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Abstract: The use of low-level photogrammetry is very broad, and studies in this field are conducted
in many aspects. Most research and applications are based on image data acquired during the
day, which seems natural and obvious. However, the authors of this paper draw attention to the
potential and possible use of UAV photogrammetry during the darker time of the day. The potential
of night-time images has not been yet widely recognized, since correct scenery lighting or lack of
scenery light sources is an obvious issue. The authors have developed typical day- and night-time
photogrammetric models. They have also presented an extensive analysis of the geometry, indicated
which process element had the greatest impact on degrading night-time photogrammetric product, as
well as which measurable factor directly correlated with image accuracy. The reduction in geometry
during night-time tests was greatly impacted by the non-uniform distribution of GCPs within the
study area. The calibration of non-metric cameras is sensitive to poor lighting conditions, which
leads to the generation of a higher determination error for each intrinsic orientation and distortion
parameter. As evidenced, uniformly illuminated photos can be used to construct a model with lower
reprojection error, and each tie point exhibits greater precision. Furthermore, they have evaluated
whether commercial photogrammetric software enabled reaching acceptable image quality and
whether the digital camera type impacted interpretative quality. The research paper is concluded
with an extended discussion, conclusions, and recommendation on night-time studies.
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1. Introduction

Low-level air photogrammetry using unmanned aerial vehicles (UAVs) has attracted
huge interest from numerous fields over the last ten years. Photogrammetric products are
used in various economic sectors, and thus intensively contribute to their growth. This
situation primarily results from the development and widespread availability of UAVs
equipped with good-quality non-metric cameras, the development of software base and
easy-to-use photogrammetric tools, as well as increased computing power of personal
computers. Despite the already widespread use of the aforementioned techniques, there is
still a large number of issues associated with the processing of low-level photogrammetry
products. This is mainly influenced by a relatively young age of this technology, the
dynamic development of sensor design technology and modern computing methods. It
can be stated without doubt that the complete potential of photogrammetry has not yet
been fully discovered and unleashed, which is why scientists and engineers are constantly
working on improving and developing the broadly understood UAV photogrammetry.

Works in the field of developing UAV measurement technologies are conducted
concurrently on many levels. Scientists quiet rightly focus on selected elements of the entire
photogrammetric product process, studying particular relationships, while suggesting new
and more effective solutions. Research in the field of UAV photogrammetry can be divided
into several mainstreams, with the main ones including:
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• Carrier system technology and techniques [1–4]: Works in this group focus on im-
proving the navigation-wise aspects of flight execution, georeference accuracy, or
sensor quality in order to achieve even better in-flight performance, flight time and
stability [5–7], as well as the accuracy of navigation systems feeding their data to
measuring modules [8,9].

• Optimization of photogrammetric product processes [10–13]: Scientists look at pro-
cesses ongoing at each stage of image processing and suggest optimal recommenda-
tions in terms of acquisition settings, image recording format [14], flight planning, or
application of specific software settings [15].

• Evaluating the quality of results obtained using UAV photogrammetry [16,17]: These
analyses address the issues of errors obtained for photogrammetric images and prod-
ucts, based on applied measuring technologies (from the acquisition moment, through
data processing using specialized software).

• Focusing on the development of new tools improving the quality of low-level im-
ages [18–20]: Studies in this group involve a thorough analysis of the procedure of
acquiring and processing UAV images and suggest new, mainly numerical, methods
for eliminating identified issues [21–23]. As it turns out, photos taken from a dynam-
ically moving UAV under various weather and UAV lighting conditions exhibit a
number of flaws. These flaws result directly from the acquisition method and impact
photogrammetric product quality.

• Showing new applications and possibilities for extracting information from spatial
orthophotoimages based on photos taken in the visible light range [24–27] and by
multi-spectral cameras [28–30]: Unmanned aerial vehicles are able to reach places
inaccessible to traditional measurement techniques [31,32]. However, they carry an
incomplete spectrum of sensors onboard, due to their restricted maximum take-off
mass (MTOM). Therefore, scientists focus on methods that enable extracting significant
information from this limited number of sensors and data, e.g., only from a single
camera, but used at various time intervals [33] or a limited number of spectral channels
in cameras used on the UAV.

