Optimized Feature Subset Selection Using Genetic Algorithm for Preterm Labor Prediction Based on Electrohysterography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Database
2.2. EHG Signal Characterization
2.3. Classifier Design and Evaluation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leung, C. Born too soon. Neuroendocrinol. Lett. 2004, 25, 133–136. [Google Scholar] [CrossRef] [PubMed]
- George T Mandy, M.; Leonard E Weisman, M.; Melanie S Kim, M. Short-term complications of the preterm infant. UpToDate 2019, 46, 1–17. [Google Scholar]
- Garfield, R.E.; Maner, W.L. Physiology and electrical activity of uterine contractions. Semin. Cell Dev. Biol. 2007, 18, 289–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berghella, V.; Hayes, E.; Visintine, J.; Baxter, J.K. Fetal fibronectin testing for reducing the risk of preterm birth. Cochrane Database Syst. Rev. 2008. [Google Scholar] [CrossRef]
- Pandey, M.; Chauhan, M.; Awasthi, S. Interplay of cytokines in preterm birth. Indian J. Med. Res. 2017, 146, 316–327. [Google Scholar] [CrossRef] [PubMed]
- Devedeux, D.; Marque, C.; Mansour, S.; Germain, G.; Duchêne, J. Uterine electromyography: A critical review. Am. J. Obstet. Gynecol. 1993, 169, 1636–1653. [Google Scholar] [CrossRef]
- Garcia-Casado, J.; Ye-Lin, Y.; Prats-Boluda, G.; Mas-Cabo, J.; Alberola-Rubio, J.; Perales, A. Electrohysterography in the diagnosis of preterm birth: A review. Physiol. Meas. 2018, 39, 02TR01. [Google Scholar] [CrossRef] [PubMed]
- Mas-Cabo, J.; Prats-Boluda, G.; Garcia-Casado, J.; Alberola-Rubio, J.; Monfort-Ortiz, R.; Martinez-Saez, C.; Perales, A.; Ye-Lin, Y. Electrohysterogram for ann-based prediction of imminent labor in women with threatened preterm labor undergoing tocolytic therapy. Sensors 2020, 20, 2681. [Google Scholar] [CrossRef]
- Lemancewicz, A.; Borowska, M.; Kuć, P.; Jasińska, E.; Laudański, P.; Laudański, T.; Oczeretko, E. Early diagnosis of threatened premature labor by electrohysterographic recordings - The use of digital signal processing. Biocybern. Biomed. Eng. 2016, 36, 302–307. [Google Scholar] [CrossRef]
- Brennan, M.; Palaniswami, M.; Kamen, P. Do existing measures of Poincareé plot geometry reflect nonlinear features of heart rate variability? IEEE Trans. Biomed. Eng. 2001, 48, 1342–1347. [Google Scholar] [CrossRef]
- Son, M.; Miller, E.S. Predicting preterm birth: Cervical length and fetal fibronectin. Semin. Perinatol. 2017, 41, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Murphy, K. Machine Learning: A probabilistic Approach; Number 320321; MIT Press: Cambridge, MA, USA, 2003; pp. 1–100. [Google Scholar]
- Carvalho, D.V.; Pereira, E.M.; Cardoso, J.S. Machine learning interpretability: A survey on methods and metrics. Electronics (Switzerland) 2019, 8, 832. [Google Scholar] [CrossRef] [Green Version]
- Fele-Žorž, G.; Kavšek, G.; Novak-Antolič, Ž.; Jager, F. A comparison of various linear and non-linear signal processing techniques to separate uterine EMG records of term and pre-term delivery groups. Med Biol. Eng. Comput. 2008, 46, 911–922. [Google Scholar] [CrossRef] [PubMed]
- Jager, F.; Libenšek, S.; Geršak, K. Characterization and automatic classification of preterm and term uterine records. PLoS ONE 2018, 13, e0202125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marque, C.; Gondry, J.; Rossi, J.; Baaklini, N.; Duchêne, J. Surveillance des grossesses à risque par électromyographie utérine. Rbm-Rev. Eur. Technol. Biomed. 1995, 17, 25–31. [Google Scholar] [CrossRef]
