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Abstract: Since the fabrication of the first electrochemical biosensor by Leland C. Clark in 1956, vari-
ous labeled and label-free sensors have been reported for the detection of biomolecules. Labels such
as nanoparticles, enzymes, Quantum dots, redox-active molecules, low dimensional carbon materials,
etc. have been employed for the detection of biomolecules. Because of the absence of cross-reaction
and highly selective detection, labeled biosensors are advantageous and preferred over label-free
biosensors. The biosensors with labels depend mainly on optical, magnetic, electrical, and mechanical
principles. Labels combined with electrochemical techniques resulted in the selective and sensitive
determination of biomolecules. The present review focuses on categorizing the advancement and
advantages of different labeling methods applied simultaneously with the electrochemical techniques
in the past few decades.

Keywords: nanoparticles labels; enzyme labels; redox probe labels; quantum dots labels; low dimen-
sional carbon material labels

1. Introduction

The never-ending demand for improved selectivity and sensitivity has prompted
intense research and proposed improved methods for the detection/determination of
different analytes in the fields of clinical diagnostics [1–3]. Different bioassays based on
the specific interaction between the biological recognition elements, such as antibody, nu-
cleotide, enzyme, and the target analyte have been proposed and developed to meet these
requirements. These methods are often characterized by low cost, rapid results, high selec-
tivity and specificity, the potential for multiplexed detection/determination, operational
and instrumental simplicity, and the scope for point-of-care (POC) applications. In bioas-
says, the signal is generated from the specific interaction between the analyte molecule
and the recognition element, which is usually immobilized on a solid surface, and is used
to detect and quantify the analyte by using a suitable transducer. The attractive features
of electrochemical transducers are widely adopted in bioassays because of the sensitivity,
potential for miniaturization and automation, and simple/often portable instrumentation.
The advantages of label-free sensors such as less complicated designs, less preparation time,
reduced cost due to the elimination of complex labels, and scalability are severely over-
whelmed by the disadvantages such as lack of sensitivity, cross-reactivity, and interference.
Labeled sensors are preferred over label-free designs when adequate preparation facilities
and trained personnel are available. Labels are combined with techniques such as optical [4],
electrochemical [5], fluorescence [6], Raman technique [7], magnetic [8], electro chemilumi-
nescent [9], etc., for the selective and sensitive detection of analytes. Labels combined with
electrochemical techniques have gained considerable momentum over the past decades
because of the advancements in electrochemical techniques [10–17]. Electrochemical labels
based on the principle of bio-specificity interactions have gained attention in clinical diag-
nosis or environmental monitoring because of the sensitivity, simplicity, low cost of analysis,
and miniaturization possibilities [18]. Labels combined with electrochemical techniques
generate a current response suitable for the detection/determination of analytes with high
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selectivity and specificity. Despite the increasing number of published works and interest
in labels in electrochemical biosensing, there is a lack of reviews covering specifically the
application of labels with electrochemistry, and the results are often uncategorized. In this
context, this review aims to categorize different labels and present a general overview of
the recent applications and advancements of labels in electrochemical sensors (Scheme 1).

Scheme 1. Schematic illustration of various labels combined with electrochemical techniques.

