are used to evaluate a measured spectra with respect to a
previous baseline measurement (in SHM applications typically of the undamaged state) for
a simple and efficient damage detection. Second, specific spectral features of the calculated
and measured frequency spectra are investigated in more detail to validate the detection
result and furthermore conclude on the damage location and size. Special emphasis is
given to resonance frequencies and mode shapes of the considered necked double shear
lug that are most sensitive to cracks at critical locations. These are found model-based by
means of coupled-field FE simulations.

5.1. Damage Metrics: Crack Detection

One simple way to compare different frequency spectra are damage metrics. Such dam-
age metrics are statistical measures to identify deviations between two compared data sets.
In SHM, a damage metrics yield a scalar value by directly comparing the spectra of the
pristine and damaged state of a structure. Commonly used damage metrics are the root
mean square deviation (RMSD), the mean absolute percentage deviation (MAPD) and the
correlation coefficient deviation (CCD) which are calculated according to [7] with

RMSD =

√√√√∑NS
i=1

(
Si − S0

i
)2

∑NS
i=1

(
S0

i
)2 (6)

MAPD =
NS

∑
i=1

∣∣∣∣∣Si − S0
i

S0
i

∣∣∣∣∣ (7)

CCD = 1− ∑NS
i=1(Si − S̄)

(
S0

i − S̄0)√
∑NS

i=1(Si − S̄)2 ∑NS
i=1

(
S0

i − S̄0
)2

(8)

where NS is the number of frequencies in the spectrum. The spectrum elements Si and
S0

i used in this paper are either the conductance G for electrical responses or the transfer



Sensors 2021, 21, 44 9 of 20

function H1 for mechanical responses. The superscript 0 denotes spectral elements of the
pristine structure without a crack. Mean values of spectra are indicated with S̄ and S̄0.

To compare pristine with damaged spectra calculated with the finite element method
and measured with the impedance analyser as well as with the SLDV the damage metrics
given in Equations (6)–(8) are computed for NS = 793 sample points within the frequency
range of 1 kHz to 100 kHz (sample rate of 125 Hz). Figure 5 presents the damage metrics
calculated with FE simulations (S = G and S = H1) as well as IMA (S = G) and SLDV
(S = H1) measurements from the necked lug with a crack of length ain = 2 mm at βin = 90°
with respect to the pristine state without a crack. For comparison all calculated damage
metrics are normalized by the FEM results.
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0

1

2

3

4

5

6

1.000 1.000 1.000

1.561

2.188

1.4211.410

4.957

1.052
1.283

5.452

1.136

no
rm

al
iz

ed
to

FE
M

:G FEM: G
IMA: G
FEM: H1
SLDV: H1

Figure 5. Comparison of damage metrices RMSD, MAPD and CCD for different spectrum elements
(pristine vs. cracked for ain = 2 mm, βin = 90°).

The values of damage metrics RMSD and CCD yield similar results, even though
spectra with different elements (G and H1) are compared. However, the values of damage
metric MAPD differ from each other significantly. In particular, the damage metric MAPD
of calculated spectra H1 yields a four times larger value than for the calculated conductance
spectra G. A closer look to Equation (7) for damage metric MAPD and comparing it to
the other two damage metrics could explain this deviation. The numerator of MAPD
holds the spectrum element of the pristine structure for each frequency step. This is in
contrast to the other two damage metrics where the numerator holds a sum of all spectrum
elements, which reduces the impact of large spectral deviations at single frequencies.
Therefore, further analysis and visualization of results is based on the damage metric CCD,
which shows the best correlation across compared spectra (FEM: G and H1, IMA: G, SLDV:
H1) in Figure 5.

In Figure 6 values of damage metric CCD (computed with FEM) are compared for
the two considered failure locations (βin = 90° and βout = 145°). To identify regions
of the spectra, which are most sensitive to the considered damage (crack lengths ain =
aout = 2 mm), the full spectrum range is divided into four parts: 1 kHz to 25 kHz, 25 kHz
to 50 kHz, 50 kHz to 75 kHz and 75 kHz to 100 kHz. Subsequently, the damage metrics are
calculated separately for each part of the spectrum. For both crack locations the damage
metrics CCD yield highest values for frequencies above 50 kHz (this is also true for damage
metrics RMSD and MAPD).

