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Abstract: Various aspects of task execution load balancing of Internet of Things (IoTs) networks can
be optimised using intelligent algorithms provided by software-defined networking (SDN). These
load balancing aspects include makespan, energy consumption, and execution cost. While past
studies have evaluated load balancing from one or two aspects, none has explored the possibility
of simultaneously optimising all aspects, namely, reliability, energy, cost, and execution time. For
the purposes of load balancing, implementing multi-objective optimisation (MOO) based on meta-
heuristic searching algorithms requires assurances that the solution space will be thoroughly explored.
Optimising load balancing provides not only decision makers with optimised solutions but a rich
set of candidate solutions to choose from. Therefore, the purposes of this study were (1) to propose
a joint mathematical formulation to solve load balancing challenges in cloud computing and (2) to
propose two multi-objective particle swarm optimisation (MP) models; distance angle multi-objective
particle swarm optimization (DAMP) and angle multi-objective particle swarm optimization (AMP).
Unlike existing models that only use crowding distance as a criterion for solution selection, our MP
models probabilistically combine both crowding distance and crowding angle. More specifically,
we only selected solutions that had more than a 0.5 probability of higher crowding distance and
higher angular distribution. In addition, binary variants of the approaches were generated based
on transfer function, and they were denoted by binary DAMP (BDAMP) and binary AMP (BAMP).
After using MOO mathematical functions to compare our models, BDAMP and BAMP, with state of
the standard models, BMP, BDMP and BPSO, they were tested using the proposed load balancing
model. Both tests proved that our DAMP and AMP models were far superior to the state of the art
standard models, MP, crowding distance multi-objective particle swarm optimisation (DMP), and
PSO. Therefore, this study enables the incorporation of meta-heuristic in the management layer of
cloud networks.

Keywords: SDN; load balancing; multi objective particle swarm optimisation; crowding distance;
angle searching; execution time; energy consumption; less execution cost

1. Introduction

Recent years have seen a rapid boom in the development of many new technologies
such as Internet of Things (IoTs) and cloud systems. The emergence of cloud computing
and data storage centres has led researchers to focus on optimising functionality and
service. The implementation of these optimisations became easier and flexible with the
development of software defined networking (SDN). However, the centralized control
architecture of SDN generates concerns about reliability, scalability, fault tolerance, and
interoperability [1]. Hence, assuring efficient management of SDN based computation is
essential for the successfulness of the system. Computing, a common type of service type,
can be defined as coordinating the execution of big processes or tasks on a network to
meet a set of objectives or goals such as maximum reliability, minimum execution time,
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and minimum rental cost. Simultaneously, meeting all these is not possible due to implicit
conflicts. Hence, the incorporation of multi-objective optimisation (MOO) is needed to
define an optimisation point from a set of non-dominated points. Meta-heuristic based
MOO optimisation is a suitable algorithm candidate that can be adapted for this purpose.
Meta-heuristic-based SDN load balancing has been suggested as a new and emerging
research topic [2].

Meta-heuristic searching algorithms are a family of algorithms that follow the same
concept of searching within numerous or infinite sets of candidate solutions to find the
best non-dominated solutions, the optimal solutions, to a problem with respect to one or
multi-objective functions. Most meta-heuristic searching algorithms are associated with
certain semaphores such as black holes [3], simulated annealing [4], bee colonies [5], and
genetics [6]. They only differ in the nature of their search and their ability to avoid local min-
ima while completing the search in a minimum amount of time. However, meta-heuristic
searching was originally developed as a single-objective optimisation. Considering the
multi-objective nature of many real-world problems, researchers have endeavoured to
convert many single-objective optimisations to MOO such as the multi-objective non-
dominated sorting genetic algorithm II (NSGA-II) [7] and NSGA-III [8]. For particle swarm
optimisation (PSO), multi-objective particle swarm optimisation (MOPSO) [9], many other
variants [10], and [11] were developed. Various tools and frameworks were also provided
to compare MOO algorithms and develop their features.

Analysing multi-objective performance requires relying on non-dominated sorting to
evaluate solutions and travel change within the search space of a meta-heuristic particle
swarm. However, non-dominated sorting is not the only means in evaluating the solution
in the swarm. Other aspects of performance, such as the diversity of the solutions and
their spread in the decision space, warrant identification. Hence, other criteria are used
by researchers such as crowding distance in NSGA-II [12] and directional distribution of
solutions in angle quantization [13]. However, an integrated criterion capable of combining
both angle and direction has yet to be used effectively in a MOPSO variant model.

Computational load balancing of tasks, or tasks allocation, on a set of computing
nodes is a multi-objective combinatorial optimisation problem (MOCOP) where the goal is
to minimise the execution time and the cost of renting the necessary nodes. However, the
problem is regarded as a non-deterministic polynomial time NP-hard optimization problem
which motivates researchers to use meta-heuristic searching to solve it. Furthermore, the
problem is a discrete searching problem. Hence, solving this type of optimisation problem
requires searching in discrete spaces with optimised multi-objective functions while being
mindful of the execution time and the node renting cost.

There are two categories in the context of load balancing using SDN technology—
computational load balancing and traffic load balancing. The objective of this study
was to present new joint mathematical formulation for load balancing problems from the
perspectives of computational load balancing, namely, execution time, energy consumption,
and cost. The study also aimed to develop a novel MP variant model with enhanced
exploration, crowding distance, and angle quantization. Two variant models, continuous
and discrete, were developed and compared with existing MP and crowding-distance-
based multi-objective particle swarm optimisation (C-MOPSO).

This study presents a set of contributions. We summarize them as follows.
(1) It proposes a joint mathematical formula that addresses three load balancing

problems: time, energy, and cost.
(2) It proposes a MOO-based PSO algorithm which not only takes into account the

directions of the solutions in the space but also provides a novel solution selection algorithm
by combining crowding distance and angle, distance angle multi-objective particle swarm
optimisation (DAMP), or using the angle criterion at one time, angle multi-objective particle
swarm optimisation (AMP).

(3) It evaluates the developed MOO-based PSO algorithm using mathematical func-
tions and it compares with benchmarking algorithm from MOO-PSO literature. In addition,
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binary variants of the approaches were generated based on transfer function and they are
denoted by B-(Method Name), e.g., BAMP for AMP.

The literature review is presented in Section 2, and the methodology is detailed in
Section 3, while the evaluation and the results are explained in Section 4. The conclusion
and the future considerations are expressed in Section 5.

2. Literature Review

The problem of load balancing in SDN networks has become an active research topic
in the recent years. In the work of [14], the architecture of SDN layers considers load
balancer as one block of SDN application tier. In the survey of [15], the authors provided a
taxonomy of load balancing in SDN with discussing the various objectives such as response
time, resources optimization throughout, and bottlenecks. Their taxonomy has classified
load balancing in control plane and data plane. The former was divided into hierarchal
and virtualization controller, while the latter was divided into server and link.