• Presenting new photogrammetric software and tools [34–36]: The increasing demand
for easy-to-use software obviously results in the supply of new products, both typi-
cally commercial and non-commercial products. New technologies and methods are
developed in parallel.

• Using sensory data fusion [37–39]: The issue in this group is the appropriate har-
monization of data obtained from a dynamically moving UAV and other stationary
sensors. Very often, these data have a slightly different structure, density, or accu-
racy, e.g., integration of point cloud data obtained during a photogrammetric flight,
terrestrial laser scanning, and bathymetric data [40,41].

The above research, focusing strictly on specified certain narrow aspects of developing
a photogrammetric product based on data acquired from an unmanned aerial vehicle,
translate into further application studies, case studies, and new practical applications.
Naturally, the most populated group of application studies are works addressing the
issue of analysing the natural environment and urban areas. Popular application-related
research subjects include analysing the wood stand in forestry [42–45], supporting precise
agriculture and analysing the crop stand [46–48], and geoengineering analyses for the
purposes of landform change and landslide analyses [49–52].

As evidenced above, the application of low-level photogrammetry is very broad,
and studies in this field are conducted in many aspects. It should be noted that all the
aforementioned research is based on image data acquired during the day, which seems
natural and obvious. However, the authors of this paper draw attention to the potential
and possible use of UAV photogrammetry during the darker time of the day. Previously,
the potential of night-time images has not been yet widely recognized, since correct scenery
lighting or a lack of scenery light sources remain obvious issues [53].
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Studies dealing with night-time photogrammetry that point to the potential of such
photos are still a niche topic [54]. A good example is the case of images inside religious
buildings, obtained during the night and supported by artificial lighting. Such methods
are used in order to improve the geometric model quality of the studied buildings through
avoiding reflections and colour changes caused by sunlight penetrating into the interior
through colourful stained-glass windows [55]. Similar conclusions were drawn by the
authors of [56], who studied the issues associated of modelling building facades. The
dark time of the day favours background elimination and extracting light sources. This
property was utilized by the authors of [57], who used light markers built from LEDs to
monitor the dynamic behaviour of wind turbines. This enabled to achieve a high contrast
of reference light points on the night-time photos, which improved their location and
identification. Similar, too, was the case with analysing landslide dynamics [58]. Santise
et al. [59] focused on analysing the reliability of stereopairs taken at night, with various
exposure parameters, for the purposes of geostructural mapping of rock walls. These
examples show that terrestrial night-time photogrammetry has been functioning for years,
albeit with a small and narrow scope of applications.

Night-time photogrammetry using UAVs has been developing for several years.
The appearance of very sensitive digital camera sensors with low specific noise and
small cameras working in the thermal infrared band made it quite easy to use them on
UAVs [60,61]. So far, the main target of interest for UAV night-time photogrammetry has
been urban lighting analyses.

The problem of artificial lighting analysis may comprise of numerous aspects. The
first one is safety [62]. This topic covers analysing the intensity of lighting, which is impor-
tant from the perspective of local safety, and enables optimizing lamppost arrangement,
designing illumination direction, power, and angle, and thus selecting lighting fixtures. A
properly illuminated spot on the road allows to see danger in time, is cost-efficient, and
does not dazzle drivers [63–65]. On the other hand, artificial lighting also has a negative
impact on humans and animals [66]. It has been an actor in the evolution of nature and
humans for a short time, and its presence, especially accidental, is defined as artificial light
pollution [67]. The issue associated with this phenomenon is increasingly noticed already
at society level [68]. Night-time spatial data will be an excellent tool for analysing light
pollution. Data from digital cameras mounted on UAVs and data from terrestrial laser
scanning (TLS) for analysing street lighting is used for this purpose [69]. The authors of [70]
showed that UAV data enable capturing urban lighting dynamics both in the spatial and
temporal domains. In this respect, the scientists utilized the relationship between observed
quality and terrestrial observations recorded using a sky quality meter (SQM) light intensity
tool. For the purposes of determining luminance, the authors of [71] present methods for
calibrating digital cameras fixed on UAVs and review several measuring scenarios.