2. Enzyme Labels Combined with Electrochemical Applications

Enzymatic catalytic properties are renowned for the determination of extremely small
quantities of reactants, thereby making these natural catalysts an efficient label. Enzyme la-
bels have advantages such as the possibility of simultaneous assay because of the avail-
ability of a wide variety of enzymes, availability of different conjugation techniques, sensi-
tive assays due to the amplification effect of enzymes, and the availability of cheap reagents
for cost-effective assays [19]. Enzyme labels with the advancement in electrochemical tech-
niques resulted in selective, sensitive, and rapid assays. Enzyme labels such as Alkaline
phosphatase (ALP), Horseradish peroxidase (HRP), Glucose oxidase (GOx), Glucose-6-
phosphate dehydrogenase (G6PDH), β-galactosidase (β-gal), and DT-diaphorase (DT-D)
are combined with detection systems such as electrochemical, colorimetric, fluorimetry,
and chemiluminescent for the detection of target analytes. An efficient enzyme label should
catalyze the enzymatic reaction on its substrate at a sufficiently high reaction rate and
exhibit long-term stability. These requirements are satisfied by enzymes such as ALP and
HRP, making them the most common enzyme labels [20]. Zhao et al. [21] reported an elec-
trochemical detection system based on photocurrent measurement for the determination
of cardiac troponin T(cTnT) using beta-galactosidase as a label. Here, the photocurrent,
which was directly correlated to the target analyte, was generated from the photooxidation
of p-aminophenol, which, in-turn, was generated from the β-Gal enzyme-catalyzed con-
version of p-aminophenyl galactopyranoside (Figure 1). The method is renowned for its
importance as the first PEC immunoassay towards the cardiac biomarker.
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Figure 1. (a) Schematics of the photoelectrochemical immunoassay for the detection of cTnT using the β- galactosidase
tags. (b) XPS spectrum of the CdS QDs/TiO2 NPs electrode (the inset above shows the SEM image of the TiO2 NPs film
and below shows the TEM image of the CdS QDs). (c) Photoelectrochemical responses of the TiO2 NPs electrode (i),
after loading with the CdS QDs (ii), and in the presence of 10 mM PAP (iii). (d) Photocurrent response from the CdS
QDs/TiO2 NPs electrode (step 1), the electrode after immobilization with Ab1 and BSA blocking (step 2), after target
recognition (step 3), after complexing with Ab2 (step 4), and after incubation in 10 mM PAPG (step 5) (the inset above
shows the effect of PAPG on the photocurrent intensity in the presence of 1.0 × 10−6 g/mL of cTnT, and the inset below
shows the photoelectrochemical response as a function of pH). (e) Photocurrent of the immunoassay in the presence of
different cTnT concentrations (the inset shows the selectivity of the sensor in the presence of PSA, IgG, and the mixed
sample). Reproduced with permission from [21] Copyright © 2020, American Chemical Society.

An interesting enzyme label based on the two-electron reductase enzyme DT-diaphorase
(NAD(P)H: Quinone Oxidoreductase1) combined with electrochemical immunosensor ap-
plication was reported by Kang et al. [22]. Here, the thermostable DT-diaphorase enzyme
and an electrochemically inactive compound 4-nitroso-1-naphthol were used as an enzyme
label and reacting substrate, respectively. Signal amplification was achieved by the enzy-
matic amplification and an electrochemical redox process. The electrochemically inactive
substrate was converted to an amine compound by the DT-diaphorase, which further
undergoes electrochemical-chemical and electrochemical-enzymatic redox process, respec-
tively (Figure 2). The enzyme label-based electrochemical immunosensor was applied for
the determination of parathyroid hormone (PTH) over a wide range of concentrations from
PBS containing BSA with an LOD of 2 pg/mL for PTH.
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Figure 2. (a) Schematics of the electrochemical immunosensor using DT-diaphorase as an enzyme label. (b) Cyclic
voltammograms (CVs) obtained at the bare indium tin oxide (ITO) electrodes in (i) tris buffer of pH 7.5, (ii) mixture of
1-nitroso-2-naphthol and NADH, (iii) mixture of 4-nitroso-1-naphthol and NADH, (iv) mixture of 4-nitrosophenol and
NADH at a scan rate of 20 mV/s after 10 min. incubation period at 25 ◦C. (c) CVs obtained at the bare ITO electrodes in (i) tris
buffer of pH 7.5 containing NADH, 4-nitroso-1-naphthol, and DT-diaphorase, (ii) tris buffer of pH 7.5 containing NADH,
4-nitrosophenol, and DT-diaphorase. (d) CVs obtained at the bare ITO electrodes in (i) tris buffer of pH 7.5 containing
NADH, Diaphorase, and 4-nitroso-1-naphthol, (ii) tris buffer of pH 7.5 containing NADH, nitroreductase, and 4-nitroso-1-
naphthol. (e) CVs obtained at the bare ITO electrodes in (i) tris buffer of pH 9.0 containing NADH, 4-nitroso-1-naphthol,
and DT-diaphorase, and (ii) PBS of pH 7.4 containing 4-nitroso-1-naphthol, NADH, and DT-diaphorase. Reproduced with
permission from reference [22]. Copyright © 2020 American Chemical Society.