Similar trends are observed if the crack lengths are varied. Simulations with FE models
and cracks of lengths between 1 mm to 3 mm show that the frequency ranges above 50 kHz
yield the highest values for the considered damage metrics, see Figure 7.
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Figure 6. Detection of 2 mm long cracks at different crack locations with damage metric CCD.
Damage metrics are calculated with spectrum element S = G from FEM results.
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Figure 7. Comparison of damage metrics for growing cracks at locations (a) βin = 90° and (b) βout = 145°. All damage
metrics are calculated with spectrum element S = G from FEM results.

Additionally, for most frequency ranges a strong correlation between crack length and
damage metric value can be observed. Hence, to detect a crack in necked lugs the damage
metrics values of frequency ranges above 50 kHz can be used. Based on these FEM results
a threshold limit of CCD > 0.5 in the frequency ranges above 50 kHz is proposed for de-
tecting a crack with a minimum length of a = 1 mm at locations βin = 90° and βout = 145°.
This rather large threshold level is believed to be robust enough against uncertainties in real
measurements (signal noise, temperature changes, etc.). In fact, damage metrics calculated
by comparing the pristine spectra of independent experimental measurements with PWAS1
and PWAS2 yield values of CCD < 0.1 for all frequency ranges. Nevertheless, experiments
with increasing crack lengths and varying environmental influences are needed to vali-
date the chosen crack detection threshold limit. Furthermore, the damage metric-based
crack detection requires baseline measurements at the pristine structure and is prone to
environmental uncertainties. The numerically calculated values of damage metrics give no
clear information to evaluate if a crack initiates at the critical location on the inside or the
outside surface. Therefore, spectral features of the identified highly sensitive frequency
range above 50 kHz are investigated in more detail in a second analysis step.

5.2. Spectral Features: Crack Localization

Besides using damage metrics, spectral features can also be used to identify structural
changes [7]. In this contribution the considered structural changes are cracks, which
initiate at two specific locations that show high stress concentrations at operational loads.
After crack initiation cracks usually grow in directions perpendicular to the major principal
stress [37]. As a crack reduces the stress in this major principal direction to zero at its face, it
is assumed that vibration modes of the pristine structure that show a large major principal
stress at a location of interest are also sensitive to the occurrence of a crack. Therefore, to
identify resonance frequencies which are sensitive to occurring cracks at the two critical
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locations, spectra of mean major principal stresses σ1 are investigated. These mean stresses
σ1 are calculated by averaging all FEM stress results σ1, computed in coupled-field FE
simulations (dynamic excitation of PWAS1 mounted on the pristine necked lug) on the
surfaces over the whole thickness of the lug and within an angle of ±10° around both
locations of possible crack initiation (βin = 90°, βout = 145°), see Figure 8b. In Figure 8a the
mean values of the major principal stresses σ1 are plotted in the frequency range of 50 kHz
to 100 kHz. The spectrum of σ1 at the inside surface of possible crack initiation yields the
highest resonance peaks, marked with ⊕ in Figure 8a. The most prominent resonance
frequency appears at f ≈ 68 kHz. At these resonances the pristine structure is deformed
according to the excited mode shapes, which results in the highest major principal stresses
(averaged over the area βin±10°) compared to other exited mode shapes at other resonance
frequencies. A crack initiation in the area βin±10° significantly reduces the local stiffness
of the structure in this region. Hence, for the resonance frequencies marked with ⊕ in
Figure 8 it is assumed that they are sensitive to cracks initiating at βin±10°. Similar can
be said for the spectrum of σ1 at the location of possible crack initiation at the outside
surface βout±10°. This spectrum yields smaller amplitudes for most frequencies. However,
four resonance frequencies at f ≈ 51 kHz, 56 kHz, 87 kHz and 97 kHz have higher stress
amplitudes σ1 at the outside surface of possible crack initiation than at the inside surface of
possible crack initiation (marked with ⊗ in Figure 8a).

(a)
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0.6

0.8
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Figure 8. Identification of sensitive resonance frequencies: (a) Mean stress spectra σ1 of pristine necked lug, (b) FEM stress
results σ1 in the defined range of ±10° around each location of possible crack initiation are used to calculate the mean values
of major principal stresses σ1.

