Pursuing the Diffraction Limit with Nano-LED Scanning Transmission Optical Microscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. CMOS Sensor
2.2. Nanopositioning System
2.3. Image Reconstruction
2.4. Simulations
2.5. Observed Samples
3. Results and Discussion
3.1. Scanning Transmission Optical Microscope with an Optically Downscaled LED
3.2. Scanning Transmission Optical Microscope with a 200 nm LED
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fogazzi, G.; Delanghe, J. Microscopic examination of urine sediment: Phase contrast versus bright field. Clin. Chim. Acta 2018, 487, 168–173. [Google Scholar] [CrossRef]
- Mann, C.J.; Yu, L.; Lo, C.M.; Kim, M.K. High-resolution quantitative phase-contrast microscopy by digital holography. Opt. Express 2005, 13, 8693–8698. [Google Scholar] [CrossRef] [Green Version]
- Ru, Q.; Lai, G.; Aoyama, K.; Endo, J.; Tonomura, A. Principle and application of phase-shifting electron holography. Ultramicroscopy 1994, 55, 209–220. [Google Scholar] [CrossRef]
- Liu, M.; Chao, J.; Deng, S.; Wang, K.; Li, K.; Fan, C. Dark-field microscopy in imaging of plasmon resonant nanoparticles. Colloids Surf. B Biointerfaces 2014, 124, 111–117. [Google Scholar] [CrossRef]
- Harutyunyan, H.; Palomba, S.; Renger, J.; Quidant, R.; Novotny, L. Nonlinear Dark-Field Microscopy. Nano Lett. 2010, 10, 5076–5079. [Google Scholar] [CrossRef] [PubMed]
- Pawley, J.B. Biological Confocal Microscopy; Springer: Boston, MA, USA, 2006. [Google Scholar] [CrossRef]
- Peterson, D. Confocal Microscopy. Encycl. Mov. Disord. 2010, 250–252. [Google Scholar] [CrossRef]
- Lichtman, J.W.; Conchello, J.-A. Fluorescence microscopy. Nat. Methods 2005, 2, 910–919. [Google Scholar] [CrossRef] [PubMed]
- Dobrucki, J.W.; Kubitscheck, U. Fluorescence Microscopy. In Fluorescence Microscopy: From Principles to Biological Applications, 2nd ed.; Kubitscheck, U., Ed.; Wiley: Berlin, Germany, 2017; pp. 85–132. [Google Scholar]
- Hill, M. Principles and Technique of Fluorescence Microscopy. J. Cell Sci. 1961, 3, 419–449. [Google Scholar]
- Hell, S.W.; Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 1994, 19, 780–782. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Maraspini, R.; Beutel, O.; Zehtabian, A.; Eickholt, B.; Honigmann, A.; Ewers, H. Expansion Stimulated Emission Depletion Microscopy (ExSTED). ACS Nano 2018, 12, 4178–4185. [Google Scholar] [CrossRef] [Green Version]
- Blom, H.; Widengren, J. Stimulated Emission Depletion Microscopy. Chem. Rev. 2017, 117, 7377–7427. [Google Scholar] [CrossRef] [PubMed]
- Heintzmann, R.; Huser, T. Super-Resolution Structured Illumination Microscopy. Chem. Rev. 2017, 117, 13890–13908. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Shroff, H. Faster, sharper, and deeper: Structured illumination microscopy for biological imaging. Nat. Methods 2018, 15, 1011–1019. [Google Scholar] [CrossRef]
- Godin, A.G.; Lounis, B.; Cognet, L. Super-resolution Microscopy Approaches for Live Cell Imaging. Biophys. J. 2014, 107, 1777–1784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leung, B.O.; Chou, K.C. Review of Super-Resolution Fluorescence Microscopy for Biology. Appl. Spectrosc. 2011, 65, 967–980. [Google Scholar] [CrossRef] [Green Version]