3. Nanoparticles as Labels for Electrochemical Applications

The inherent instability and other shortcomings associated with enzyme labels have
promoted the use of nanoparticles as their substituent. Nanoparticles have many ad-
vantages over natural enzymes. The redox current generated from the redox properties
enables them to be used as an easy label without any additional steps or reactions in
electrochemical immunosensor applications. Some of the well-explored nanoparticle labels
include Au NPs [23] and Ag NPs [24], whereas nanoparticle labels such as multimetallic
nanoparticles [25], metal oxide nanoparticles [26,27], and metal sulfide nanoparticles [28]
have also been explored with interesting applications.

Gold particles of nano dimension have attracted attention because of the stability [29],
ease of conjugation with biomolecules [30], affinity towards thiol (-SH2) group [31], and the
shape- and size-related quantum effects [32]. Au NPs serve as an ideal label for electro-
chemical assay for biomolecules. Various ultrasensitive assays are reported by using Au
NPs as the label. Oliveira et al. [33] reported an ultrasensitive magnetoimmuno-assay for
the determination of Salmonella typhimurium by using a low-cost, disposable microfluidic
device (DµFD). Here, the Salmonella typhimurium was separated from the samples by cap-
turing with a monoclonal anti-Salmonella antibody modified magnetic beads (Figure 3).
This was followed by the addition of Au NPs labeled polyclonal anti-Salmonella anti-
body to form a magneto-immunoconjugate, which was then injected onto the microfluidic
device and captured by placing magnets behind the working electrodes. Finally, the elec-
trochemical response from the labeled Au NPs was used for the determination of the
Salmonella typhimurium.
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Figure 3. (a) Schematic illustration showing the steps involved in the offline Salmonella typhimurium capture with MB-AB1
followed by washing. (b) The formation of MB-Ab1/S. typhi/Ab2-AuNP magneto-immunoconjugate after the addition of
Ab2-AuNP. (c) DPV curves for the S. typhi detection (0–100 cells/mL of bacteria) in PBS-T20 (pH 7.4). (d) The corresponding
calibration curve (n = 8). (e) DPV curves obtained for the determination of Salmonella typhimurium (0–100 cells/mL) from
milk sample using a single DµFD. (f) Specificity study of the immunoassay, including negative control (concentration of
25 cells/mL for each bacteria). Reproduced with permission from reference [33]. Copyright © 2020 Elsevier B.V.

Liao et al. [34] reported an interesting strategy for the determination of goat anti-rabbit
IgG by using Au NPs as label. Here, the autocatalytic decomposition of Au ions onto the
Au NPs and the resulting enlarged Au NPs resulted in a three times amplification of the
electrochemical assay compared to Au NPs in the conventional assay. Mao et al. [35]
reported an assay for the determination of HIgG by using Au NPs as the label. Here,
a chemical reaction between avidin and dethiobiotin in the presence of the vitamin biotin
resulted in the cyclic accumulation of Au NPs, and the resultant signal was used for the
quantification of IgG up to 0.1 ng/mL. Another interesting example of Au NPs as the label
for electrochemical immunoassay was reported by Leng et al. [36]. Here, the capture of
Au NPs labeled antibodies and a sandwich format on a disposable chip resulted in the
crosstalk-free simultaneous determination of HIgG and GIgG (Figure 4).