There are many research articles exploring the use of meta-heuristic searching in SDN-
based network applications, for instance, modified genetic searching for SDN placement in
networks [16] and chaotic salp swarm algorithm (CSSA) optimisation to obtain the optimal
number of SDN in networks [17], while [18] proposed a resource selection MOO genetic
algorithm using SDN network. There are two categories in the context of load balancing
using SDN technology—computational load balancing and traffic load balancing. In the
work of [19], an approach for enabling real-time traffic matrix for the traffic measurement
system in SDN was proposed. Their design includes fixed and elastic schemas in order
to achieve overhead reduction without compromising on accuracy. Hence, it falls under
the category of multi-objective SDN network traffic measurement. In the work of [20],
a flow-aware elephant flow detection applied to SDN was proposed in order to enable
sharing the elephant flow classification tasks between the controller and the switches,
which is a type of traffic load balancing.

Many studies have used meta-heuristics for traffic load balancing, such as a study
by [21], where genetic algorithm was integrated with ant colony optimisation for traffic
load balancing, and a study by [22] that proposed genetic optimisation for traffic loading
using SDN. In this study, the researchers used a load balancing algorithm to identify the
shortest path, which requires the least number of operations, by looking for the lowest
capacity among the switches. This was determined by the load balancer using information
provided by the controller. Three pieces of information were used for this objective: the
path cost, the switch capacity, and the operational cost. The algorithm was also designed
to have a mutation operation that used a path and a link to create a new path [22]. While
that study only merely used a single optimisation, other studies have adopted MOO
algorithms for similar purposes [16]. Computational load balancing aims to optimise task
execution from various perspectives such as execution, reliability, and cost. In a study
by [23], a framework for load balancing using two meta-heuristic optimisation methods
focused on makespan and cost metrics. However, their framework failed to evaluate
exploratory searches. Another work by [24] used MOO for SDN-based load balancing
where quality of service (QoS) was considered a constraint, while energy saving and
load balancing were optimised using MOPSO. This method also failed to evaluate the
exploration or the diversity of the solutions. Load balancing has been applied in advanced
simulations such as molecular dynamics in a study by [25], where the optimisation was
based on heterogeneous supercomputers, which made the optimisation more difficult or a
non-deterministic polynomial time NP-hard problem and combined genetic optimisation
and PSO.

Numerous recent studies explore developing effective MOPSO with a focus on how to
best supply searching via a combination of methods to enhance and obtain more optimal so-
lutions. In a study by [26], four strategies—multi-population, dynamic clustering, solution
life, and probability lottery—were used in conjunction with their MOPSO variant model.
The study concluded that their MOPSO variant model was superior since it included more



Sensors 2021, 21, 3356 4 of 28

than one strategy while searching. However, it failed to carefully evaluate other strategies
such as set coverage, hyper-volume, and delta measure, thereby rendering their algorithm
inadequate. Another aspect that is currently under consideration is the computation cost
of an algorithm when multi-populations are added.

In another study [27] using MOPSO, the moving strategy of particles toward local
and global was embedded in the cross-over operation, which cannot be considered a real
improvement in the search itself. The MOPSO variant models developed by the studies
mentioned in this literature review used various concepts to ensure the discovery of an
adequate set of non-dominated solutions. In a study by [28], MOPSO was used with
crowding distance to perform clustering. Considering that multi-objective optimisation
is evaluated using wide set of indicators [29], various approaches were developed based
on the concept of using one of the indicators of diversity to select solutions from one
iteration to another. In another study, R2 indicator contribution was used to select particles
instead of crowding distance value, which is capable of achieving higher diversity in
the search [30]. R2 indicator contribution value was used also by another MOO-based
PSO method study in order to scalarise the solutions in the archive of non-dominated
solutions [31]. Another study used unary epsilon indicator and Pareto dominance [32] in
addition to direction-based reference points similar to a study by [33].

A study by [34] used angle-based searching in MOO-based PSO, which considered
selecting solutions from the low density angle region and deleting the extra particles from
the high density angle region. While the method was based on adaptive angle division,
distance-based crowding was not included in the search, which affected one aspect of
the diversity of the discovered solutions. Other researchers have developed MOPSO
that incorporated crowding distance [35]. The study modified the velocity formula by
including the sharing-learning factor. The sharing factor was added as a third term in the
velocity equation to move the particle not only to the direction of personal and global beat
particles but also to the average of all other particles in the swarm, which added more
diversity to the swarm. The approach also added Gaussian mutation to the particles to
achieve higher exploration. Furthermore, the study proposed an update of best global
using greedy strategy with respect to each particle’s changing position. This method,
however, ignored the mobility direction in the particles, which is regarded as another factor
in the diversity of exploration. A study by [36] evaluated an aspect that is usually ignored,
leaders evaluation in traditional PSO. They went on to propose a new concept that a good
leader takes feedback from his/her followers and modifies their decisions accordingly. The
study went on to identify various cases of follower-based improvements in the swarm
according to the change of the fitness values. Based on that, the velocity of the leader
which expressed the changes of the movement speed and direction toward the leaders
was changed. However, this method was only applied in single-objective optimisation.
Another MOPSO variant model, which incorporated a new concept to achieve diversity
and exploration, was proposed by [37]. The researchers divided the space into sets of
hyper-boxes and tracked the number of solutions in each hyper-box, finally considering
only the solutions at the boundary of each hyper-box. Some methods have developed
new criteria for selecting leaders from the repository of non-dominated solutions. For
example, a study by [38] developed an improved MOO variant model and provided an
algorithm for selecting leaders from sets of non-dominated solutions using a geometrical
approach. The approach selected points that had the least distance from the line fitted
model for the set of non-dominated solutions. However, the problem with this approach
was its invalid assumption of the straight-line approximation of the set of non-dominated
solutions occurring in most cases.

Other studies have incorporated clustering in solution selection from one iteration
to another, where the set of non-dominated solutions were decomposed to clusters and
solutions belonging to different clusters were selected to achieve diversity in the solutions.
For instance, [39] used Euclidean distance for clustering. This can be criticised for the fact
that an implicit sphere assumptions of Pareto parts geometric model was made, which is not
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valid in many types of optimisation surfaces. Many other methods have opted to convert
MOO to mono-objective optimisations via decomposition and use it along with dominance
to select solutions. This was done in a study by [40] where penalty-based boundary
intersection (PBI) was used with dominance to create a hybrid strategy. In our opinion,
researchers can fall in the non-convexity trap by applying mono-objective mapping. In the
same vein, a study by [41] estimated solution domination using cosine transformation and
reference vector association and also used simplified leader-oriented mobility equation to
counter the slow convergence and simplify the calculation. The approach presented elite
velocity-based selections and a twofold leader definition. However, the cosine distance
and the reference vector association lacked accurate estimation of solution diversity in
the search space. Studies that have developed MOO-based PSO by exploiting existing
information and communication theory concepts, namely entropy and its usefulness in
probing the convergence of algorithms based on the entropy behaviour, also warrant
mention. This method was first proposed by [42] where a simulation was used to prove
the association between the change of entropy in the particles of the Pareto front and
the convergence of the algorithm. This method was further developed by [43] where,
using particle entropy, the particles were mapped on a parallel-cell coordinate system
and a feedback information system, and the difference of entropy was used to change the
parameters of the algorithm. Although entropy can be a useful metric indicator of the
diversity of the solutions, it still lacks actual geometric and directional description of the
particles in the space.