- Henriques, R.; Griffiths, C.; Rego, E.H.; Mhlanga, M.M. PALM and STORM: Unlocking live-cell super-resolution. Biopolymers 2011, 95, 322–331. [Google Scholar] [CrossRef] [Green Version]
- Heinzelmann, H.; Pohl, D.W. Scanning near-field optical microscopy. Appl. Phys. A 1994, 59, 89–101. [Google Scholar] [CrossRef]
- Ozcan, A.; McLeod, E. Lensless Imaging and Sensing. Annu. Rev. Biomed. Eng. 2016, 18, 77–102. [Google Scholar] [CrossRef] [Green Version]
- Roy, M.; Seo, D.; Oh, S.; Yang, J.-W.; Seo, S. A review of recent progress in lens-free imaging and sensing. Biosens. Bioelectron. 2017, 88, 130–143. [Google Scholar] [CrossRef]
- Yang, C.; Bu, X.; Ma, H.; Zhang, L.; Cao, X.; Yue, T.; Hua, X.; Yan, F. Resolution-Enhanced Lensless Color Shadow Imaging Microscopy Based on Large Field-of-View Submicron-Pixel Imaging Sensors. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018; pp. 2327–2334. [Google Scholar] [CrossRef]
- Fang, Y.; Yu, N.; Wang, R.; Su, D. An on-chip instrument for white blood cells classification based on a lens-less shadow imaging technique. PLoS ONE 2017, 12, e0174580. [Google Scholar] [CrossRef]
- Imai, K.; Nishigaki, M.; Onozuka, Y.; Akimoto, Y.; Nagai, M.; Matsumoto, S.; Kousai, S. A lens-free single-shot fluorescent imaging system using CMOS image sensors with dielectric multi-layer filter. In Proceedings of the 2017 19th International Conference on Solid-State Sensors, Actuators Microsystems (TRANSDUCERS), Kaohsiung, Taiwan, 18–22 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 139–142. [Google Scholar] [CrossRef]
- Sasagawa, K.; Kimura, A.; Haruta, M.; Noda, T.; Tokuda, T.; Ohta, J. Highly sensitive lens-free fluorescence imaging device enabled by a complementary combination of interference and absorption filters. Biomed. Opt. Express 2018, 9, 4329–4344. [Google Scholar] [CrossRef] [PubMed]
- Coskun, A.F.; Su, T.W.; Ozcan, A. Wide field-of-view lens-free fluorescent imaging on a chip. Lab Chip 2010, 10, 824–827. [Google Scholar] [CrossRef] [Green Version]
- Pedrini, G.; Tiziani, H.J. Short-coherence digital microscopy by use of a lensless holographic imaging system. Appl. Opt. 2002, 41, 4489–4496. [Google Scholar] [CrossRef]
- Restrepo, J.F.; Garcia-Sucerquia, J. Automatic three-dimensional tracking of particles with high-numerical-aperture digital lensless holographic microscopy. Opt. Lett. 2012, 37, 752–754. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Sucerquia, J. Color lensless digital holographic microscopy with micrometer resolution. Opt. Lett. 2012, 37, 1724–1726. [Google Scholar] [CrossRef]
- Adams, J.K.; Boominathan, V.; Avants, B.W.; Vercosa, D.G.; Ye, F.; Baraniuk, R.G.; Robinson, J.T.; Veeraraghavan, A. Single-frame 3D fluorescence microscopy with ultraminiature lensless FlatScope. Sci. Adv. 2017, 3, e1701548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berdeu, A.; Momey, F.; Dinten, J.; Gidrol, X.; Allier, C.; Berdeu, A.; Momey, F.; Dinten, J.; Picollet-d, N.; Gidrol, X. 3D Lensfree Microscopy for 3D Cell Culture. In Proceedings of the SPIE 10414, Advances in Microscopic Imaging, Munich, Germany, 28 July 2017. [Google Scholar] [CrossRef] [Green Version]