The excellent electroactivity combined with well-defined sharp voltammetric oxida-
tion peak makes Ag NPs an excellent choice for electroanalytical applications [37]. In one
report, Ag tags were employed for the detection of PSA at fg/mL levels [38]. Miao et al. [24]
reported melamine functionalized Ag nanoparticles as label for the determination of im-
portant therapeutic agent clenbuterol (Figure 5). Here, the solid-state reaction of Ag/AgCl
resulted in sharp, well-defined silver stripping peaks, and an LOD of 10 pM for clenbuterol
was achieved.
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Figure 4. (a) Schematics of the preparation of immunosensor array for the simultaneous detection of HIgG and GIgG.
(b) DPV responses for the simultaneous multiplexed detection of HIgG (5–600 ng/mL), and (c) GIgG (5–500 ng/mL) using
Au NPs as a label. Insets show the corresponding calibration curves. Reproduced with permission from reference [36].
Copyright © 2020 Elsevier B.V.
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Figure 5. (a) Schematics of the melamine-silver nanoparticles (M-Ag NPs)-based sensor for clenbuterol determination. (b) CV response
of the sensor in the presence of (A) 0, and (B) 1 nM clenbuterol. (C) melamine modified Au electrode at a scan rate of 100 mV/s in
the presence of 0.1 M KCl. (c) The LSV response of the sensor in the presence of different concentrations of clenbuterol (0–100 nM).
Inset shows the corresponding linear calibration plot (n = 3). Reproduced with permission from [24]. Copyright © 2020 American
Chemical Society.

4. Quantum Dots (QDs) as Labels for Electrochemical Applications

QDs are nanostructured and zero-dimensional materials defined as semiconductor
structures [39]. Besides the properties of semiconductor metal oxides, QDs exhibit pho-
tochemical [40], magnetic [41], optoelectrical [42], and catalytic properties [43]. Since the
demonstration of water-soluble and biocompatible QDs [44,45], research on the synthe-
sis of QDs for biosensing applications has gained considerable momentum, and many
QDs, such as CdS and CdTe, have been reported and used as labels for electrochemical
bio-sensing applications. An ultrasensitive immunoassay for protein HIgG by using CdTe
QDs as an electrochemical label was reported by Cui et al. [46]. The method demonstrated
a sensitive assay with results consistent in comparison with ELISA (Figure 6).

Hu et al. reported CdTe QDs as DNA labels on nanoporous gold leaf electrodes
(NPGL) for the ultrasensitive DNA analysis by using electrochemiluminescence as the
electrochemical technique (Figure 7). Here, the remarkably increased sensitivity of the assay
was attributed to the ultra-thin nanoporous nature of the electrode. The NPGL electrode
was first modified with thioglycolic acid (TGA) which was then conjugated to amino-
modified c-DNA. Following that, the hybridization of probe DNA with t-DNA yielded
sandwich-type hybrids on the nanoporous electrode. The amino end group of the sandwich
hybrids was then labeled with mercaptopropionic acid capped CdTe QDs. Finally, the ECL
emission of the CdTe QD-labeled electrode was measured by scanning between 0 to−2 V in
the presence of peroxydisulfate ion (S2O8

2−) as a co-reactant. The ECL intensity recorded
was correlated to t-DNA concentration in the linear range of 5 × 10−15 − 1 × 10−11 M.
The study also proposes the possibility of using the ECL DNA assay protocol for the
determination of mRNA in cell extracts [47].
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Figure 6. (a) Schematics of the CdTe QDs label-based immunoassay for the detection of protein.
(b) Square wave voltammograms for the determination of HIgG (0–100 ng/mL). (c) The correspond-
ing calibration curve on a semilog scale. Reproduced with permission from [46]. Copyright © 2020,
American Chemical Society.

Figure 7. (a) Schematics of the process of DNA determination. (b) Electro chemiluminescent current (IECL) vs. potential (E) curves for
the CdTe Quantum dot-labeled DNA hybrids immobilized on the nanoporous gold leaf electrode for different t-DNA concentrations
(the inset shows the linear relationship between Im,ECL on the IECL-E curves and the t-DNA concentration). (c). A magnified portion
of the IECL-E curve. Reproduced with permission from [47]. Copyright © 2020 Elsevier B.V.