UAVs equipped with digital cameras are becoming a tool that can play an impor-
tant role in analysing artificial light pollution [72,73]. The possibility of obtaining high-
resolution point clouds and orthophotoimages is an important aspect in this respect. The
aforementioned research did not involve an in-depth analysis of the photogrammetric
process and the geometric accuracy of typical models based on night-time photos (with
existing street lighting). All analyses based on spatial data obtained through digital imag-
ing should be supported with analysing point cloud geometric errors and evaluating the
quality of developed orthomosaic. Night-time acquisition, as in the above cases, should
not be treated the same as day-time measurements. These studies assumed, a priori, that
typical photogrammetric software was equally good with developing photos taken in good
lighting and night-time photographs. The issues that impact night-time image quality can
also be scenery lighting discontinuity or too poor lighting at the scene, and increased levels
of noise and blur appearing on digital images obtained from UAVs.

As a result of the above considerations, the authors of this paper put forward a
thesis that a photogrammetric product based on night-time photos will exhibit lower
geometric accuracy and reduced interpretative quality. It seems that this thesis is rather
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obvious. However, after a deeper analysis of the photogrammetric imaging process,
starting with data acquisition, through processing and to spatial analyses, it is impossible
to clearly state which of the elements of this process will have the greatest influence on the
quality of a photogrammetric product. This leads to questions concerning which process
element had the greatest impact on degrading a night-time photogrammetric product,
which measurable factor directly correlated with image accuracy, and whether commercial
photogrammetric software enabled reaching acceptable image quality and whether the
digital camera type impacted interpretative quality. Therefore, the authors of this study set
a research objective of determining the impact of photogrammetric process elements on
the quality of a photogrammetric product, for the purposes of identifying artificial lighting
at night.

2. Materials and Methods
2.1. Research Plan

In order to verify the thesis and research assumptions of this paper, a test schedule
and computation process were developed. This process in graphic form, and the used tools,
are shown in Figure 1. The test data were acquired using two commercial UAVs. The study
involved 4 research flights, two during the day, around noon, and two at night. Study
data were processed in popular photogrammetric software, and typical photogrammetric
products were then subjected to comparative analysis. The study involved taking day-time
photos in automatic mode, and night-time ones manually. This enabled correctly exposing
the photos at night, without visible blur. The details of these operations are shown in the
further section of this paper.
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2.2. Data Acquisition

Research flights were conducted using two UAV types: DJI Mavic Pro (MP1) and
DJI Mavic Pro 2 (MP2) (Shenzhen DJI Sciences and Technologies Ltd., Shenzhen, China).
Such an unmanned aerial vehicles are the representatives of commercial aerial systems,
designed and intended primarily for recreational flying and for amateur movie-makers. The
versatility and reliability of these devices was quickly appreciated by the photogrammetric
community. Their popularity results mainly from their operational simplicity and the very
intuitive ground station software.

Both UAVs are equipped with an integrated digital camera with a CMOS (comple-
mentary metal-oxide-semiconductor) sensor Table 1. An FC220 digital camera installed
onboard the MP1 is a compact device with a very small 1/2.3” (6.2 × 4.6 mm) sensor and
a minor maximum ISO (1600) sensitivity. The more recent Hasselblad L1D-20c structure,
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installed onboard the MP2, is characterized by 4× the sensor area of 1” (13.2 × 8.8 mm)
and a maximum ISO of 12800. In light of the technical specification of the L1D-20c camera,
it can be presumed that it will provide greater flexibility at night, and will allow to obtain
images of better quality.

Table 1. Technical data of camera installed onboard UAVs.

Technical Data FC220 Hasselblad L1D-20c

Sensor size 1/2.3” CMOS, 12.35 MP 1” CMOS, 20 MP
Pixel Size 1.57 × 1.57 µm 2.41 × 2.41 µm

Focal Length 4.73 mm 10.26 mm
Lens FOV * 78.8◦ (28 mm **) f/2.2 FOV * 77◦ (28 mm **) f/2.8
Focus from 0.5 m to ∞ from 1 m to ∞

ISO Range (photo) 100–1600 100–12,800
Shutter Speed, type 8 s–1/8000 s, electronic 8 s–1/8000 s, electronic
Image Size (pixels) 4000 × 3000 5472 × 3648
Photo file format JPEG, DNG JPEG, DNG

* FOV—field of view, ** 35 mm equivalent focal length.