While numerous studies have evaluated load balancing using meta-heuristic, none
have evaluated it from the perspective of non-dominated solutions. Furthermore, the
exploration of the solution space has not received adequate attention since it is critical
in providing the decision maker with sets of choices. Although MOPSO was among the
evaluated methods, the improvements done to it ignored searching direction, which plays
an important role in the diversity of the offered solutions. A summary of the models and
the objectives listed in this literature review are presented in Table 1. None of these studies
explored incorporating all five objectives in one model. Therefore, we present the findings
of our MP-based load balancing model in subsequent sections.

Table 1. Summary of various existing models and objectives for load balancing.

Authors Meta-Heuristic Application Network Load ReliabilityEnergy Cost Execution Time

[16] Discrete Particle swarm
optimization Algorithm

Virtual Network
Embedding Algorithm

for SDN
Yes Yes No No No

[17] Chaotic Slap
Optimization

Distributed
Multi-Controller

Deployment
No Yes No No Yes

[18] The Reference Vector
Based Algorithm

SDN Based
Resource Selection No No Yes Yes No

[21] Genetic-Ant Colony
Optimization Traffic Load Balancing. Yes No Yes No No

[22] Genetic Optimization Load Balancing Yes No Yes No No

[23] Bat Algorithm SDN Based Load
Balancing Yes No No No No

[24]
Multi-Objective
Particle Swarm

Optimization Algorithm

SDN Based
Load Balancing Yes No Yes No No

Ours DAMP/AMP SDN Based Load
Balancing Yes Yes Yes Yes Yes

SDN: software-defined networking; PSO: particle swarm optimisation.
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3. Methodology

The symbols used throughout this study are explained in Table 2. The methodology
starts with presenting the network model in Section 3.1. Next, the task model is provided
in Section 3.2. Afterwards, the energy model, the time execution metric, and the renting
cost metric are provided in Sections 3.3–3.5, respectively. Next, the optimization objective
functions are given in Section 3.6. Next, we present the transfer function model for dealing
with the binary space in Section 3.7. The crowding distance is presented in Section 3.8, and
the developed DAMP algorithm is provided in Section 3.9. Next, a big O notation is given
in Section 3.10. Lastly, a separated section is dedicated for the evaluation analysis.

Table 2. Explanation of symbols used throughout this study.

Symbol Meaning

N Set of nodes of network
R Set of connections or edges between nodes
eij Connection between node i and node j
Nj Node of index j
dij Distance between node i and node j
vj Speed of node j
ej Average energy consumption

einit Initial energy of node
P0 Maximum computational load that can be handled by one node
L0 Maximum communication load that can be handled by one node
Pi Computational load of task i
Li Communication load of task i
K The number of nodes required to execute the task
M Set of tasks

EM Set of directions of tasks dependency
Ecomp Computation energy

ETx(k, d) Energy consumption for transmitting k bits for distance d
ERx(k) Energy consumption for receiving k bits

Eelec Constant to run the transmitter or receiver circuit
εamp coefficient related to the transmitter amplifier

d Distance between transmitter and receiver
w inertia

Vmax Maximum velocity of particle
Vmin Minimum velocity of particle
C1 Constant of local target or leader
C2 Constant of global target or leader
RS remaining solutions to be selected from the swarm

3.1. Network Model

The network was represented by an undirected graph G(N, R), where the networks
were N =

{
Nj : j = 1, 2, . . . n

}
R =

{
eij, i, j = 1, 2..r and i 6= j

}
. The edge between two

nodes (i, j) had a weight that represents the distance between the two nodes (dij). When the
i node was not connected to the j node, the distance between the two was infinity. When
unconnected, the nodes were represented as N5 and N6.

Each node was described by variables to determine its computational and power
specifications. In order to describe node nj, we used the tuple

(
vj, ej, einit

)
where vj denoted

computation power of the node, which was measured as instruction per second (IPS), ej
denoted average energy consumption as measured by Joules per second (J/sec), and einit
denoted the initial energy. Each node was also described by two constant variables, P0 and
L0. P0 represented the maximum computational load, while L0 represented the maximum
communication load.
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3.2. Task Model

The task model G(M, EM) was provided by directed acyclic graph (DAG) where we
assumed that we had m tasks M = {Mi : i = 1, 2, . . . m}, and each task was described by
computation or, P = {Pi : i = 1, 2, . . . m}, which indicated the number of instructions (NI)
and the communication or, L = {Li : i = 1, 2, . . . m}, measured in bytes. Since the nodes
that executed the tasks had P0 and L0, Equation (1) was used to determine the number of
nodes required to execute any i task as K.

K = max
(⌈

Pi
P0

⌉
,
⌈

Li
L0

⌉
, K0

)
(1)

where K0 denotes the minimum number of nodes required to execute one task.

3.3. Energy Model

The energy consumption model was a combination of two parts; the first part, Ecomp,
denoted energy consumption based on the execution of the instructions of the Pi task and
was determined using Equation (2).

Ecomp =
Pi
vj
×ej (2)

The second part, Ecomm, was a combination of two other parts and was expressed
in Equation (3).

Ecomm = ETx(k, d) + ERx(k) (3)

It assumed that the radio emitted Eelec [ nJ
bit ] to power the transmitter or the receiver

circuit and was expressed in Equation (4).

ETx(k, d) = ETx−elec(k) + ETx−amp(k, d) = Eelec × k + εamp × k× d2 (4)

In order to receive, the energy was expressed in Equation (5) as follows:

ERx(k) = ERx−elec(k) = Eelec × k (5)

where:

ETx(k, d) was the energy consumption when transmitting k bits over a distance d,
ERx(k) was the energy consumption when receiving k bits,
k was the number of transmitted bits and derived from L in the task model,
d was the distance between the two nodes and derived from the network model,

Eelec = 50
[

nJ
bit

]
was the constant required to power the transmitter or the receiver circuit,

and
εamp was the coefficient related to the transmitter amplifier and equalled 100

[
pJ
bit /m2

]
Eij = Ecomm + Ecomp = ETx(k, d) + ERx(k) + Ecomp (6)

Using Li which was communication load of task i and substituting Equations (2), (4)
and (5) in (6) provided (7)

Eij = Eelec × Li + εamp × Li × d2 + Eelec × Li +
Pi
vj
×ej (7)
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3.4. Time Execution Metric

