Synchronization of Acoustic Signals for Steganographic Transmission
Abstract
:1. Introduction
2. Related Work
3. Embedding and Extraction Algorithm
4. Technique Development and Implementation
4.1. Monotonic Phase Correction
4.2. Direct Spread Spectrum
4.3. Pattern Insertion Detection
4.4. Minimal Error Synchronization
- where:
- n specifies the length (in the number of bits) of the code vector, ,
- m—integer, m ≥ 3,
- k—specifies the length (in the number of bits) of the information vector,
- t—is the corrective ability of the code.
- Model with PCMA codec;
- Model with iLBC codec variant 15.2 kbit/s.
- n = 127, k = 50, t = 13;
- n = 127, k = 15, t = 27.
5. Results
5.1. Signal Quality Assessment
- “raw” data (PESQ raw score or PESQ score);
- PESQ LQ (Listening Quality);
- P.862.1 (MOS—LQO, Mean Opinion Score Listening Quality Objective);
- P.862.2 (PESQ—WB).
5.2. Hidden Transmission Effectiveness Assessment
5.2.1. Steganographic Transmission on the VHF Radio Link
- Analogue Fixed Frequency (AFF) with F3E;
- Digital Fixed Frequency (DFF) with F1D, CVSD 16 kbit/s and encryption;
- Fast Frequency Hopping (FFH) with F1D and CVSD 16 kbit/s and encryption.
5.2.2. Steganographic Transmission in VoIP Channel
- PCMA, 64 kbit/s;
- Speex, 24.6 kbit/s;
- G.729, 8 kbit/s.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cox, J.; Miller, M.L.; Bloom, J.A.; Fridrich, J.; Kalker, T. Digital Watermarking and Steganography, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Pfitzmann, B. Information hiding terminology. In Information Hiding; Anderson, R., Ed.; Springer: Berlin/Heidelberg, Germany, 1996; Volume 1174, pp. 347–350. [Google Scholar]
- Haykin, S. Communication Systems, 3rd ed.; John and Wiley and Sons: Hoboken, NJ, USA, 1994. [Google Scholar]
- Djebbar, F.; Ayad, B.; Meraim, K.A.; Hamam, H. Comparative study of digital audio steganography techniques. EURASIP J. Audio Speech Music Process. 2012, 2012. [Google Scholar] [CrossRef] [Green Version]
- Geiser, B.; Mertz, F.; Vary, P. Steganographic packet loss concealment for wireless VoIP. In Proceedings of the ITG Conference on Voice Communication, Aachen, Germany, 8–10 October 2008. [Google Scholar]
- Wu, Z.-J.; Gao, W.; Yang, W. LPC parameters substitution for speech information hiding. J. China Univ. Posts Telecommun. 2009, 16, 103–112. [Google Scholar] [CrossRef]
- Tang, S.; Chen, Q.; Zhang, W.; Huang, Y. Universal steganography model for low bit-rate speech codec. Secur. Commun. Netw. 2015, 9, 747–754. [Google Scholar] [CrossRef]
- Takahashi, T.; Lee, W. An assessment of VoIP covert channel threats. In Proceedings of the International Conference on Security and Privacy in Communications Networks and the Workshops, Nice, France, 17–21 September 2007. [Google Scholar]
- Liu, L.; Li, M.; Li, Q.; Liang, Y. Perceptually transparent information hiding in G.729 bitstream. In Proceedings of the International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Harbin, China, 15–17 August 2008. [Google Scholar]
- Tian, H.; Zhou, K.; Huang, Y.; Feng, D.; Liu, J. A covert communication model based on least significant bits steganography in voice over IP. In Proceedings of the 9th International Conference for Young Computer Scientists, Hunan, China, 18–21 November 2008. [Google Scholar]
- Xiao, H.; Xiao, B.; Huang, Y. Implementation of covert communication based on steganography. In Proceedings of the International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Harbin, China, 15–17 August 2008. [Google Scholar]
- Xu, T.; Yang, Z. Simple and effective speech steganography in G.723.1 low-rate codes. In Proceedings of the International Conference on Wireless Communications & Signal Processing, Nanjing, China, 13–15 November 2009. [Google Scholar]
- Cheng, Y.; Guo, Z.; Xie, C.; Xie, Y. Covert communication method based on GSM for low-bit-rate speech. Chin. J. Circuits Syst. 2008, 13, 83–88. [Google Scholar]