- Zuo, C.; Sun, J.; Li, J.; Chen, Q. Computational microscopy with programmable illumination and coded aperture. In Proceedings of the International Conference on Optical and Photonics Engineering (icOPEN 2016), Chengdu, China, 10 February 2017; Volume 10250, p. 102501K. [Google Scholar] [CrossRef]
- Rivenson, Y.; Wu, Y.; Ozcan, A. Deep learning in holography and coherent imaging. Light. Sci. Appl. 2019, 8, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Shen, H.; Gao, J. Portable deep learning singlet microscope. J. Biophotonics 2020, 13, e202000013. [Google Scholar] [CrossRef]
- Luo, W.; Zhang, Y.; Feizi, A.; Göröcs, Z.; Ozcan, A. Pixel super-resolution using wavelength scanning. Light. Sci. Appl. 2016, 5, e16060. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Sun, J.; Chen, Q.; Li, J.; Zuo, C. Adaptive pixel-super-resolved lensfree in-line digital holography for wide-field on-chip microscopy. Sci. Rep. 2017, 7, 11777. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, W.; Liu, C.; Liu, J.; Chenguang, L. Pixel super-resolved lens-free on-chip microscopy based on dual laterally shifting modulation. Appl. Opt. 2020, 59, 3411–3416. [Google Scholar] [CrossRef]
- Wu, Y.; Ozcan, A. Lensless digital holographic microscopy and its applications in biomedicine and environmental monitoring. Methods 2018, 136, 4–16. [Google Scholar] [CrossRef]
- Franch, N.; Canals, J.; Moro, V.; Vilà, A.; Romano-Rodríguez, A.; Prades, J.D.; Guelink, J.; Bezshlyakh, D.; Waag, A.; Kluczyk-Korch, K.; et al. Nano illumination microscopy: A technique based on scanning with an array of individually addressable nanoLEDs. Opt. Express 2020, 28, 19044. [Google Scholar] [CrossRef]
- Wasisto, H.S.; Prades, J.D.; Gülink, J.; Waag, A. Beyond solid-state lighting: Miniaturization, hybrid integration, and applications of GaN nano- and micro-LEDs. Appl. Phys. Rev. 2019, 6, 041315. [Google Scholar] [CrossRef] [Green Version]
- Wun, J.M.; Lin, C.W.; Chen, W.; Sheu, J.K.; Lin, C.L.; Li, Y.L.; Bowers, J.E.; Shi, J.W.; Vinogradov, J.; Kruglov, R.; et al. GaN-Based Miniaturized Cyan Light-Emitting Diodes on a Patterned Sapphire Substrate With Improved Fiber Coupling for Very High-Speed Plastic Optical Fiber Communication. IEEE Photon. J. 2012, 4, 1520–1529. [Google Scholar] [CrossRef]
- Ding, K.; Avrutin, V.; Izyumskaya, N.; Özgür, Ü.; Morkoç, H. Micro-LEDs, a Manufacturability Perspective. Appl. Sci. 2019, 9, 1206. [Google Scholar] [CrossRef] [Green Version]
- Kluczyk-Korch, K.; Palazzo, D.; Waag, A.; Dieguez, A.; Prades, J.D.; Di Carlo, A.; Der Maur, M.A. Optical design of InGaN/GaN nanoLED arrays on a chip: Toward: Highly resolved illumination. Nanotechnology 2021, 32, 105203. [Google Scholar] [CrossRef]
- Bezshlyakh, D.D.; Spende, H.; Weimann, T.; Hinze, P.; Bornemann, S.; Gülink, J.; Canals, J.; Prades, J.D.; Dieguez, A.; Waag, A. Directly addressable GaN-based nano-LED arrays: Fabrication and electro-optical characterization. Microsyst. Nanoeng. 2020, 6, 1–10. [Google Scholar] [CrossRef]
- Kawashima, T.; Yoshikawa, H.; Adachi, S.; Fuke, S.; Ohtsuka, K. Optical properties of hexagonal GaN. J. Appl. Phys. 1997, 82, 3528–3535. [Google Scholar] [CrossRef]