Hence, it is assumed that a monitoring of at least two resonance frequencies with
contrasting sensitivities to cracks at βin±10° and βout±10° can be used to distinguish
between a crack initiation from the inside or outside surface. The four resonance frequencies
each, identified in Figure 8 to highlight both locations of possible crack initiation, are listed
in the first two columns of Table 2.

Subsequently, in Figure 9 pristine and damaged (cracks of length 2 mm at locations
βin = 90° and βout = 145°) state spectra are plotted in the frequency range of 50 kHz to
100 kHz. Figure 9a,c show frequency spectra calculated with coupled-field FE simulations.
Figure 9b,d show frequency spectra measured with the IMA and the SLDV, respectively.

As expected, at frequencies with the highest stress amplitudes σ1 (marked with ⊕
in Figure 8a) the resulting shifts of resonance frequencies between pristine and cracked
state are larger for the inside crack than for the outside crack, see also Table 2. In contrast,
the identified frequencies where the stress amplitudes σ1 for the outside crack are larger
than for the inside crack (marked with ⊗ in Figure 8a) the frequency shifts for the outside
crack are significantly larger. Moreover, these resonance frequencies are almost insensitive
for a crack at βin = 90°, which is clearly illustrated in Table 2. This special behavior
can be used to differentiate between the two critical crack locations of the considered
structure. Frequency shifts ∆ f = fcracked − fpristine for resonance frequencies marked with
⊕ (largest major principal stress around βin = 90°), which are larger than frequency shifts
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at resonance frequencies marked with ⊗ (largest major principal stress around βout = 145°),
indicate a crack growth starting from the inside surface. In contrast, for a crack initiating
at βout = 145° the frequency shifts at resonance frequencies marked with ⊗ are larger or
at least in a similar range compared to frequency shifts at resonance frequencies marked
with ⊕. Therefore, a monitoring of only two resonance frequencies with contrasting
sensitivities for the two crack locations is sufficient to identify the distinct crack location for
the two considered possibilities. However, employing more sensitive resonance frequencies
can increase the reliability of the localization or allow the differentiation between more
damage locations.

Table 2. Comparison of resonance frequencies in the conductance spectra G calculated with FEM
for both crack locations. The relative shifts of resonance frequencies for each crack location are
highlighted in orange and blue, respectively.

ain = 2 mm, βin = 90° aout = 2 mm, βin = 145°

Marker fpristine fcracked ∆ f fcracked ∆ f
in Figure 8 [Hz] [Hz] [Hz] [%] [Hz] [Hz] [%]

⊗ 51,125 51,000 –125 –0.24 50,500 –625 –1.22
⊗ 56,500 56,375 –125 –0.22 55,625 –875 –1.55
⊕ 60,000 59,500 –500 –0.83 59,750 –250 –0.42
⊕ 67,875 64,500 –3375 –4.97 67,125 –750 –1.10
⊕ 77,875 75,875 –2000 –2.57 77,500 –375 –0.48
⊕ 80,875 79,250 –1625 –2.01 80,375 –500 –0.62
⊗ 87,250 87,125 –125 –0.14 84,875 –2375 –2.72
⊗ 97,000 97,000 0 0.00 95,750 –1250 –1.29

To illustrate the proposed crack localization method two resonance frequencies with
contrasting sensitivities are chosen from Table 2. The influence of growing cracks at each
location on simulated FEM conductance spectra (separate simulations for each crack length
and location) is analyzed around these two resonance frequencies: f1,pristine = 67.875 kHz
is highly sensitive to a crack at βin = 90° and less sensitive to a crack at βout = 145°;
f2,pristine = 97 kHz is highly sensitive to a crack at βout = 145° and almost insensitive to a
crack at βin = 90°. In Figures 9 and 10 the corresponding resonance frequency peaks are
highlighted with ⊕1,2 and +1,2 of the pristine and cracked states, respectively.