- Qin, J.; Tian, H.; Huang, Y.; Liu, J.; Chen, Y.; Wang, T.; Cai, Y.; Wang, X.A. An efficient VoIP steganography based on random binary matrix. In Proceedings of the International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, Kraków, Poland, 4–6 November 2015. [Google Scholar]
- Dong, X.; Bocko, M.F.; Ignjatovic, Z. Robustness analysis of a digital audio steganographic method based on phase manipulation. In Proceedings of the International Conference on Signal Processing, Beijing, China, 31 August–4 September 2004. [Google Scholar]
- Ansari, R.; Malik, H.; Khokhar, A. Data-hiding in audio using frequency-selective phase alteration. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Montreal, QC, Canada, 17–21 May 2004. [Google Scholar]
- Nutzinger, M.; Wurzer, J. A novel phase coding technique for steganography in auditive media. In Proceedings of the International Conference on Availability, Reliability and Security, Vienna, Austria, 22–26 August 2011. [Google Scholar]
- Manunggal, T.T.; Arifianto, D. Data protection using interaural quantified-phase steganography on stereo audio signals. In Proceedings of the IEEE Region 10 Conference, Singapore, 22–25 November 2016. [Google Scholar]
- Alsabhany, A.A.; Ridzuan, F.; Azni, A.H. The adaptive multi-level phase coding method in audio steganography. IEEE Access 2019, 7, 129291–129306. [Google Scholar] [CrossRef]
- Dymarski, P.; Markiewicz, R. Time and sampling frequency offset correction in audio watermarking. In Proceedings of the International Conference on Systems, Signals and Image Processing, Sarajevo, Bosnia and Herzegovina, 16–18 June 2011. [Google Scholar]
- Piotrowski, Z.; Stasiewicz, K.; Wojtun, J. Using drift correction modulation for steganographic radio transmission. In Proceedings of the Sensor Signal Processing for Defence (SSPD 2012), London, UK, 25–27 September 2012. [Google Scholar]
- Ngo, N.M.; Unoki, M.; Minh, N.N. Robust and reliable audio watermarking based on phase coding. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, South Brisbane, Australia, 19–24 April 2015. [Google Scholar]
- Wodecki, K.; Piotrowski, Z.; Wojtuń, J. Acoustic steganographic transmission algorithm using signal coherent averaging. In Proceedings of the Military Communications and Information Systems Conference, Gdansk, Poland, 8–9 October 2012. [Google Scholar]
- Skopin, D.E.; El-Emary, I.M.M.; Rasras, R.J.; Diab, R.S. Advanced algorithms in audio steganography for hiding human speech signal. In Proceedings of the International Conference on Advanced Computer Control, Shenyang, China, 27–29 March 2010. [Google Scholar]
- Pal, D.; Ghoshal, N. Secured data transmission through audio signal. In Proceedings of the International Conference on Industrial and Information Systems, Gwalior, India, 15–17 December 2014. [Google Scholar]
- Dymarski, P.; Markiewicz, R. Robust audio watermarks in frequency domain. J. Telecommun. Inf. Technol. 2014, 2, 12–21. [Google Scholar]
- Piotrowski, Z.; Wojtuń, J. Comparison of selected steganography algorithms. In Proceedings of the Signal Processing: Algorithms, Architectures, Arrangements, and Applications, Poznań, Poland, 22–24 September 2014. [Google Scholar]
- Dymarski, P.; Markiewicz, R. Steganografia akustyczna w tle sygnału mowy. Przegląd Telekomunikacyjny Wiadomości Telekomunikacyjne 2017, 8, 665–669. [Google Scholar]
- Delforouzi, A.; Pooyan, M. Adaptive digital audio steganography based on integer wavelet transform. In Proceedings of the International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Kaohsiung, Taiwan, 26–28 November 2007. [Google Scholar]
- Shivaram, H.; Acharya, D.U.; Adige, R.; Deepthi, S.; Jyothi, U.K. Audio steganography in discrete wavelet transform domain. Int. J. Appl. Eng. Res. 2015, 10, 37544–37549. [Google Scholar]
- Carrion, P.; de Oliveira, H.M.; Campe, R.M. A Low-Throughput Wavelet-Based Steganography Audio Scheme; Cornell University: Ithaca, NY, USA, 2015. [Google Scholar]