- Johnson, P.B.; Christy, R.W. Optical Constant of the Nobel Metals. Phys. Rev. B 1972, 6, 4370–4379. [Google Scholar] [CrossRef]
- Rodríguez-De Marcos, L.V.; Larruquert, J.I.; Méndez, J.A.; Aznárez, J.A. Self-consistent optical constants of SiO2 and Ta2O5 films. Opt. Mater. Express 2016, 6, 3622–3637. [Google Scholar] [CrossRef]
- Function, E.S. Edge Spread Function. J. Opt. Soc. Am. 1965, 55, 1217–1221. [Google Scholar]
- Wäldchen, S.; Lehmann, J.; Klein, T.; Van De Linde, S.; Sauer, M. Light-induced cell damage in live-cell super-resolution microscopy. Sci. Rep. 2015, 5, srep15348. [Google Scholar] [CrossRef] [Green Version]
- Tsai, Y.L.; Huang, H.H.; Lin, C.-C.; Huang, Y.M.; Yang, S.M.; Kuo, W.H.; Fang, Y.H.; Hsu, S.C.; Huang, C.P.; Shih, H.Y.; et al. High Performance Ultraviolet Micro-LED Arrays for Fine-Pitch Micro Displays. In Proceedings of the 2019 IEEE Photonics Conference (IPC), San Antonio, TX, USA, 29 September–3 October 2019; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2019; Volume 2, pp. 1–2. [Google Scholar]
- Olivier, F.; Tirano, S.; Dupré, L.; Aventurier, B.; Largeron, C.; Templier, F. Influence of size-reduction on the performances of GaN-based micro-LEDs for display application. J. Lumin. 2017, 191, 112–116. [Google Scholar] [CrossRef]
- Herrnsdorf, J.; McKendry, J.J.D.; Zhang, S.; Xie, E.; Ferreira, R.; Massoubre, D.; Zuhdi, A.M.; Henderson, R.K.; Underwood, I.; Watson, S.; et al. Active-Matrix GaN Micro Light-Emitting Diode Display With Unprecedented Brightness. IEEE Trans. Electron Devices 2015, 62, 1918–1925. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Chong, W.C.; Wong, K.M.; Lau, K.M. GaN-based LED micro-displays for wearable applications. Microelectron. Eng. 2015, 148, 98–103. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno, S.; Canals, J.; Moro, V.; Franch, N.; Vilà, A.; Romano-Rodriguez, A.; Prades, J.D.; Bezshlyakh, D.D.; Waag, A.; Kluczyk-Korch, K.; et al. Pursuing the Diffraction Limit with Nano-LED Scanning Transmission Optical Microscopy. Sensors 2021, 21, 3305. https://doi.org/10.3390/s21103305
Moreno S, Canals J, Moro V, Franch N, Vilà A, Romano-Rodriguez A, Prades JD, Bezshlyakh DD, Waag A, Kluczyk-Korch K, et al. Pursuing the Diffraction Limit with Nano-LED Scanning Transmission Optical Microscopy. Sensors. 2021; 21(10):3305. https://doi.org/10.3390/s21103305
Chicago/Turabian StyleMoreno, Sergio, Joan Canals, Victor Moro, Nil Franch, Anna Vilà, Albert Romano-Rodriguez, Joan Daniel Prades, Daria D. Bezshlyakh, Andreas Waag, Katarzyna Kluczyk-Korch, and et al. 2021. "Pursuing the Diffraction Limit with Nano-LED Scanning Transmission Optical Microscopy" Sensors 21, no. 10: 3305. https://doi.org/10.3390/s21103305
APA StyleMoreno, S., Canals, J., Moro, V., Franch, N., Vilà, A., Romano-Rodriguez, A., Prades, J. D., Bezshlyakh, D. D., Waag, A., Kluczyk-Korch, K., Auf der Maur, M., Di Carlo, A., Krieger, S., Geleff, S., & Diéguez, A. (2021). Pursuing the Diffraction Limit with Nano-LED Scanning Transmission Optical Microscopy. Sensors, 21(10), 3305. https://doi.org/10.3390/s21103305