Sánchez et al. proposed a cadmium-selenide/zinc-sulfide (CdSe@ZnS) quantum
dots (QDs)-based on-chip magneto-immunoassay for the SWASV-based electrochemical
detection of Alzheimer’s biomarker ApoE [48]. The electrochemical sensing platform was
established by integrating screen-printed electrodes on to a hybrid polydimethylsiloxane-
polycarbonate microfluidic chip with tosyl activated magnetic beads as a preconcentration
platform (Figure 8). The ApoE was quantified with a limit of detection of ~12.5 ng/mL with
a linear range of 10–200 ng/mL. The method was successful for the accurate determination
of ApoE from diluted human plasma.
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Figure 8. (a) Schematics of the electrochemical immunosensing system for ApoE detection. (b) Microfluidic platform integrated with
screen–printed electrodes, and the picture of actual the set–up. (c) Square wave voltammograms of the ApoE–immunoassay in the
presence of different concentrations of ApoE (0–200 ng/mL) using QDs as electrochemical labels (Electrochemical conditions; −1.1 V of
deposition potential for 120 s; stripping between −1.1–−0.15 V; V scan rate = 10 mV/s; Frequency = 25 Hz; and flow rate = 5 µL/min).
(d) The calibration plot for the standard sample of ApoE. Reproduced with permission from [48]. Copyright © 2020 Elsevier B.V.

5. Redox-Active Molecules as Labels for Electrochemical Applications

The redox current from redox probes can serve as an excellent label for electrochemical
applications. Li et al. [49] reported ferrocene-loaded polyelectrolyte nanoparticles on the
CaCO3 template as a label for the detection of oral cancer biomarker IL-6. The ferrocene
redox current from square wave voltammetry was exploited for the selective and sensitive
determination of interleukin-6 with a wide linear range of 0.002–20 ng/mL, and a low
detection limit of 1 pg/mL (Figure 9). Ning et al. [50] reported an ultrasensitive electro-
chemical sensor for avian leukosis virus-based on differential pulse voltammetry using
β-cyclodextrin-nanogold-ferrocene host-guest label on a perylene-3,4,9,10-tetracarboxylic
acid-functionalized graphene composite (GR-PTCA). The abundance of polycarboxylic
sites on GR-PTCA and the excellent electrical conductivity was suitable for the immobi-
lization of primary antibodies and promoted electron transfer. As shown in Figure 10,
signal amplification was achieved by the strong binding of β-cyclodextrin with ferrocene-
gold nanoparticles. The sensor achieved linearity for the determination of avian leukosis
virus in the concentration range of 102.0–104.0 TCID50/mL, and a low detection limit of
101.93 TCID50/mL. Mohammadniaei et al. [5] reported an interesting redox-active molecule
labeled electrochemical biosensor and signal amplification strategy based on Mxene and Au
NPs. Here, the combination of methylene blue and ferrocene labeled single-stranded DNAs
on Au NPs decorated Mxene nanosheets resulted in the rapid and multiple quantifications
of microRNAs. The Mxene decorated with Au NPs provided a four-time electrochemical
signal enhancement compared to Au NPs/Au electrode due to the surface area enhance-
ment and charge mobility increment of the electrode. The method was successfully applied
for the attomolar detection of miR-21 and miR-141 with a wide linear range (500 aM–50 nM).
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Figure 9. (a) Schematics of the fabrication of ferrocene loaded porous polyelectrolyte nanoparticles–Ab2 and (b) the
immunosensor. (c) SWV response of the immunosensor towards different concentrations of interleukin–6 (0.01–20 ng/mL).
Scanning the potential window was from 0–0.4 V with a frequency of 25 Hz using a 5–mV potential step and 25 mV
amplitude. The insert is the corresponding calibration curve. Reproduced with permission from reference [49]. Copyright ©
2020 Elsevier B.V.