- Mas-Cabo, J.; Ye-Lin, Y.; Garcia-Casado, J.; Díaz-Martinez, A.; Perales-Marin, A.; Monfort-Ortiz, R.; Roca-Prats, A.; López-Corral, Á.; Prats-Boluda, G. Robust characterization of the uterine myoelectrical activity in different obstetric scenarios. Entropy 2020, 22, 743. [Google Scholar] [CrossRef]
- Mas-Cabo, J.; Prats-Boluda, G.; Perales, A.; Garcia-Casado, J.; Alberola-Rubio, J.; Ye-Lin, Y. Uterine electromyography for discrimination of labor imminence in women with threatened preterm labor under tocolytic treatment. Med. Biol. Eng. Comput. 2019, 57, 401–411. [Google Scholar] [CrossRef]
- Ye-Lin, Y.; Alberola-Rubio, J.; Prats-boluda, G.; Perales, A.; Desantes, D.; Garcia-Casado, J. Feasibility and Analysis of Bipolar Concentric Recording of Electrohysterogram with Flexible Active Electrode. Ann. Biomed. Eng. 2015, 43, 968–976. [Google Scholar] [CrossRef] [Green Version]
- Diaz-Martinez, A.; Mas-Cabo, J.; Prats-Boluda, G.; Garcia-Casado, J.; Cardona-Urrego, K.; Monfort-Ortiz, R.; Lopez-Corral, A.; De Arriba-Garcia, M.; Perales, A.; Ye-Lin, Y. A Comparative Study of Vaginal Labor and Caesarean Section Postpartum Uterine Myoelectrical Activity. Sensors 2020, 20, 3023. [Google Scholar] [CrossRef]
- Maner, W.L.; MacKay, L.B.; Saade, G.R.; Garfield, R.E. Characterization of abdominally acquired uterine electrical signals in humans, using a non-linear analytic method. Med. Biol. Eng. Comput. 2006, 44, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Katz, M.J. Fractals and the analysis of waveforms. Comput. Biol. Med. 1988, 18, 145–156. [Google Scholar] [CrossRef]
- Esteller, R.; Vachtsevanos, G.; Echauz, J.; Litt, B. A Comparison of waveform fractal dimension algorithms. IEEE Trans. Circuits Syst. Fundam. Theory Appl. 2001, 48, 177–183. [Google Scholar] [CrossRef] [Green Version]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Alamedine, D.; Khalil, M.; Marque, C. Comparison of different EHG feature selection methods for the detection of preterm labor. Comput. Math. Methods Med. 2013, 2013, 485684. [Google Scholar] [CrossRef]
- Babatunde, O.; Armstrong, L.; Leng, J.; Diepeveen, D. A Genetic Algorithm-Based Feature Selection. Int. J. Electron. Commun. Comput. Eng. 2014, 5, 899–905. [Google Scholar]
- Bouaguel, W. A New Approach for Wrapper Feature Selection Using Genetic Algorithm for Big Data; Springer: Berlin, Germany, 2016; pp. 75–83. [Google Scholar] [CrossRef]
- Okun, O. Feature Selection and Ensemble Methods for Bioinformatics: Algorithmic Classification and Implementations; Medical Information Science Reference: Hershey, PA, USA, 2011; pp. 1–445. [Google Scholar] [CrossRef]
- Doquire, G.; Verleysen, M. A comparison of multivariate mutual information estimators for feature selection. ICPRAM Proc. Int. Conf. Pattern Recognit. Appl. Methods 2012, 1, 176–185. [Google Scholar] [CrossRef] [Green Version]
- Wilcoxon, F. Individual Comparisons by Ranking Methods. Biom. Bull. 1945, 1, 80. [Google Scholar] [CrossRef]
- Goldberg, D. Genetic algorithms in search, optimization, and machine learning. Choice Rev. Online 1989, 27, 36. [Google Scholar] [CrossRef]
- Li, H.; Yuan, D.; Ma, X.; Cui, D.; Cao, L. Genetic algorithm for the optimization of features and neural networks in ECG signals classification. Sci. Rep. 2017, 7, 41011. [Google Scholar] [CrossRef]