- Hu, H.T.; Chen, S.H.; Hsu, L.Y. Incorporation of perceptually energy-compensated QIM into DWT-DCT based blind audio watermarking. In Proceedings of the International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Kitakyushu, Japan, 27–29 August 2014. [Google Scholar]
- Santosa, R.A.; Bao, P. Audio-to-image wavelet transform based audio steganography. In Proceedings of the International Symposium ELMAR, Zadar, Croatia, 8–10 June 2005. [Google Scholar]
- Sun, W.; Shen, R.; Yu, F.; Lu, Z. Data hiding in audio based on audio-to-image wavelet transform and vector quantization. In Proceedings of the International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Athens, Greece, 18–20 July 2012. [Google Scholar]
- Gomez-Coronel, S.L.; Acevedo-Mosqueda, M.A.; Mosqueda, M.E.A. Steganography in audio files by Hermite Transform. Appl. Math. Inf. Sci. 2014, 8, 959–966. [Google Scholar] [CrossRef] [Green Version]
- Sahraeian, S.M.E.; Akhaee, M.A.; Sankur, B.; Marvasti, F. Robust multiplicative watermarking technique with maximum likelihood detector. In Proceedings of the European Signal Processing Conference, Lausanne, Switzerland, 25–29 August 2008. [Google Scholar]
- Gazor, S.; Zhang, W. Speech probability distribution. IEEE Signal Process. Lett. 2003, 10, 204–207. [Google Scholar] [CrossRef]
- Xie, C.; Cheng, Y.; Wu, F. A new detection scheme for echo hiding. In Proceedings of the IEEE International Conference on Information Theory and Information Security, Beijing, China, 17–19 December 2010. [Google Scholar]
- Ghasemzadeh, H.; Kayvanrad, M.H. Toward a robust and secure echo steganography method based on parameters hopping. In Proceedings of the Signal Processing and Intelligent Systems Conference, Tehran, Iran, 16–17 December 2015. [Google Scholar]
- Tabara, B.; Wojtun, J.; Piotrowski, Z. Data hiding method in speech using echo embedding and voicing correction. In Proceedings of the Signal Processing Symposium, Jachranka, Poland, 12–14 September 2017. [Google Scholar]
- Nugraha, R.M. Implementation of direct sequence spread spectrum steganography on audio data. In Proceedings of the International Conference on Electrical Engineering and Informatics, Bandung, Indonesia, 17–19 July 2011. [Google Scholar]
- Kohls, K.S.; Holz, T.; Kolossa, D.; Pöpper, C. SkypeLine: Robust hidden data transmission for VoIP. In Proceedings of the Asia Conference on Computer and Communications Security, Xi’an, China, 30 May–3 June 2016. [Google Scholar]
- Krishnan, A.A.; Chandran, C.S.; Kamal, S.; Supriya, M. Spread spectrum based encrypted audio steganographic system with improved security. In Proceedings of the International Conference on Circuits, Controls, and Communications, Bangalore, India, 15–16 December 2017. [Google Scholar]
- Cox, I.J.; Doërr, G.; Furon, T. Watermarking is not cryptography. In Digital Watermarking; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1–15. [Google Scholar]
- Markiewicz, R. Znakowanie Wodne Sygnałów Fonicznych w Dziedzinie Częstotliwości. Ph.D. Thesis, Politechnika Warszawska, Warszawa, Poland, 2015. [Google Scholar]
- ISO. Information Technology—Coding of Moving Pictures and Associated Audio for Digital Storage Media at up to About 1.5 Mbit/s—Part 3: Audio; IEC 11172-3:1993; ISO: Geneva, Switzerland, 1993. [Google Scholar]
- Costa, M. Writing on dirty paper. IEEE Trans. Inf. Theory 1983, 29, 439–441. [Google Scholar] [CrossRef]
- Piotrowski, Z. Precise psychoacoustic correction method based on calculation of JND level. Acta Phys. Pol. A 2009, 116, 375–379. [Google Scholar] [CrossRef]
- Piotrowski, Z. Drift correction modulation scheme for digital audio watermarking. In Proceedings of the International Conference on Multimedia Information Networking and Security, Nanjing, China, 4–6 November 2010. [Google Scholar]