Figure 10. (a) Schematics of the fabrication of Ferrocene–AuNP–β–cyclodextrin–Ab2, (b) GR–PTCA,
and (c) the electrochemical immunosensor. (d) The DPV responses of the immunosensor in the
presence of varying concentrations of avian leukosis virus (102.0–104.0TCID50/mL). (e) The linear
calibration plot for the determination of avian leukosis virus. Reproduced with permission from
reference [50]. Copyright © 2020 Elsevier B.V.
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6. Low Dimensional Carbon Materials as Ultrasensitive Labels

Graphene and graphene-related materials are renowned for exceptional electrical,
chemical, thermal, mechanical, and optical properties [51–55]. The significant interest
of graphene and related materials in electrochemical applications is mainly due to the
large surface area and the fast charge transfer kinetics [56–61]. These unique features also
make them promising signaling labels for bio-recognition events in biosensing applications.
Graphene and related materials can serve as a “Direct label” or “Indirect label” for signal
generation in immunoassays [62]. The direct labeling strategy exploits the working signal
generated from the reduction of the oxygen-containing groups, whereas the indirect label
strategy relies on the graphene labels modified with other electroactive probes for the
generation of working signal [57]. Bonanni et al. [63] reported graphene oxide as a direct
label for the detection of DNA polymorphism (Figure 11). Here, the DNA probes were
immobilized on a carbon electrode followed by hybridization with a DNA sequence
showing single nucleotide polymorphism, and a non-complementary sequence was used
as the negative control. The hybrid modified electrodes were able to conjugate to different
amounts of graphene oxide because of the differential affinity of graphene towards single
and double-strand DNA. The reduction signal generated from the conjugated hybrid-
electrode were able to discriminate the single nucleotide polymorphism at 10 nM level in
the analyzed sequences.

Figure 11. (a) Schematics of the experimental protocol, (i) after complementary target hybridization,
(ii) one–mismatch target, and (iii) non–complementary target. (b) Voltammetric response towards
different target DNAs in the case of hybridization with wild–type (red line), mutant (blue line),
and non–complementary (black line). (c) Voltammetric signal for conjugation with different amounts
of GO NPs in the case of hybridization with wild–type (red bars), mutant (blue bars), and nc (black
bars) sequences (n = 3). Reproduced with permission from Ref. [63]. Copyright (2012) American
Chemical Society.

In the indirect labeling strategy, the working signal is not directly generated from the
graphene. Here, an electroactive species was added during the detection process and the
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graphene label serves to promote the transfer of electrons. An interesting example is the
impedimetric determination of adenosine triphosphate (ATP) reported by Wang et al. [64].
Here, a decrease in the charge transfer resistance (Rct) of the system was observed when an
ATP-aptamer modified Au electrode was adsorbed with graphene (Figure 12). The aptamer-
analyte complex formed in the presence of ATP prevented the graphene interaction with
ATP-aptamer resulted in a higher Rct.

Figure 12. (a) Schematics of the sensing platform for the detection of ATP. (b) EIS response on
the ABA/Au electrode after reacting with different concentrations of ATP (4 mM–0.1 µM) for 1 h
and incubation with 0.3 mg/mL GN. (c) The corresponding relationship between Rct and ATP
concentration (n = 3). (d) EIS response on (i) MSO/Au film, (ii) MSO/Au film incubated with
GN, and (iii) MSO/Au reacted with 800 nM Hg2+ and then incubated with the GN. (e) The linear
relationship between the EIS and the concentration of Hg2+. Reproduced with permission from
reference [64]. Copyright © 2020 American Chemical Society.

The remarkable one–dimension conductance [65] and the possibility of specific biomolecule
adsorption [66,67] on the surface have prompted the application of CNTs as an efficient
label for biosensing applications. Adeyabeba Abera and Jin–Woo Choi [68] reported a
lateral flow–based novel immune assay based on MWCNTs as a label for the determination
of HIgG. Here, the HIgG was first immobilized on the surface of bare MWCNTs and
applied on a lateral flow immunosensor (Figure 13). The MWCNT–HIgG conjugate formed
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a conducting network, which was then captured at the capture zone by an immobilized
protein. The conductivity at the capture zone varied with the amount of HIgG binding
with MWCNT and a simple resistance measurement quantified the HIgG. The method
was able to quantify HIgG in the range of 25–200 µg/mL without the requirement for an
amplification step.