- Fischer, P.; Amaral, T.G.; Dias, O.P.; Wołczowski, A.R.; Lichtenstein, M. Genetic algorithm based optimization for EMG pattern recognition system. IFAC Proc. Vol. 2009, 14, 53–58. [Google Scholar] [CrossRef]
- Beasley, D.; Bull, D.R.; Martin, R.R. An overview of genetic algorithms: Part 1, fundamentals. Univ. Comput. 1993, 2, 1–16. [Google Scholar]
- Hollander, M.; Wolfe, D.A.; Chicken, E. Nonparametric Statistical Methods; Wiley Series in Probability and Statistics; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar] [CrossRef]
- Pett, M.; Lackey, N.; Sullivan, J. Making Sense of Factor Analysis: The Use of Factor Analysis for Instrument Development in Health Care Research; Sage Publication: New York, NY, USA, 2003. [Google Scholar] [CrossRef]
- Benalcazar-Parra, C.; Ye-Lin, Y.; Garcia-Casado, J.; Monfort-Ortiz, R.; Alberola-Rubio, J.; Perales, A.; Prats-Boluda, G. Prediction of Labor Induction Success from the Uterine Electrohysterogram. J. Sensors 2019, 2019, 6916251. [Google Scholar] [CrossRef]
- Alamedine, D.; Khalil, M.; Marque, C. Comparison of Feature selection for Monopolar and Bipolar EHG signal. In Proceedings of the Journées RITS 2015, Dourdan, France, 25–27 March 2015; pp. 1–100. [Google Scholar]
- Lim, S.P.; Haron, H. Performance comparison of genetic algorithm, differential evolution and particle swarm optimization towards benchmark functions. In Proceedings of the 2013 IEEE Conference on Open Systems, ICOS, Kuching, Malaysia, 2–4 December 2013; pp. 41–46. [Google Scholar] [CrossRef]
- Frey, H.A.; Klebanoff, M.A. The epidemiology, etiology, and costs of preterm birth. Semin. Fetal Neonatal Med. 2016, 21, 68–73. [Google Scholar] [CrossRef]
- Mas-Cabo, J.; Prats-Boluda, G.; Garcia-Casado, J.; Alberola-Rubio, J.; Perales, A.; Ye-Lin, Y. Design and Assessment of a Robust and Generalizable ANN-Based Classifier for the Prediction of Premature Birth by means of Multichannel Electrohysterographic Records. J. Sens. 2019, 2019, 5373810. [Google Scholar] [CrossRef]
- Fergus, P.; Cheung, P.; Hussain, A.; Al-Jumeily, D.; Dobbins, C.; Iram, S. Prediction of Preterm Deliveries from EHG Signals Using Machine Learning. PLoS ONE 2013, 8, e77154. [Google Scholar] [CrossRef] [PubMed]
- Alberola-Rubio, J.; Garcia-Casado, J.; Prats-Boluda, G.; Ye-Lin, Y.; Desantes, D.; Valero, J.; Perales, A. Prediction of labor onset type: Spontaneous vs induced; role of electrohysterography? Comput. Methods Programs Biomed. 2017, 144, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhang, D.; Shen, D. Ensemble sparse classification of Alzheimer’s disease. NeuroImage 2012, 60, 1106–1116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ludmila, I.K.; Christopher, J.W. Measures of Diversity in Classifier Ensembles and Their Relationship with the Ensemble Accuracy. Mach. Learn. 2003, 51, 181–207. [Google Scholar]
- Dietterich Thomas, G. An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization. Mach. Learn. 2000, 40, 139–157. [Google Scholar] [CrossRef]
- Ting, K.M.; Witten, I.H. Issues in stacked generalization. J. Artif. Intell. Res. 1999, 10, 271–289. [Google Scholar] [CrossRef] [Green Version]
Group | N | Maternal Age (Years) | Parity | Abortions | Maternal Weight (kg) | Wog * (Weeks) | Birth (Weeks) |
---|---|---|---|---|---|---|---|
Term | 275 | 29.33 ± 4.34 | 0.40 ± 0.74 | 0.23 ± 0.61 | 68.55 ± 10.55 | 26.95 ± 4.19 | 39.21 ± 1.12 |
Preterm | 51 | 29.08 ± 5.26 | 0.41 ± 0.64 | 0.26 ± 0.60 | 66.82 ± 11.24 | 27.59 ± 3.72 | 33.92 ± 2.21 |