Equation (8) expresses how long each node (ni), at a velocity of vi, spent executing
task j two times. Its computation and communication are given as follows:

tij = tij
com + tij

comp + tij
queue =

Lj

B
+

pj

vi
+ tij

queue (8)

Equation (9) was used to determine the makespan

T = ∑
i,j

tij (9)

3.5. Renting Cost Metric

By assuming that each node in the network had a renting rate of ri, and assuming that
the ni node needed to operate for tij in order to execute task j, then the total renting cost of
the node was Equation (10)

RCij = ritij (10)

However, to minimize the renting cost of all nodes to execute all tasks, we used the
Equation (11)

RC = ∑
i,j

RCij (11)

3.6. Optimisation Objective Functions

The solution was optimised by assigning specific tasks to specific nodes as defined
by the matrix X =

{
xij
}
∈ {0, 1}n×m. Therefore, the problem was a binary optimisation

problem. The objective function was described by the five following Equations (12)–(16)

f1 = ∑
i,j

Eij (12)

f2 =
n

∑
i=1

(
Ei − E

)2

n− 1
(13)

f3 = T (14)

f4 = RC (15)

s.t

k = max
(

Pi
P0

,
Li
L0

, k0

)
(16)

and the connectivity limitation of the dependent tasks.

3.7. Transfer Function Model

Transfer function was used to convert particle swarm searching to binary to solve the
described problem. Assuming that the i particle had a velocity of vt

i,d for the dimension
d and the iteration t, the corresponding particle bit changed its value with a probability
of TF

(
vt

i,d

)
= 1

1+exp
(
−vt

i,d

) . We used this probability to generate the random numbers

r ∈ [0, 1] and compared it with TF
(

vt
i,d

)
. If the value was lower than TF

(
vt

i,d

)
, then it

changed its bit value, otherwise it did not change. After converting the approaches of
binary space, we added the letter B to indicate the binary space in the method name.

3.8. Crowding Distance

The concept of crowd distance was first proposed by [12] in NSGA-II. It measured the
density of the solutions in the space with respect to the objectives. The purpose of using
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this concept was to add a solutions selection criterion when they were non-dominated.
Basically, solutions located in less crowded areas or that had bigger crowd distances were
favoured. Incorporating this criterion in PSO provided higher exploration in the solution
space. The pseudo-code for determining crowd distance is provided in Algorithm 1.

Algorithm 1. The algorithm for calculating crowd distance

Input
Pareto front // set of non-dominated solutions
Output
CD // crowd distance
Start
N = size of Pareto front
Sorted Pareto Front = sort(Pareto front)
initiate CD of size N-2 with zeros
for each solution in the Sorted Pareto Front

find the distance from the previous objective
find the distance from the next objective

calculate the distance of the subject solution CD(i) as the summation
of both the distance from the previous objective and the next objective
endfor

End

3.9. Developed DAMP Model

The distance angle multi-objective particle swarm optimisation (DAMP) model devel-
oped by this study is explained in this section. A directionally aware MOO differs from
traditional MOO by exploring power that aims at probabilistic spreading of the solutions in
the space according to their crowding distance and directions. Contrary to a study by [13],
which determined combined crowding distance with direction in the search and allocated
more priority to direction, DAMP probability performs the search while allocating equal
weight or selection probability to both direction and distance. The pseudo-code for DAMP
is provided in Algorithm 2.

Algorithm 2. The algorithm for distance angle multi-objective particle swarm optimisation
(DAMP).

Inputs
f1,f2, . . . fm //set of objectives
gmax //maximum number of generations
sizeOfSwarm // size of solutions of swarm
Vmax //maximum velocity
Vmin //minimum velocity

W,c1,c2 //interial, coefficient of moving toward best
personal and coefficient of moving toward best global
angleRes //angle resolution
Output
PF //pareto front
gmax //maximum number of iterations
Start
Initialize swarm
Evaluate(swarm,f1,f2, . . . fm)
g = 0
While g < gmax
newSwarm=[]
eaders =Select(swarm)
For each particle until sizeOfSwarm
newParticle=Update Position (particle,leaders,w,c1,c2,Vmin,Vmax)
particle=Mutation(particle)
add particle to newSwarm
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EndFor
Repository=Combine(swarm,newSwarm)
Swarm=Select(Repository,angleRes)
Evaluate(swarm,f1,f2, . . . fm)
g++
EndWhile
PF=ParetoFront(swarm)
End

To ensure the progress of the search, the algorithm selected the best solution out of a
combined pool of solutions from both the original swarm and the swarm after mobility and
mutation. The selection was performed via non-dominated sorting and sorted using non-
domination criterion ≮. The solutions were then ranked accordingly, where x, y belonged
to the same rank, followed by x ≮ y and y ≮ x.

Assuming that the solutions were sorted within k ranks, as shown in Figure 1, solutions
ranked in R1 were the most optimal solutions and dominated over the subsequent solutions.
Solutions in rank R2 were the second most optimal and, while they dominated over other
ranks, they were dominated by solutions in rank R1. Additionally, if ∀ x, y ∈ Ri, then,
x ≮ y and y ≮ x. The objective was to select N solutions from the sorted solutions.

Figure 1. Conceptual diagram for selecting best N solution from 2N pool.

As shown in the pseudocode in Algorithm 3, the selection algorithm began by selecting
solutions from the most optimal ranks R1, R2, . . . Ri, where the following equations applied:

R1 + R2 + . . . Ri−1 < N, (17)

R1 + R2 + . . . Ri > N (18)

N− (N1 + N2 + . . . Ni−1) was then selected from Nk solutions and was consistent with the
exploration. The remaining solutions, up to N, were selected in a way that was consistent
with exploration. This method considered two criteria—the angle distribution and the
crowding distance distribution. It started by sorting the solutions from the highest to the
lowest crowding distance and the highest to the lowest angle range. Angle range rank was
defined as the number of selected solutions within an angular sector in the solution space.
The first and the second sets of sorted solutions were assigned to sorted solutions distance
and sorted solutions angle, respectively. It then underwent an iterative process from 1
until N− (N1 + N2 + . . . Ni−1) and generated a random number (r) in each iteration. If the
generated number was between 0 and 0.5, a solution was selected from sorted solutions
distance. Otherwise, it was selected from sorted solutions angle. This ensured a balance
between both angle and crowding distance explorations. The pseudo-code is provided
in Algorithm 4. For DAMP, the solutions selection probability combined two criteria,
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crowding distance and angle range rank. To demonstrate the concept, we assumed that we
had six non-dominated particles, as shown in Figure 2a–c, which shows the corresponding
angular range ranks and the crowding distance arrays, respectively. Using the probabilistic
calculation, a probability of 0.5/2 was assigned to solutions three and four and then to
solutions one and two. An overall probability of 1/4 was assigned to all four solutions.

Algorithm 3. The algorithm for selecting N solutions out of 2N pool.