Figure 13. (a) Schematics of the quantitative lateral flow immunoassay using CNTs as label. (b) The lateral flow immunosensor (7 mm
width) with varying concentrations of HIgG. (c) The plot of the electrical resistance at the capture zones vs. HIgG concentration.
Reproduced with permission from reference [68]. Copyright © 2020 Royal Society of Chemistry.

Even though the correct choice of the label and the electrochemical technique is to be
determined from the application perspective, labels combined with suitable electrochemi-
cal techniques often result in sensitive assays helps overcome various challenges such as
low detection limit and high sensitivity. Table 1 summarizes the various categories of elec-
troactive materials (redox-activity or electrocatalytic activity towards secondary reactions)
reported as labels in electrochemical applications. It is noteworthy that sensitive assays
resulting from the combination of labels and electrochemical techniques are advantageous
for POC devices and real sample analysis.
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Table 1. Literature comparison of the analytical performance of various labels reported for electrochemical applications.

Label Type Label Electrochemical
Technique Target Linear Range LOD Ref.

Enzymes

β-gal PEC cTnT —- 1.0 × 10−7 g/L [21]

DT-D Chronocoulometry PTH
2 pg/mL

-
1 µg/mL

2 pg/mL [22]

GOx PEC α-SYN
50 pg/mL

-
100 ng/mL

34 pg/mL [69]

ALP PEC PSA —- 0.5 ng/mL [70]

LOx Amperometry CA125 0.01–100U/mL 0.002 U/mL [71]

HRP Amperometry PCB 0.1–50 µg/mL 0.1 µg/mL [72]

GPDH Chronocoulometry cTnI —- 10 pg/mL [73]

Nanoparticles

Ag NPs LSV Clenbuterol 0.01–100 nM 0.01 nM [24]

ZnS NPs DPV Codeine
73 pM

-
73 nM

37 pM [28]

Au NPs SWSV DNA 0.52–1300 aM 0.35 aM [74]

Au-Ag NPs DPV E. coli —- 102 CFU/mL [25]

Pt NPs LSV Adenosine 1–750 nM 1 nM [75]

Pd NPs Amperometry AFP 0.1–50,000
pg/mL 0.033 pg/mL [76]

Cu NPs DPV GSH 1–1000 nM 0.27 nM [77]

Ir NPs Amperometry CEA 0.5–5000
pg/mL 0.23 pg/mL [78]

IrO2 NPs Amperometry PDBE —- 21.5 ppb [26]

Fe3O4 NPs PEC PSA 0.05–1000
pg/mL 18 fg/mL [27]

MSNs Amperometry HIgG 0.01–10 ng/mL 5 pg/mL [79]

MoS2 NPs Amperometry RIgG —- 1.94 pg/mL [80]

Quantum dots

CdS QDs SWV PSA 0.005–10
ng/mL 3 pg/mL [81]

CdTe QDs SWV HIgG 0.005–100
ng/mL 5 pg/mL [46]

CdSe@ZnS QDs DPV anti-tTG IgG 0–40 U/mL 2.2 U/mL [82]

Redox-active
molecules

Hemin DPV DNA —- 2.35 ng/mL [83]

Methylene blue DPV SARS DNA 1–25 µM 800 nM [84]

Ru(bpy)3
2+ ECL CEA 0.2–2000 µg/L 200 ng/L [85]

Ferrocene DPV miR-141 500 aM-50 nM 138 aM [86]

Low
dimensional

carbon
materials

SWCNT DPV Arsenite 0.5–10 ppb 0.5 ppb [87]

GO DPV DNA —- 500 pM [63]

MWCNT Electrical
resistance HIgG 25–200 µg/mL —- [68]

‘—-’ Data not provided in the literature.
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7. Summary and Outlook