The dimensions of the test area are 290 × 630 m, with all the flights conducted at an
altitude of 100 m AGL (above ground level), with a forward and lateral overlap of 75%.
Depending on the case, a total of 114 to 136 photos with metadata and the actual UAV
position were taken. The data are saved in the EXIF (exchangeable image file format).
Day-time flights were programmed and conducted automatically, according to a single
grid plan, over the designated terrain. Nigh-time flights were conducted following a single
grid plan, although in manual mode. In order to minimize blur induced by long exposure
time at night, every time after taking the position to take the photo, the operator would
hover for 2–3 s, and manually release the shutter after stabilizing the vehicle. The aim of
this procedure was to obtain possibly sharp images without blur. All images acquired at
night were visually assessed as sharp and without blur.

Sensor sensitivity was set manually at a constant value of 400 ISO, which extended
the exposure time, but enabled minimizing noise. As is was deeply investigated by
Roncella et al. in [74], the most affecting parameter on the overall performance of the
photogrammetric system in extreme low-light is the ISO setting. The higher ISO always
increases the level of noise of the images, making the matching process less accurate
and reliable. The peak signal-to-noise ratio (PSNR), calculated as in [74] for test images
(Figure 2, with reference to the ISO 100 test image, proves that the image quality reduces,
and noise increases for higher ISO for utilized cameras. With the procedure used to take the
image (while hovering), increasing the ISO above 400 would increase the noise, but without
affecting the blur significantly. Reducing ISO below 400 resulted in longer exposure time
and increased blur. The right ISO setting is a balance between the noise and the shutter
speed for particular lighting conditions.

The white balance was also set manually to a fixed value. It should be noted that the
digital camera used within this research can effectively take photos automatically both
during the day and night. In automatic mode, the processor adapts all adjustable exposure
parameters. In the case of the white balance, its value is also adjusted for each shot. As
far as measurement night-time photos are concerned, exposure automation can be tricky.
During the night, the processor attempts to maximize sensor sensitivity, at the expense
of reduced exposure time and minimizing blur. This situation is exacerbated when flying
over a study area without artificial lighting. The white balance can be changed even for
every photo, especially, as seen in the presented case, when the urban lighting colour is
variable. A summary of research flights is shown in Table 2.
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Table 2. Research flight parameters.

Flight Symbol UAV Daytime Flight Plan Coverage Area

MP1-D DJI Mavic Pro day single grid auto 0.192 km2

MP2-D DJI Mavic Pro 2 day single grid auto 0.193 km2

MP1-N DJI Mavic Pro night single grid manual 0.114 km2

MP2-N DJI Mavic Pro 2 night single grid manual 0.147 km2

A photogrammetric network was developed that comprised of 23 ground control
points (GCPs), non-uniformly arranged throughout the study area, and their positions were
measured with the GNSS RTK accurate satellite positioning method. The non-uniform
distribution of points was forced directly by the lack of accessibility to the south-eastern
and central parts of the area. The south-eastern area is occupied by the closed part of the
container terminal, and the distribution of points in the central part, where the viaduct
passes, was unsafe due to the high car traffic. GCP position was determined relative
to the PL-2000 Polish state grid coordinate system and their altitude relative to the PL-
EVRF2007-NH quasigeoid. All control points were positioned in characteristic, natural
locations. These are mainly easyto identify in both day-time and night-time photos of
terrain fragments with variable structure, road lane boundaries, and manhole covers. When
locating control points, a priority rule that GCPs had to be located at spots illuminated
with streetlamp lighting was adopted (Figure 3a,b). Furthermore, for analytical purposes,
several points located within a convenient area were, however, not illuminated with
artificial lighting (Figure 3c,d).
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2.3. Data Processing

The flights enabled to obtain images that were used to generate a photogrammetric
product without any modifications. Standard products in the form of a point cloud,
digital terrain model (DTM), and orthophotoimages in Figure 4 were developed in Agisoft
Metashape v1.7.1 (Agisoft LLC, St. Petersburg, Russia).
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Products were developed smoothly. The processing for each data set followed the
same sequence, with the same settings. The operator tagged all visible GCPs both at night
and day. Some GCPs at night were not readily identifiable on the photos due to insufficient
lighting. Table 3 shows a brief summary of the basic image processing parameters.

Table 3. Flight plan data—read from reports.