- Piotrowski, Z. Drift correction modulation scheme for digital signal processing. Math. Comput. Model. J. 2013, 57, 2260–2670. [Google Scholar] [CrossRef]
- Yang, L. Distance Metric Learning: A Comprehensive Survey; Department of Computer Science and Engineering Michigan State University: East Lansing, MI, USA, 2006. [Google Scholar]
- De Maesschalck, R.; Jouan-Rimbaud, D.; Massart, D.L. The Mahalanobis distance. Chemom. Intell. Lab. Syst. 2000, 50, 1–18. [Google Scholar] [CrossRef]
- Galeano, P.; Joseph, E.; Lillo, R.E. The Mahalanobis distance for functional data with applications to classification. Technometrics 2015, 52, 281–291. [Google Scholar] [CrossRef] [Green Version]
- Eiter, T.; Mannila, H. Computing Discrete Fréchet Distance; Christian Doppler Labor für Expertensyteme Technische Universität Wien: Vienna, Austria, 1994. [Google Scholar]
- Wylie, T.; Zhu, B. Following a curve with the discrete Fréchet distance. Theor. Comput. Sci. 2014, 556, 34–44. [Google Scholar] [CrossRef]
- Izydorczyk, J. Matlab i Podstawy Telkomunikacji; Helion: Gliwice, Poland, 2017. [Google Scholar]
- Dixon, R.C. Spread Spectrum Systems: With Commercial Applications, 3rd ed.; John and Wiley and Sons: Hoboken, NJ, USA, 1994. [Google Scholar]
- Rabiner, R.; Schafer, R.W. Digital Processing of Speech Signals; Prentice Hall: Hoboken, NJ, USA, 1978. [Google Scholar]
- ITU-T. Recommendation G.1010. End-User Multimedia QoS Categories; International Telecommunication Union: Geneva, Switzerland, 2001. [Google Scholar]
- ITU-T. Recommendation I.432. B-ISDN User-Network Interface—Physical Layer Specification; International Telecommunication Union: Geneva, Switzerland, 1993. [Google Scholar]
- Cuthbert, G.; Sapanel, J.C. ATM: The Broadband Telecommunications Solution; The Institution of Engineering and Technology: London, UK, 1993. [Google Scholar]
- ITU-T. Recommendation P.862. Perceptual Evaluation of Speech Quality (PESQ): An Objective Method for End-to-End Speech Quality Assessment of Narrow-Band Telephone Networks and Speech Codecs; International Telecommunication Union: Geneva, Switzerland, 2001. [Google Scholar]
- Voice Quality Testing and Performance Assessment. Available online: https://www.opalesystems.com/multidsla-audio-voice-quality-testing/ (accessed on 14 May 2020).
- Łubkowski, P.; Mazewski, T. Ocena wpływu szyfrowania na jakość usługi VoIP w sieci heterogenicznej. Przegląd Telekomunikacyjny i Wiadomości Telekomunikacyjne 2019, 7, 529–532. [Google Scholar]
- ITU-T. Recommendation P.862.3. Application Guide for Objective Quality Measurement Based on Recommendations P.862, P.862.1 and P.862.2; International Telecommunication Union: Geneva, Switzerland, 2007. [Google Scholar]
- ITU-T. Recommendation P.501. Test Signals for Use in Telephonometry; International Telecommunication Union: Geneva, Switzerland, 2017. [Google Scholar]
- ITU-T. Recommendation P.862.1. Mapping Function for Transforming P.862 Raw Result Scores to MOS-LQO; International Telecommunication Union: Geneva, Switzerland, 2003. [Google Scholar]
- ITU-T. Recommendation P.800. Methods for Objective and Subjective Assessment of Quality; International Telecommunication Union: Geneva, Switzerland, 1996. [Google Scholar]
- Malden Electronics. Speech Quality Assessment. Background Information for DSLA and MultiDSLA User with PESQv2.2; Malden Electronics: Epsom, UK, 2007. [Google Scholar]
- ITU-R. Recommendation BS.1116-3. Methods for the Subjective Assessment of Small Impairments in Audio Systems; International Telecommunication Union: Geneva, Switzerland, 2015. [Google Scholar]
- ITU-T. Recommendation P.50—Appendix I. Test Signals; International Telecommunication Union: Geneva, Switzerland, 1999. [Google Scholar]
- Hersent, O.; Petit, J.-P.; Gurle, D. Beyond VoIP Protocols; John and Wiley and Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- PJSIP. Available online: https://www.pjsip.org/ (accessed on 1 July 2020).