With the advancement in electrochemical techniques, various ultrasensitive materials
such as enzymes, nanoparticles, redox-active molecules, quantum dots, low dimensional
carbon materials, etc. have been reported as labels for the sensitive and selective deter-
minations of target analytes. This review focuses on the advancement and advantages of
various labels combined with electrochemical techniques to meet the high requirements
for biomedical applications over the past few decades. Several fabrication methods and
novel functionalization methods are discussed, while some interesting techniques are
emphasized in detail in this review. Each of these labels has advantages and drawbacks
that should be balanced with the needs of a specific application. By analyzing the design of
various types of labels, the trend of designing new multifunctional labels can be pointed
out. However, numerous obstacles, such as the reproducibility and scope for massive
production, remain for the commercial utilization of these ultrasensitive labeled sensors.
More systematic studies involving the optimization of different labeling protocols are
still needed.
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AFP Alpha-fetoprotein
Ag NPs Silver nanoparticles
ALP Alkaline phosphatase
anti-tTG Anti-tissue transglutaminase immunoglobulin A antibodies
ApoE Apolipoprotein E
ATP Adenosine triphosphate
Au NPs Gold nanoparticles
BSA Bovine serum albumin
CA125 Carcinoma antigen 125
CdS QDs Cadmium sulfide quantum dots
CdSe@ZnS QDs Cadmium selenide@Zinc sulfide quantum dots
CdTe QDs Cadmium telluride quantum dots
CEA Carcinoembryonic antigen
cTnI Cardiac troponin I
cTnT Cardiac troponin T
Cu NPs Copper nanoparticles
CV Cyclic voltammetry
CVs Cyclic voltammograms
DNA Deoxyribonucleic acid
DPV Differential pulse voltammetry
DT-D DT-Diaphorase
DµFD Disposable microfluidic device
E. coli Escherichia coli
ECL Electrochemiluminescence
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EIS Electrochemical impedance spectroscopy
Fe3O4 NPs Ferromagnetic nanoparticles
G6PDH Glucose-6-phosphate dehydrogenase
GCE Glassy carbon electrode
GIgG Goat immunoglobulin G
GN Graphene
GO NPs Graphene oxide nanoparticles
GO Graphene oxide
GOx Glucose oxidase
GPDH Glycerol-3-phosphate dehydrogenase
GSH Glutathione
HgSe NPs Mercury selenide nanoparticles
HIgG Human Immunoglobulin G
HRP Horseradish peroxidase
IgG Immunoglobulin G
IL-6 Interleukin-6
Ir NPs Iridium nanoparticles
IrO2 NPs Iridium oxide nanoparticles
ITO Indium tin oxide
LOx Lactate oxidase
LSV Linear sweep voltammetry
MBs Magnetic beads
miR-141 MicroRNA 141
miR-21 MicroRNA 21
MoS2 NPs Molybdenum disulfide nanoparticles
MSNs Mesoporous silica nanoparticles
MSO Mercury-specific oligonucleotide
MWCNT Multi-walled carbon nanotubes
NPs Nanoparticles
ORR Oxygen reduction reaction
PAP p-aminophenol
PAPG p-aminophenyl galactopyranoside
PBS Sodium phosphate buffer
PCB Polychlorinated biphenyls
Pd NPs Palladium nanoparticles
PDBE Polybrominated diphenyl ethers
PEC Photoelectrochemical
POC Point-of-care
PSA Prostate specific antigen
Pt NPs Platinum nanoparticles
PTH Parathyroid hormone
QDs Quantum Dots
Rct Charge transfer resistance
RIgG Rabbit immunoglobulin G
S. typhi Salmonella typhimurium
SARS Severe acute respiratory syndrome
SEM Scanning electron microscope
SPEs Screen-printed electrodes
ssDNA Single stranded DNA
SWASV Square wave anodic stripping voltammetry
SWCNT Single walled carbon nanotubes
SWSV Square wave stripping voltammetry
SWV Square wave voltammetry
TCID Tissue culture infective dose
t-DNA Transfer DNA
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TEM Transmission electron microscopy
TGA Thioglycolic acid
TiO2 NPs Titanium dioxide nanoparticles
TMB 3,3′,5,5′-Tetramethylbenzidine
XPS X-ray photoelectron spectroscopy
ZnS NPs Zinc sulfide nanoparticles
α-SYN α-Synuclein
β-gal β-galactosidase
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