Flight Flying Altitude
(Reported)

Ground
Resolution

Number of
Photos

Camera
Stations

MP1-D 105 m 3.05 cm/px 129 129
MP2-D 127 m 2.26 cm/px 126 126
MP1-N 69.7 m 3.11 cm/px 136 136
MP2-N 118 m 2.24 cm/px 114 114
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All of them contain a similar number of photos with the flight conducted at the same
altitude of 100 m AGL (above ground level). As said above, MP1-N flight altitude is signif-
icantly underestimated, which is typical for photos of reduced quality, as demonstrated
in [18]. Such an incorrect calculation is a symptom of errors that translate to the geometric
quality of a product, which will be proven later in the paper.

Table 4 shows a summary of tie point data. As can be seen, day-time products have a
similar number of identified tie points, while night-time ones exhibit significantly fewer.

Table 4. Tie points and reprojection error data.

Flight Tie
Points

Mean Key
Point Size Projections Reprojection

Error
Max Reprojection

Error

MP1-D 134.894 5.08186 px 450.874 0.952 px 20.844 px
MP2-D 141.035 3.26046 px 414.585 0.543 px 20.5249 px
MP1-N 46.870 8.41085 px 131.625 2.04 px 37.4667 px
MP2-N 57.392 9.15704 px 154.054 1.85 px 36.7523 px

Night-time data for the suggested analysis area enabled identifying approximately
30–40% tie points of the ones identifiable during the day. In addition, the mean key point
size in the case of night-time photos is from 165% to 312% higher than the respective
day-time cases.

Tables 5 and 6 show the mean camera position error and root mean square error (RMSE)
calculated for ground control point positions, respectively. The mean camera position
error is the difference in the camera position, determined by an on-board navigation and
positioning system resulting from aerotriangulation. The values of errors in the horizontal
plane (x,y) fall within the limits typical for GPS receivers used in commercial UAVs. The
absolute vertical plane error (z) is significantly higher (from 13 to 45 m) and arises directly
from different altitude reference systems. Table 7 presents the root mean square error
(RMSE) calculated for check points position.

Table 5. Average camera location error. X—Easting, Y—Northing, Z—Altitude.

Flight X Error (m) Y Error (m) Z Error (m) XY Error (m) Total Error (m)

MP1-D 2.60381 2.36838 44.9193 3.51981 45.057
MP2-D 2.00514 2.68327 22.9008 3.34971 23.1445
MP1-N 1.09268 3.65444 25.9414 3.8143 26.2203
MP2-N 2.49058 1.48535 13.4276 2.89987 13.7372

Table 6. Control point root mean square error (RMSE). X—Easting, Y—Northing, Z—Altitude.

Flight GCP
Count

X Error
(cm)

Y Error
(cm)

Z Error
(cm)

XY Error
(cm) Total (cm)

MP1-D 13 9.53984 11.439 2.57716 14.895 15.1163
MP2-D 14 11.8025 15.6751 3.22474 19.6216 19.8848
MP1-N 10 3.52971 2.80579 2.06805 4.50902 4.96066
MP2-N 9 8.96118 8.146 0.531357 12.1103 12.122

Table 7. Check point root mean square error (RMSE). X—Easting, Y—Northing, Z—Altitude.

Flight CPs Count X Error
(cm)

Y Error
(cm)

Z Error
(cm)

XY Error
(cm) Total (cm)

MP1-D 3 8.48112 16.8594 15.6909 18.8725 24.5433
MP2-D 3 21.8543 34.1211 25.9101 40.5199 48.0957
MP1-N 3 2.36402 4.10461 2.97748 4.73671 5.5948
MP2-N 3 2.03436 8.85104 5.07036 9.08182 10.4013
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A total of 26 ground control points were located in the field. All points visible on the
photos were tagged by the operator and included in software calculations. Further, 13 and
14 points, respectively, were located in the processing area at daytime, while during the
night 10 and 9 were visible. The points located in spots without lighting were not visible
on the photos or their visibility was so low that it was impossible to properly mark them
in the processing software with sufficient certainty. In order to control the quality of the
process, three check points (CPs) were established and distributed over the study area. The
GCPs and CPs distribution over the research area is presented in Figure 5.
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2.4. Camera Calibration

The Agisoft Metashape software uses a parametric lens distortion model developed
by Brown [75,76]. For a perspective pinhole camera, transformation of points (Xc, Yc, Zc)
in space <3 to coordinates in image plane (x, y) in space <2, omitting the final units of the
image coordinate system, can be expressed as [77]:

x = f
Xc

Zc
, (1)

y = f
Yc

Zc
, (2)

where f means the image plane distance from the projection centre.
The camera’s local system has its origin in the centre of the camera system projections

(Oc), axis Zc is oriented towards the observation direction, axis Xc is oriented towards
the right, axis Yc is oriented downwards, while the origin of the image coordinate system
(background system) is located in the centre of the image plane.