Input
original swarm
modified swarm
N // sizeOfSwarm
Output
selectedSolutions
Start
poolSolutions=combine(original swarm,modified swarm )
SortedSolutions=nonDominatedSorting(poolSolutions)
for each rank k
lk=length(rank)
cumulativeLength=0;
if(cumulativeLength<N)
add rank k to selectedSolutions
cumulativeLength=cumulativeLength+lk
else
RemainingSolution=select(poolSolutions,N-cumulativeLength)
add to selectedSolutions
end
End

Algorithm 4. The algorithm for selecting RS solutions out of a pool of non-dominated solutions
using crowding distance and angle range rank.

Input
poolSolutions //repository
RS //remaining to reach the size of swarm
foundSolutions
selectedSolutions
Output
selectedSolutions
Start
center = generateCrowdCenter(foundSolutions)
sortedSolutionsDistance=sortingDistance(poolSolutions,center)
anglesRangesRank=generateAngleRangeRank(foundSolutions)
sortedSolutionsAngles=sortingAngle(foundSolutions)
for i = 1 until RS
r = generateRandom(0,1)
if (r < 0.5)
add sortedSolutionsDistance(1) to selectedSolutions
delete sortedSolutionsDistance(1)
else
add sortedSolutionsAngle(1) to selectedSolutions
delete sortedSolutionsAngle(1)
end
end
End
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Figure 2. Illustration of candidate solutions selection using DAMP according to the following criteria:
(a) objective space, (b) crowding distance curve, and (c) angle range rank curve.

3.10. Big O Notation

We present the complexity analysis of four variants of MP. Assuming that we had for
our meta-heuristic searching N particle, M iterations, the particle length d, the number of
objectives m, then the complexity of the searching was given as

O(M{N[O(mobilityEquation) + O(Evaluation)] + O(sorting)})

O(Evaluation) was related to the tested mathematical function

O(mobilityEquation) = d

O(sorting) = mN2

O(M{N[O(mobilityEquation) + O(Evaluation)] + O(sorting)}) = O
(

MNO(Evaluation) + MNd + MmN2
)

We observed that the only difference between DAMP, DMP, AMP, and MP was the
sorting part where the algorithm had to sort the solutions based on their angle as well
as their distance. The sorting part for the three algorithms was the same, which was O
(mN2), because the big O notation of summation to two functions was the maximum big O
notation of them.

f1 = O(g1) and f2 = O(g2)⇒ f1 + f2 = O(max(g1, g2)) (19)

3.11. Evaluation

The MOO performance measures used to evaluate our proposed method and a com-
parison between our method and the benchmarking MOO mathematical functions are
provided in this sub-section.

3.11.1. C-Metric Measure

C-metric, or set coverage, compared the two Pareto fronts of two approaches in terms
of domination. If we had both approach A and approach B, the Pareto front generated from
approach A was labelled PA, and the Pareto front generated from approach B was labelled
PB. C-metric C(A, B) = CB indicated the number of solutions from B that were dominated
by solutions in A. The lower the CB value was, the better the performance was. Therefore,
the objective was to develop an approach with the lowest CB value. The formula for this
measure is expressed in Equation (20):

C(PA, PB) =
|{y ∈ PB|∃x ∈ PA : x � y}|

|PB|
(20)
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3.11.2. Hyper-Volume Measure

This measure was a simultaneous indicator of diversity and domination. It was
defined as the correlation between the hypercube, the diagonal distance between the
solutions in the Pareto front, and the worst set in terms of domination. Therefore, the
higher the hyper-volume volume contributed to a better quality of the solutions. The
formula for this measure is expressed:

HV = volume
(
∪

xεPS
HyperCube(x)

)
(21)

3.11.3. Delta Measure

This measure was a simultaneous indicator of the uniformity of the Pareto fronts’
distributions and spread. Therefore, it was a measure of diversity. It was denoted by ∆ and
needed to be minimal.

∆ =
d f + dl + ∑N−1

i=1

∣∣∣di − d|

d f + dl + (N − 1)d
(22)

where:

d f and dl were the Euclidean distances between the extreme solutions and the boundary
solution,
di was distances where i = 1, 2, . . . , N − 1,
d was the average of all the consecutive distances di for i = 1, 2, . . . , N − 1.

The pseudocode for calculating this measure is provided in Algorithm 5, [12].

Algorithm 5. The algorithm for calculating the delta measure

Input
d //Pareto front
dT //True Pareto Front
Output:
∆ //Delta Measure
Start
Sort the Pareto set
Calculate the Euclidean distance between consecutive solution and assign them to matrix M
Calculate the average of matrix M
Fit the curve of the true Pareto front and calculate the distance between the two extreme solutions
calculate the distance between the two extreme solutions
Apply equation and find ∆
End

3.11.4. Generational Distance (GD)

This measure was an indicator of the optimality of the solutions in terms of their
closeness to the true Pareto front solutions. It measured the average distances between
the Pareto front solutions and the true Pareto front solutions. Therefore, the lower the GD
value was, the more optimal a solution there was [44].

GD(PS, PT) =

(
∑
|PS |
i=1 d2

i

) 1
2

|PS|
(23)

where:
|PS| was the number of solutions in the Pareto set,
PT was the true Pareto front,
di was the Euclidean distance between the solutions in PS and the nearest solutions in PT.
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3.11.5. Number of Non-Dominated Solutions

This measure was an indicator of MOO algorithm performance in terms of the number
of non-dominated solutions (NDS) in the Pareto front. Therefore, the higher the NDS
values were, the higher the performance was [45].

NDS (N) = |PS| (24)

3.11.6. Mathematical Benchmarking Functions

Schaffer (SCH), Fonseca-Fleming (FON), Poloni (POL), Kursawe (KUR), and Zitzler–
Deb–Thiele (ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6) functions were used [12]. The mathe-
matical formulas of these functions with optimal solutions and the type of the functions
are provided in Table 3.

Table 3. Benchmark multi-objective optimisation (MOO) functions.

Problem N Variables
Bounds Objectives functions Optimal

Solutions Comments

FON 3 [−4, 4]
f1(x) = 1− exp

(
−

3
∑

i=1
(xi − 1√

3
)

2
)

f2(x) = 1− exp
(
−

3
∑

i=1
(xi +

1√
3
)

2
) x1 = x2 = x3 Non-convex

KUR 3 [−5, 5]
f1(x) =

n−1
∑

i=1

(
−10 exp

(
−0.2

√
x2

i + x2
i+1)

))
f2(x) =

n
∑

i=1
(|xi|0.8 + 5 sin x3

i )

Refer to [12] Non-convex

POL 2 [−π.π]

f1(x) = [1 + (A1 − B1)
2 +

(
A2 − B2)

2]
f2(x) = [(x1 + 3)2 +

(
x2 + 1)2]

A1 = 0.5 sin 1− 2 cos 1 + sin 2− 1.5 cos 2
A2 = 1.5 sin 1− cos 1 + 2 sin 2− 5.0 cos 2
B1 = 0.5 sin x1 − 2 cos x1 + sin x2 − 1.5 cos x2
B2 = 1.5 sin x1 − cos x1 + 2 sin x2 − 5.0 cos x2