EHG Temporal Parameters | EHG Spectral Parameters | EHG Non-Linear Parameters | Obstetric data |
---|---|---|---|
SampEn | |||
FuzEn | |||
MeanF | SpEn | Maternal age | |
DF | LZBin | Parity | |
App | NormEn | LZMulti (n = 6) | Abortions |
H/L Ratio | SD1 | Weight | |
[D1, . . . , D9] | SD2 | Week of gestation (Wog) | |
SpMR | SDRR | ||
Teager Energy | SD1/SD2 | ||
TimeRev | |||
KFD |
KNN | LDA | LR | Ensemble | ||
---|---|---|---|---|---|
>Accuracy (%) | Train | 92.86 ± 2.41 | 96.01 ± 1.50 | 100 ± 0.00 | 99.62 ± 0.59 |
Validation | 85.82 ± 3.82 | 90.03 ± 2.53 | 89.78 ± 3.29 | 92.61 ± 2.48 | |
Test | 82.92 ± 2.90 | 88.77 ± 3.89 | 87.42 ± 4.00 | 91.64 ± 3.20 | |
>F1-score (%) | Train | 93.26 ± 2.20 | 96.14 ± 1.43 | 100.00 ± 0.00 | 99.63 ± 0.58 |
Validation | 87.26 ± 3.21 | 90.61 ± 2.23 | 89.55 ± 3.49 | 92.97 ± 2.27 | |
Test | 84.63 ± 2.76 | 89.34 ± 3.50 | 86.87 ± 4.53 | 92.04 ± 2.97 | |
>Sensitivity (%) | Train | 98.43 ± 1.86 | 98.99 ± 1.29 | 100.00 ± 0.00 | 99.87 ± 0.48 |
Validation | 96.48 ± 2.88 | 95.79 ± 3.04 | 87.86 ± 5.07 | 97.36 ± 2.25 | |
Test | 94.21 ± 5.00 | 93.58 ± 3.63 | 84.03 ± 6.73 | 96.23 ± 3.17 | |
>Specificity (%) | Train | 87.30 ± 4.05 | 93.02 ± 2.81 | 100.00 ± 0.00 | 99.37 ± 1.14 |
Validation | 75.16 ± 7.40 | 84.28 ± 5.48 | 91.70 ± 4.22 | 87.86 ± 4.34 | |
Test | 71.64 ± 4.58 | 83.96 ± 6.59 | 90.82 ± 3.67 | 87.04 ± 5.47 | |
>PPV (%) | Train | 88.67 ± 3.28 | 93.48 ± 2.49 | 100.00 ± 0.00 | 99.39 ± 1.11 |
Validation | 79.83 ± 5.19 | 86.12 ± 3.95 | 91.51 ± 4.08 | 89.04±3.49 | |
Test | 76.95 ± 2.76 | 85.63 ± 5.02 | 90.2 ± 3.58 | 88.33 ± 4.44 | |
>NPV (%) | Train | 98.25 ± 2.09 | 98.95 ± 1.33 | 100.00 ± 0.00 | 99.88 ± 0.47 |
Validation | 95.64 ± 3.32 | 95.41 ± 3.18 | 88.50 ± 4.28 | 97.13 ± 2.40 | |
Test | 92.92 ± 5.42 | 92.99 ± 3.78 | 85.33 ± 5.28 | 95.94 ± 3.35 | |
>AUC (%) | Train | 98.49 ± 0.83 | 99.30 ± 0.56 | 100.00 ± 0.00 | 100.00 ± 0.00 |
Validation | 92.16 ± 2.37 | 94.72 ± 2.10 | 93.03 ± 2.74 | 98.63 ± 0.85 | |
Test | 90.20 ± 2.41 | 94.72 ± 2.54 | 91.44 ± 2.63 | 98.13 ± 1.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nieto-del-Amor, F.; Prats-Boluda, G.; Martinez-De-Juan, J.L.; Diaz-Martinez, A.; Monfort-Ortiz, R.; Diago-Almela, V.J.; Ye-Lin, Y. Optimized Feature Subset Selection Using Genetic Algorithm for Preterm Labor Prediction Based on Electrohysterography. Sensors 2021, 21, 3350. https://doi.org/10.3390/s21103350
Nieto-del-Amor F, Prats-Boluda G, Martinez-De-Juan JL, Diaz-Martinez A, Monfort-Ortiz R, Diago-Almela VJ, Ye-Lin Y. Optimized Feature Subset Selection Using Genetic Algorithm for Preterm Labor Prediction Based on Electrohysterography. Sensors. 2021; 21(10):3350. https://doi.org/10.3390/s21103350
Chicago/Turabian StyleNieto-del-Amor, Félix, Gema Prats-Boluda, Jose Luis Martinez-De-Juan, Alba Diaz-Martinez, Rogelio Monfort-Ortiz, Vicente Jose Diago-Almela, and Yiyao Ye-Lin. 2021. "Optimized Feature Subset Selection Using Genetic Algorithm for Preterm Labor Prediction Based on Electrohysterography" Sensors 21, no. 10: 3350. https://doi.org/10.3390/s21103350
APA StyleNieto-del-Amor, F., Prats-Boluda, G., Martinez-De-Juan, J. L., Diaz-Martinez, A., Monfort-Ortiz, R., Diago-Almela, V. J., & Ye-Lin, Y. (2021). Optimized Feature Subset Selection Using Genetic Algorithm for Preterm Labor Prediction Based on Electrohysterography. Sensors, 21(10), 3350. https://doi.org/10.3390/s21103350