The spectra of a growing crack at βin = 90° are depicted in Figure 10a (one graph
for each chosen resonance frequency with adapted x-axis scaling for better visualization).
At this crack location the first chosen resonance frequency f1 shows a significant shift
of resonance peaks ∆ f1(ain) to lower frequencies and the second resonance frequency f2
shows almost no shift in frequencies (∆ f2(ain) ≈ 0) due to a growing crack (considering
absolute values). In contrast, for a developing crack at βout = 145°, both chosen resonance
frequencies f1 and f2 show similar frequency shifts (in absolute values) to lower frequencies,
see Figure 10b. Nevertheless, for all crack lengths aout the absolute values of frequency
shifts satisfy the condition |∆ f1(aout)| ≤ |∆ f2(aout)|. Hence, if |∆ f1| > |∆ f2| a crack at
βin = 90° is indicated and if |∆ f1| ≤ |∆ f2| a crack at βout = 145° is indicated.
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Figure 9. Spectra of pristine and damaged (cracks of length 2 mm) necked lug of (a) conductance
simulated with FEM; (b) conductance measured with the IMA; (c) mean out-of-plane vibration results
simulated with FEM; (d) mean out-of-plane vibration results measured with the SLDV. Resonance
frequency shifts ∆ f1 and ∆ f2 to identify the distinct crack location are highlighted with ⊕1,2 in
pristine spectra and with +1,2 in spectra of the cracked lug (ain = 2 mm, βin = 90°).

The performed experiments show similar results and validate the methodology to iden-
tify the crack localization using two resonance frequency shifts, see Table 3. In Figure 9 the
overall shapes of calculated and measured spectra of the cracked necked lug (ain = 2 mm,
βin = 90°), qualitatively compared, fit well together. Resonance frequencies of measured
and calculated spectra of the cracked lug show a similar (small) deviation as observed for
the spectra of the pristine lug. To experimentally demonstrate the crack localization both
chosen resonance frequency shifts in calculated and measured spectra are presented in
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Table 3. It is clearly seen, that in measured and calculated spectra |∆ f1| > 4 %, whereas
|∆ f2| ≈ 0 %, which indicates a crack at βin = 90°.
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Figure 10. Comparison of numerically calculated conductance spectra for growing cracks at location
(a) βin = 90° and (b) βout = 145°. Detailed plot of frequency spectra around each resonance frequency.
Relations between frequency shifts ∆ f1 and ∆ f2 is based on absolute values.

Table 3. Chosen resonances f1 and f2 of pristine and cracked state (ain = 2 mm, βin = 90°) from
simulation and experiments to identify the crack location.

f1,pristine f1,cracked ∆ f1 f2,pristine f2,cracked ∆ f2
[Hz] [Hz] [Hz] [%] [Hz] [Hz] [Hz] [%]

FEM: G, H1 67,875 64,500 –3375 –4.97 97,000 97,000 0 0.00
IMA: G 68,000 65,125 –2875 –4.23 96,875 96,750 –125 –0.18
SLDV: H1 68,031 65,094 –2937 –4.32 96,984 96,797 –187 –0.28

The most significant shifts of resonance frequencies in calculated and measured
spectra happens for the resonance frequency f ≈ 68 kHz of the pristine necked lug, see
Figures 9 and 10. This resonance frequency is highly sensitive to a crack at βin = 90° and
also shows a significant frequency shift for a crack at βout = 145°, see Table 2. There-
fore, in order to estimate the crack size this specific resonance frequency is analyzed in
more detail.
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5.3. Spectral Features: Crack Size

The mode shape for the resonance frequency f ≈ 68 kHz of the pristine necked lug is
depicted in Figure 11.

(a) (b)

Figure 11. Comparison of in-plane radial vibration mode shape of pristine necked lug at
(a) f FEM

pristine = 67,875 Hz for FEM and (b) f SLDV
pristine = 68,031 Hz for SLDV.

In the FEM contour plot it can be seen that the shaft of the necked lug vibrates
axially and the ring-shaped part of the lug vibrates in-plane radially with four nodes,
see Figure 11a. With the SLDV only out-of-plane deformations can be measured, and hence
in Figure 11b the transverse thickness deformation due to the in-plane radial vibration
is visualized. This specific resonance frequency, where the ring-shaped part of the lug
vibrates predominately in-plane with radial displacements shall be studied analytically.
For this purpose the necked lug depicted in Figure 1 is roughly split up into a straight bar
and a simple ring. To approximate the relation between the vibration frequency and the
geometry of the ring we simply consider an in-plane purely radial vibration. With a mean
radius of rm = (D + d)/4 the natural frequency is [38]

fradial =
1

2πrm

√
E
ρ

. (9)