Refer to [12] Non-convex,
Disconnected

SCH 1 [−103, 103]
f1(x) = x2

f2(x) = (x− 2)2 x ∈ [0, 2] Convex

ZDT1 30 [0, 1]

f1(x) = xi

f2(x) = g(x)
[

1−
√(

x1
g(x)

)]
g(x) = 1 + 9

(
n
∑

i=2
xi

)
/ (n− 1)

x1 ∈ [0, 1]
x1 ∈ [0, 1]
x1 ∈ [0, 1]

Convex

ZDT2 30 [0, 1]

f1(x) = x1

f2(x) = g(x)
[
1− (x1 / g(x))

2
]

g(x) = 1 + 9
(

n
∑

i=2
xi

)
/ (n− 1)

x1 ∈ [0, 1]
xi = 0

i = 2, 3, . . . , n
Non-convex

ZDT3 30 [0, 1]

f1(x) = x1

f2(x) = g(x)
[

1−
√

x1
g(x) −

x1
g(x) sin(10πx1)

]
g(x) = 1 + 9

(
n
∑

i=2
xi

)
/ (n− 1)

x1 ∈ [0, 1]
xi = 0

i = 2, 3, . . . , n

Convex,
Disconnected
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Table 3. Cont.

Problem N Variables
Bounds Objectives functions Optimal

Solutions Comments

ZDT4 10
x1 ∈ [0, 1]

x1 ∈ [−5, 5], i
= 2, . . . , n

f1(x) = x1

f2(x) = g(x)
[

1−
√

x1
g(x)

]
g(x) = 1 + 10(n− 1) + ∑n

i=1[x
2
i − 10 cos(4πxi)]

x1 ∈ [0, 1]
xi = 0,

i = 2, 3, . . . , n
Non-convex

ZDT6 10 [0, 1]

f1(x) = 1− exp(−4x1) sin6(6πx1)

f2(x) = g(x)
[

1−
(

f1(x)
g(x)

)2
]

g(x) = 1 + 9
[(

n
∑

i=2
xi

)
/ (n− 1)

]0.25

x1 ∈ [0, 1]
xi = 0,

i = 2, 3, . . . , n

Convex,Non-
uniformly

Spaced

SCH: Schaffer; FON: Fonseca-Fleming; POL: Poloni; KUR: Kursawe; ZDT: Zitzler–Deb–Thiele.

4. Evaluation and Results

DAMP, DMP, and AMP were evaluated using MATLAB 2019b and other benchmark
MOPSOs [9], as shown in Table 4. We used the same common parameters of the proposed
methods and the benchmarks, and we used the same objective for comparison. Further-
more, each experiment was repeated for 10 runs, changing the seed of the random number
generator. The parameters that were selected were based on tuning processes for c1 and
c2 that represent the coefficients of the effect of personal best and global best respectively.
They were selected to be 1/3 and 2/3, respectively. We also set the parameters of w, Vmax,
and Vmin to be 0.5, 0.1, and 0.001, respectively. These parameters were related to the original
equation of particles mobility of PSO that are presented in Equations (25)–(28).

Vid(t + 1) = ωVid(t) + C1r1d(Pi − Xid) + C2r2d

(
Pgd − Xid

)
, (25)

Xid(t + 1) = Xid(t) + Vid(t + 1) (26)

If Vid > Vmax, then Vid = Vmax (27)

If Vid > Vmax, then Vid = Vmax (28)

Table 4. Parameters used in the evaluations and their values.

Parameter Name Value

numberOfParticles 50
numberOfIterations 100

c1 1/3
c2 2/3

nRep 100
w 0.5

Vmax 0.1
Vmin 0.001

4.1. Evaluation By Mathematical Functions

This section evaluates MOO with the MOO mathematical functions mentioned in the
sub-section above. The results are presented in the following Section 4.1.1 Set Coverage
Analysis, Section 4.1.2 Hyper-volume, Section 4.1.3 Number of Non-Dominated Solutions
(NDS), Section 4.1.4 Delta Measure, Section 4.1.5 Generational Distance, and Section 4.1.6
Statistical Evaluation.
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4.1.1. Set Coverage Analysis

The role of set coverage was to judge the superiority of the developed DAMP model
over industry benchmarks, such as MP and DMP, and intermediate variant models, such
as AMP. Therefore, we attempted to compare C(DAMP, x) values.

With C(x, DAMP), x could represent any one of the three compared models. Figure 3
shows the obvious superiority of the DAMP model over the C-metric values of all the other
mathematical functions. However, a difference existed in domination performance between
the models. For instance, the DAMP model had the most domination over the MP model
compared to the other two models. We also observed similar domination performance
between AMP and DMP models. We also noticed that DAMP had higher C(DAMP, x)
values when evaluated using ZDT1, ZDT2, ZDT3, ZDT4, ZDT6, and FON. On the other
hand, we found that the C(DAMP, x) values were nearly identical when evaluated using
POL, and that the C(x, DAMP) values were slightly lower when evaluated using KUR
when x = AMP, DMP.

Figure 3. Average set coverage values of the DAMP model compared to MP, AMP, and DMP models: (a) FON; (b) KUR;
(c) POL; (d) SCH; (e) ZDT1; (f) ZDT2; (g) ZDT3; (h) ZDT4; (i) ZDT6.

Therefore, the overall performance of the DAMP model was clearly superior in com-
parison to all other models in terms of domination.
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4.1.2. Hyper-Volume

This function measure judged the diversity of the developed solutions. While it
was regarded as a secondary measure, after a set coverage, where domination was more
important than diversity, judging diversity helped identify the overall performance of
the algorithm. As shown in Figure 4, we observed that the MP model provided higher
hyper-volume values than the other models when evaluated using ZDT1, ZDT3, ZDT4,
and KUR. Furthermore, Table 5 shows the statistical significance of hyper-volume values
for ZDT1, ZDT4, ZDT6, SCH, and FON based on t-test values. Cross-references of these
visualisation results with statistical results are shown in Table 5 where the superiority of
the DAMP model in terms of hyper-volume value is statistically shown for FON, SCH, and
ZDT6. Conversely, the hyper-volume value of the MP model was superior to the DAMP
when evaluated using ZDT1 and ZDT4. Nevertheless, for all these functions, the MP model
had relatively low domination, as seen in the set coverage analysis sub-section. We also
found that the DAMP model had higher hyper-volume values than the MP model when
evaluated using SCH. We observed that the hyper-volume performance, when evaluated
using KUR, was similar to the MP model and superior to the AMP and the DMP models.
These findings support the quality of diversity of the DAMP model solutions apart from
the observed domination in the previous sub-section.