- Chadov, T.A.; Erokhin, S.D.; Tikhonyuk, A.I. Machine learning approach on synchronization for FEC enabled channels. In Proceedings of the Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO), IEEE Xplore, Minsk, Belarus, 4–5 July 2018. [Google Scholar] [CrossRef]
- Wang, S.; Wang, G.; Pu, B.; Ju, R.; Zhao, Y.; Wang, H. Research on high precision algorithm of network time synchronization based on machine self-learning. In Proceedings of the 9th International Conference on Intelligent Control and Information Processing (ICICIP), IEEE Xplore, Wanzhou, China, 9–11 November 2018. [Google Scholar] [CrossRef]
Length of Observation Window d | PCMA | iLBC |
---|---|---|
31 | 7 | 6 |
63 | 7 | 8 |
127 | 7 | 10 |
255 | 10 | 15 |
n | k | t | R [bit/s] | T [s] |
---|---|---|---|---|
31 | 6 | 7 | 4.03 | 1.488 |
63 | 18 | 10 | 5.95 | 3.024 |
63 | 16 | 11 | 5.29 | 3.024 |
63 | 10 | 13 | 3.31 | 3.024 |
63 | 7 | 15 | 2.31 | 3.024 |
127 | 57 | 11 | 9.35 | 6.096 |
127 | 50 | 13 | 8.20 | 6.096 |
127 | 43 | 14 | 7.05 | 6.096 |
127 | 36 | 15 | 5.91 | 6.096 |
127 | 29 | 21 | 4.76 | 6.096 |
127 | 22 | 23 | 3.61 | 6.096 |
127 | 15 | 27 | 2.46 | 6.096 |
127 | 8 | 31 | 1.31 | 6.096 |
n | k | t | P |
---|---|---|---|
31 | 6 | 7 | 1.06676·10−1 |
63 | 18 | 10 | 4.42610·10−3 |
63 | 16 | 11 | 5.43770·10−3 |
63 | 10 | 13 | 1.55420·10−3 |
63 | 7 | 15 | 2.40600·10−3 |
127 | 57 | 11 | 2.50000·10−6 |
127 | 50 | 13 | 1.10000·10−6 |
127 | 43 | 14 | 1.00000·10−6 |
127 | 36 | 15 | 1.00000·10−6 |
127 | 29 | 21 | 1.00000·10−6 |
127 | 22 | 23 | 1.00000·10−6 |
127 | 15 | 27 | 1.00000·10−6 |
127 | 8 | 31 | 4.00000·10−7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wojtuń, J.; Piotrowski, Z. Synchronization of Acoustic Signals for Steganographic Transmission. Sensors 2021, 21, 3379. https://doi.org/10.3390/s21103379
Wojtuń J, Piotrowski Z. Synchronization of Acoustic Signals for Steganographic Transmission. Sensors. 2021; 21(10):3379. https://doi.org/10.3390/s21103379
Chicago/Turabian StyleWojtuń, Jarosław, and Zbigniew Piotrowski. 2021. "Synchronization of Acoustic Signals for Steganographic Transmission" Sensors 21, no. 10: 3379. https://doi.org/10.3390/s21103379
APA StyleWojtuń, J., & Piotrowski, Z. (2021). Synchronization of Acoustic Signals for Steganographic Transmission. Sensors, 21(10), 3379. https://doi.org/10.3390/s21103379