Given the dimensions of the ring-shaped front end of the reference lug, as described
in Section 2, the natural frequency of the in-plane radial vibration of a simple ring yields
fradial = 64.782 kHz. This analytically calculated natural frequency is actually close to the
resonance frequency of the lug at 67.875 kHz even though the shaft of the lug is neglected
by Equation (9). Also for necked lugs with similar geometry but different mean ring radius
rm such an in-plane mode shape exists, which has a resonance frequency close to the
in-plane radial resonance frequency of a corresponding simple ring. This specific resonance
frequency changes reciprocally proportional with rm, as shown in Table 4, which is also
characterized by Equation 9. Additionally, the analytic in-plane radial resonance frequency
of the simple ring is independent of the ring thickness, see Equation (9). Subsequently,
changing the thickness t of the lug has small influence on the numerically calculated radial
resonance frequencies of the necked lug, see Table 4. However, for lugs with different
thickness or mean radius this specific in-plane radial mode shape is highly sensitive to
radial cracks.

Table 4. Comparison of resonances frequencies of in-plane radial vibration computed analytically
with Equation (9) and FEM simulation for different lug geometries.

rm t f analytic
pristine f FEM

pristine
Geometry [mm] [mm] [Hz] [Hz]

reference 12.41 6 64,782 67,875
tsmall 12.41 3 64,782 68,000
tlarge 12.41 9 64,782 67,750
rm,small 11.41 6 70,460 70,750
rm,large 13.41 6 59,951 64,625

As already presented for the reference lug geometry, a growing crack at βin = 90°
shows a much larger deviation of resonance peaks than a crack at βout = 145°, see Figure 10.
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For different geometries, this behavior can be displayed well if the frequency shifts
∆ f = fcracked − fpristine of considered resonance frequencies are plotted over the crack
length, see Figure 12.
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Figure 12. Shift of resonance peaks ∆ f due to growing cracks at βin = 90° and βout = 145° in necked lugs with different
geometries according to Table 4.

For both crack locations a nonlinear relationship between crack length and resulting
frequency shift are found. For the reference lug geometry (t = 6 mm, rm = 12.41 mm,
a = 1 mm to 3 mm) a least squares fit to quadratic functions yields resonance frequency
shifts of ∆ f = λa2 with λ = −0.777 kHz/mm2 for the inside crack at βin = 90° and
λ = −0.194 kHz/mm2 for the outside crack at βout = 145°. Similar trends are shown
for other geometries with varied rm in Figure 12. For a larger mean radius the sensitiv-
ity of frequency shifts is increased for growing cracks on the inside surface at βin = 90°
(c.f. λ = −1.042 kHz/mm2 for rm = 13.41 mm) and decreased for growing cracks on the
outside surface at βout = 145° (c.f. λ = −0.159 kHz/mm2 for rm = 13.41 mm). In con-
trast, the sensitivities change in the opposite direction for a smaller mean radius. In this
case the sensitivity is smaller for a crack growth on the inside surface at βin = 90°
(c.f. λ = −0.665 kHz/mm2 for rm = 11.41 mm) and larger for crack growth on the outside
surface at βout = 145° (c.f. λ = −0.301 kHz/mm2 for rm = 11.41 mm). However, a change
in the thickness t of the lug has small influence on the frequency shifts due to crack growth,
see Figure 12. We conclude that an estimation of crack length with the trends of frequency
shifts (of mode shape at f ≈ 68 kHz) due to crack growth is robust against manufacturing
uncertainties of the thickness and also can be used for similar necked lug geometries with
varying mean radius rm. For other mode shapes such clear trends of frequency shifts
related to crack growth were not observed. The quadratic trend of frequency shifts due to
crack growth were only found for the in-plane radial mode shape presented in Figure 11.
The authors assume that the quadratic trends of frequency shifts are directly related to the
reduced stiffness of the ring-shaped part of the lug and that the location of the stiffness
reduction (inside at βin = 90° or outside at βout = 145°) defines the strongly different effect
on the considered mode shape and resonance frequency.

The presented model-based method (developed using coupled field FE simulations) is
now checked using experimental measurements. Given the frequency shift of
∆ f IMA = −2.875 kHz measured with the impedance analyzer yields an estimated crack
size of ain = 1.92 mm, see Figure 12. This result fits well to the introduced crack length
of 2 mm. The small deviation in estimated crack length may result from the finite width
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of the introduced crack (compared to zero crack width in FE models) or manufacturing
deviations (e.g., actual crack length, roundness of lug ring).