Figure 4. Average hyper-volume values of the DAMP model compared to MP, AMP, and DMP models: (a) FON; (b) KUR;
(c) POL; (d) SCH; (e) ZDT1; (f) ZDT2; (g) ZDT3; (h) ZDT4; (i) ZDT6.
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Table 5. T-values of the DAMP model compared to MP, AMP, and DMP models.

Function Test T-Test
Measure

Delta Hyper volume NDS GD

FON
DAMP/AMP 0.315850996 0.307418865 0.58492454 0.622265942
DAMP/DMP 0.719826015 0.995765743 0.49363686 0.652045003
DAMP/MP 5.0242 × 10−5 0.000207451 7.39 × 10−5 0.049132833

KU
DAMP/AMP 0.316571234 0.136064963 0.54369604 0.573461561
DAMP/DMP 0.012042727 0.269537335 0.51557762 0.396190518
DAMP/MP 0.90710705 0.80889372 7.7633 × 10−7 0.002574095

POL
DAMP/AMP 0.164387112 0.209533066 0.07679627 0.302064115
DAMP/DMP 0.351181697 0.871518999 2.89 × 10−2 0.393267196
DAMP/MP 0.351181697 0.871518999 0.0206565 0.593382272

SCH
DAMP/AMP 0.304664635 0.383026813 0.60095345 0.533349004
DAMP/DMP 0.480290477 0.06290748 0.351256638 0.085563604
DAMP/MP 0.001485655 1.4044 × 10−5 0.05283945 0.142239574

ZDT1
DAMP/AMP 0.142123082 0.904186015 0.05720644 0.636188124
DAMP/DMP 0.001343439 0.740246281 0.26176837 0.209288404
DAMP/MP 0.016179938 0.000552411 0.26176837 0.209288404

ZDT2
DAMP/AMP 0.096184093 0.123852474 0.19186711 0.575465083
DAMP/DMP 0.350353147 0.52239308 0.0815855 0.1455833
DAMP/MP 0.041056651 0.52239308 0.616373095 0.691184369

ZDT3
DAMP/AMP 0.728433661 0.751269882 0.14275619 0.872306061
DAMP/DMP 0.000428487 0.948368027 0.106679999 0.206603271
DAMP/MP 0.592841876 0.948368027 1.8854 × 10−6 3.31535 × 10−5

ZDT4
DAMP/AMP 0.939868234 0.906971038 0.92851591 0.178865555
DAMP/DMP 0.013632197 0.341959448 0.81800295 0.140962795
DAMP/MP 0.013632197 0.000838889 0.04702054 8.29888 × 10−7

ZDT6
DAMP/AMP 0.534051523 0.06054342 0.09434971 0.058047202
DAMP/DMP 0.224179011 0.749439813 0.051886 0.099316485
DAMP/MP 0.224179011 0.005584877 0.00128414 1.34771 × 10−5

GD: generational distance.

4.1.3. Number of Non-Dominated Solutions (NDS)

This measure indicated the number of non-dominated solutions which was an indicator
of the choices provided to the decision maker after optimisation. As seen in Figure 5, the
NDS of the DAMP model was comparable with the AMP and the DMP models when
evaluated using SCH, ZDT1, ZDT3, ZDT4, KUR, and POL. Moreover, the NDS of all
the other models was superior and statistically significant to the MP model when it was
evaluated using ZDT1, ZDT2, ZDT3, ZDT4, ZDT6, KUR, and POL, as shown in Table 5.

Figure 5. Cont.
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Figure 5. Average non-dominated solutions (NDS) values of the DAMP model compared to MP, AMP, and DMP models: (a) FON; (b)
KUR; (c) POL; (d) SCH; (e) ZDT1; (f) ZDT2; (g) ZDT3; (h) ZDT4; (i) ZDT6.

4.1.4. Delta Measure

This measure was regarded as a measure of diversity. An observation of the values
revealed that the DAMP model had an average diversity compared to AMP and DMP
models when it was evaluated using almost all of the functions, whereas the MP model had
higher diversity when evaluated using KUR and less diversity when evaluated using FON.
This measure was, again, a secondary measure after the domination of solutions. Cross-
referencing of the average delta values is shown in Figure 6, and the statistical findings
in Table 5 confirmed that the DAMP model was statistically superior to the MP model
when evaluated using FON, whereas the MP model was not superior, with a statistical
significance only for KUR.

Figure 6. Cont.
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Figure 6. Average delta measure values of the DAMP model compared to MP, AMP, and DMP models: (a) FON; (b) KUR; (c) POL; (d)
SCH; (e) ZDT1; (f) ZDT2; (g) ZDT3; (h) ZDT4; (i) ZDT6.

4.1.5. Generational Distance

This measure was an indicator of the closeness between the discovered solutions and
the true Pareto solutions. It did not provide accurate description of domination as set
coverage. However, it did indicate the distance between the discovered solutions and the
true Pareto front. In Figure 7, we could see that, for all mathematical functions, DAMP,
AMP, and DMP models had similar performance values and were better than the MP
model in terms of distance to the true Pareto front. Cross-referencing of these visualisation
results with statistical test values are shown in Table 5, and it shows that the DAMP model
was statistically significant over the MP model when evaluated using ZDT3, ZDT4, ZDT6,
FON, and KUR. Bear in mind that the results of this measure do not reflect domination
performance and should, therefore, be read in conjunction with the set coverage results.

Figure 7. Cont.
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Figure 7. Average MOO function values for generational distance of the DAMP model compared to MP, AMP, and DMP models:
(a) FON; (b) KUR; (c) POL; (d) SCH; (e) ZDT1; (f) ZDT2; (g) ZDT3; (h) ZDT4; (i) ZDT6.

4.1.6. Statistical Evaluation

For evaluation purposes, each measure was generated via 10 experiments using
random seed for our DAMP model, the AMP model, and the two industry standard DMP
and MP models. As seen in Table 5, our DAMP model dominated almost all MOO functions
in comparison to the DMP and the MP models. Furthermore, statistical significance also
proved the superiority of our DAMP model over the AMP model for some measures,
namely, NDS and GD, when evaluated using ZDTs.

4.2. Evaluation Based on Load Balancing Model

This section provides the evaluation of the load balancing in terms of the MOO
evaluation metrics. The evaluation was based on number of tasks equal to six and number
of nodes in the network equal to 30 nodes. The network is depicted in Figure 8 with
the assigned tasks to each of the nodes. This shows that each of the algorithm assigned
different tasks to the different nodes where there were different solutions with different
performance metrics of the same problem. We also observed that the links of the networks
were established to produce connected graphs, which enabled the data exchange while
executing the tasks. The parameters and the setting of the evaluation are presented
in Table 6.

Table 6. Parameters and setting of evaluation.

Parameter Name Value

number of nodes 6
number of tasks 30

transmission range 100
speed 30 until 100 IPS

power consumption 4 until 10 mW
initial energy 2

Eelc 50 × 10−6 [mj/b]
epsilonAmp 10 × 10−9 mJ/b/m2

P0 40 MIPS
L0 50 Byte
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Figure 8. The network used to evaluate the task allocation model: (a) binary MP (BMP); (b) BAMP; (c) BDMP; (d) BDAMP.