6. Conclusions

A variety of FE simulations as well as measurements with an IMA and a SLDV were
performed to investigate the EMI-based crack detection and identification in necked double
shear lugs. The developed FE models for coupled-field simulations yield frequency spectra
which fit well to all experimental measurements in the considered frequency range of 1 kHz
to 100 kHz. The calculated and measured resonance frequencies of conductance G and
transfer function H1 show less than 1% deviation, except for two in-plane flexural modes
at 42.5 kHz and 77.875 kHz which show a deviation up to 2.6%.

Analyzed frequency spectra from FE simulations and measurements clearly reflect
artificially introduced through-cracks in the considered necked lug. The two critical
locations of crack initiation (inside at the bolt hole at βin = 90° and outside at the transition
region between shaft and largest diameter of the lug at βout = 145°) have been investigated.

In a first analysis step, common damage metrics were investigated to identify regions
of the spectrum, which are most sensitive to through-cracks at both locations. Thus, the full
frequency range was separated in four parts (1 kHz to 25 kHz, 25 kHz to 50 kHz, 50 kHz
to 75 kHz and 75 kHz to 100 kHz) and damage metrics were evaluated for each individual
range. All calculated damage metrics (CCD, RMSD and MAPD) for both crack locations
yield the highest values for frequencies above 50 kHz and reflect the presence of a crack.
The CCD metric shows best comparability between numerical and experimental results.
In the considered frequency ranges above 50 kHz a crack length of 1 mm could be readily
detected if the damage metric CCD exceeds a proposed threshold level of CCD > 0.5.
This comparatively high threshold level is assumed to be robust against environmental
influences (e.g., measurement noise, temperature changes). Hence, crack detection in
necked lugs is possible by simply evaluating the damage metric CCD in frequency ranges
of 50 kHz to 75 kHz and 75 kHz to 100 kHz.

In a second step, the spectral features are analyzed within the identified frequency
range, which is highly sensitive to crack initiation. Initially, spectra of the mean values
of major principal stresses around both considered crack locations are investigated by
the FE model. A comparison of the amplitude of each resonance peak indicates if the
corresponding resonance frequency is sensitive to a crack at the inside or outside surface.
This model-based approach yields two frequencies, which show different sensitivities to
the considered critical crack locations. Together with monitoring their frequency shifts ∆ f
the distinct crack location can be identified for both numerical and experimental results.
Additionally, spectral features that show one of the two expected changes of the resonance
frequency verify the damage-metric-based crack detection of first evaluation step.

Subsequently, the resonance peak of the necked lug, which actually yields a frequency
close to the analytically calculated in-plane radial vibration frequency of a simple ring
(with corresponding dimensions), is found to be highly sensitive to crack formation at both
critical locations. This effect is further analyzed to estimate the crack size. The specific
resonance shows the highest frequency shifts due to growing cracks at βin = 90° and
is also strongly affected by cracks at βout = 145°. Monitoring this specific resonance
frequency yields clear relationships between frequency shift ∆ f and length a of a crack at
both considered critical locations, allowing a model-based crack size estimation for the
experimental measurements. The identification of crack location and size is done in a
model-based approach using an adequate FE model, and hence is expected to be suitable
for other geometries similar to necked double shear lugs.

Consequently, the EMI method shows high potential for structural health monitoring
of necked double shear lugs, and other structural components with ring-shaped topology
and similar damage initiation and propagation, on different levels. Besides pure detection
of cracks it is also possible to distinguish between their locations. Furthermore, with
the presented method a crack’s length can be quantified. This allows estimating the
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corresponding stress intensity factors for operational loads, which finally enables the
prognosis of the remaining fatigue life of necked double shear lugs.

However, in its current state, the method requires baseline measurements at all levels.
Observing changes in the frequency features might also allow a model-based damage
detection in the future. Moreover, further research has to be done to advance the results of
this first study for use in real applications. The crack growth process has to be investigated
for other typical crack shapes (quarter circular and elliptical corner cracks) and naturally
initiated cracks during fatigue loading. Furthermore, bushings or spherical bearings in
the lug hole as well as loading during measurements and changing temperatures will
influence the frequency response spectra. To reach sufficient reliability for real applications,
the presented crack detection approach for necked double shear lugs using PWAS and the
EMI method have to be validated under such conditions.
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