We added a comparison with two additional algorithms, namely, binary non-dominated
sorting genetic algorithm (BN2) and binary particle swarm optimisation (BPSO). We
used the same number of solutions and iterations, 50 and 100, respectively. As for objec-
tive comparison with the benchmarks, we show the evaluation results in the following
Section 4.2.1. Set Coverage, Section 4.2.2. Hyper-Volume, Section 4.2.3 Number of Non-
Dominated Solutions, Section 4.2.4 Relative Generational Distance, and Section 4.2.5. Sta-
tistical Evaluation.

4.2.1. Set Coverage

For objective evaluation, each of the methods was executed 10 times, and its generated
set coverage results were compared with the other methods. The results are provided as
boxplots depicted in Figures 9–11. As it is observed in Figure 9, BAMP achieved higher
set coverage for most approaches, which provided the superiority of using the angle as
criterion of searching compared with the other approaches. Another observation was
the use of the angle, which provided a wide range of possibilities according to the seed
compared with not using the angle or the distance, as it has been shown in C(BAMP,
BMP) when compared with C(BMP, BAMP) where the latter was narrower than the former.
In addition, we observed that BAMP dominated BN2 with higher percentage than the
domination of BN2 over BAMP. Contrary to the angle, the usage of distance as criterion for
exploration had less influence on the domination, as it is shown in Figure 10, where the
majority of approaches accomplished more dominance than standalone usage of distance
represented by BDMP. Another observation was that the usage of angle and distance was
better than using the distance solely. This is observed in Figure 11 because the value
of C(BDAMP, BDMP) was higher than the value of C(BDMP, BDAMP). However, BPSO
generated a non-dominated solution compared with the other benchmark. This solution
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dominated from a single objective over other objectives, namely, the objective of energy
distribution, while it was dominated with respect to other objectives.

Figure 9. Box plot of the set coverage between the approaches of BAMP with respect to BMP, BDMP, BDAMP, BN2, and
BPSO.

Figure 10. Boxplot of the set coverage between the approaches of BDMP with respect to BMP, BAMP, BDAMP, BN2, and
BPSO.

Figure 11. Box plot of the set coverage between the approaches of BDAMP with respect to BMP, BAMP, BDMP, BN2, and
BPSO.

4.2.2. Hyper-Volume

In order to evaluate the exploration in the objective space, we generated the hyper-
volume. The results of the hyper-volume as boxplots are given in Figure 12. Observing
the Figure 12, we noticed that each of the experiments provided different values of hyper-
volume. In some experiments, BAMP indicated higher value of hyper-volume (HV), while
in others, there was superiority of BDMP. This revealed that the performance of exploration
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was highly sensitive to the initial seed. However, BN2 outperformed other approaches of
swarm family in the hyper-volume.

Figure 12. Boxplot of hyper volume results of BAMP and BDAMP compared with benchmarks.

4.2.3. Number of Non-Dominated Solutions

The other metric that was used to evaluate the multi-objective optimization approaches
from the perspective of load balancing was the number of non-dominated solutions, which
is given in Figure 13. We observed that the approaches had almost the same NDS except
for BMP due to the high non-domination reached by searching within each algorithm.

Figure 13. Boxplot of NDS results of BAMP and BDAMP compared with the benchmarks.

4.2.4. Relative Generational Distance

The last metric was the relative generational distance, which needed to be minimized.
Figure 14 shows that BAMP and BPSO were the best in terms of minimizing this metric
compared with the other benchmark. However, it is important to distinguish between
lower Euclidean distance and more domination, which is not always associated.
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Figure 14. Boxplot of relative generational distance (RDG) results of BAMP and BDAMP compared
with the benchmarks.

4.2.5. Statistical Evaluation

For thorough evaluation, we conducted a t-test to verify the superiority from a statisti-
cal perspective. The t-test evaluation was conducted based on three metrics, namely, RGD,
HV, and NDS. The t-test was based on a series of 10 runs, changing the random seed. The
evaluation used a confidence level of 0.05 for rejecting the null hypothesis and accepting
the statistical significance of the difference between the approaches. As we observe in the
Figures 15 and 16, respectively, RGD and HV were the two metrics showing most statistical
differences between the approaches, while for NDS, statistical difference was only observed
for the comparison with BPSO because it was a single objective optimization and was weak
for providing the number of non-dominated solutions, as shown in Figure 17.

Figure 15. RGD T-test values between our approach and the benchmarks.

Figure 16. HV T-test values between our approach and the benchmarks.
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Figure 17. NDS T-test values between our approach and the benchmarks.

5. Conclusions and Future Considerations

The study successfully optimised load balancing in software defined networking
(SDN) using multi-objective optimisation (MOO) based on particle swarm optimisation
(PSO). The industry-benchmark-MP model was expanded to include two additional search
criteria, crowding distance and crowding angle. The former provided AMP, the latter
provided DMP algorithm, and joining them provided DAMP. In addition, Sigmoid transfer
function was then incorporated to convert them to binary, which provided BMP, BAMP,
BDMP, and BADMP. The evaluation was decomposed into two phases; the first one was
conducted based on benchmarking mathematical functions while the second one was con-
ducted on a developed load balancing SDN model with four objectives: energy (E), energy
distribution (D), makespan (T), and renting cost (R). It was found from the evaluation that
both AMP and DAMP were superior over DMP and MP in terms of the optimization of
the benchmarking mathematical functions. Both BAMP and BDAMP were also superior
over BMP and BDMP in terms of the load balancing metrics. Hence, the hypothesis of the
superiority of directionality or angle in the optimization was confirmed. Furthermore, it
was concluded that using conversion to binary space did not affect the performance of
the optimization.

As potential applications for our method, we give edge networks where the users have
some applications that need tasks to be executed in real time or with less latency, which
requires renting some local nodes for this purpose instead of sending them to the cloud.
Other potential applications are for the developed multi-objective optimization, which can
be used for various combinatory problems, such as surgeries planning in hospitals [46] and
job-shop planning [47].

Several limitations of the approach that can be addressed are as follows. Firstly,
it uses fixed angle resolution for dividing the solution space. This might lead to non-
stable performance based on the value that is given to the angle. Future studies should
explore extending load balancing by adding other objectives, such as node reliability,
and incorporating more search criteria in the optimisation algorithm. Another future
work is to enable adaptive angle decomposition of the solution space. Secondly, it uses
probabilistic selection of non-dominated solutions based on angle or distance in an equal
way. Another future work is to make the selection based on adaptive probability of selecting
non-dominated solutions. Thirdly, it uses global learning based on moving the particle
toward its global best following the conventional mobility equation of PSO. The global
learning might lead to premature convergence; a better approach is to use comprehensive
learning [48]. Fourthly, we will extend the model to handle dynamical aspects such as
running tasks twice on the same node and the cache effect.
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