The camera’s optical system introduces certain deformations called distortions that
cause displacement of point (x, y) within the background plane into a different position
(x′, y′). The new position, taking into account radial and decentring distortion, can be
expressed as:

x′ = x
(

1 + K1r2 + K2r4 + K3r6 + K4r8
)
+
(

P1

(
r2 + 2x2

)
+ 2P2xy

)
, (3)

y′ = y
(

1 + K1r2 + K2r4 + K3r6 + K4r8
)
+
(

P2

(
r2 + 2y2

)
+ 2P1xy

)
, (4)
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where: K1, K2, K3, K4 are radial symmetric distortion coefficients, P1, P2 are decentring
distortion coefficients (including both radial asymmetric and tangential distortions), while
r is the radial radius, defined as:

r =
√

x2 + y2. (5)

Because in the discussed case we are dealing with an image plane in the form of
CMOS sensors, it is necessary to convert (x′, y′) into image coordinates expressed in pixels.
In the case of digital images, coordinates are usually given in accordance with the sensor
indexation system adopted in the digital data processing software. Therefore, for this
image, axis x is oriented to the right, axis y downwards, and the origin is located at the
centre of the pixel (1, 1). Coordinates for this system are expressed in pixels. Therefore,
taking into account the image matrix size, the physical size of the image pixel, affinity
non-orthogonality, principal point offset, and the projected point coordinates in the image
coordinate system, we can write:

u = 0.5w + cx + x′ f + x′B1 + y′B2, (6)

v = 0.5h + cy + y′ f , (7)

where: u, v is expressed in pixels (px), f denotes focal length (px), cx, cy principal point
offset (px), B1, B2 affinity and non-orthogonality (skew) coefficients (px), w, h image
width and height, image resolution (px), and they are all defined as intrinsic orientation
parameters (IOP).

Correct determination of IOPs (intrinsic orientation parameters) and distortion pa-
rameters is very important in terms of photogrammetry. In the traditional approach, these
parameters are determined at a laboratory and are provided with a metric camera. UAV
photogrammetry usually uses small, non-metric cameras, where the intrinsic orientation
and distortion parameters are unknown and unstable (not constant and can slightly change
under the influence of external factors like temperature and vibrations). Due to the fact
that the knowledge of current IOPs is required, the photogrammetric software used in
this study calibrates the camera in each case, based on measurement photos, and calcu-
lates current IOPs for given the conditions and camera. Such a process ensures result
repeatability. However, it functions correctly mainly in the case of photos taken under
good conditions, i.e., during the day, sharp, and well-illuminated. Table 8 shows IOPs and
distortion parameters determined by the software for each case.

Table 8. Camera internal orientation element value for each image.

Parameter

Flight

MP1-D MP2-D MP1-N MP2-N

Value Error Value Error Value Error Value Error

F 3127.860000 5.200000 5206.030000 10.000000 1532.460000 6.800000 4882.830000 12.000000
Cx −28.166700 0.140000 −82.683800 0.490000 31.520100 0.210000 −75.996700 0.820000
Cy 0.162081 0.120000 −6.182140 0.200000 −33.175400 0.180000 −28.009800 0.370000
B1 −10.043200 0.076000 −22.277500 0.110000 0.457534 0.063000 - -
B2 −6.308330 0.058000 −6.289880 0.088000 0.629884 0.057000 14.112600 0.170000
K1 0.098579 0.000490 −0.029047 0.000170 0.047936 0.000510 −0.021496 0.000610
K2 −0.585459 0.004500 0.026580 0.000780 −0.068125 0.001300 −0.002758 0.003500
K3 1.420050 0.015000 −0.051838 0.001400 0.043968 0.001200 −0.011242 0.006000
K4 −1.180670 0.017000 - - −0.009856 0.000370 - -
P1 −0.000286 0.000010 −0.003291 0.000008 −0.000265 0.000021 −0.003015 0.000031
P2 0.000362 0.000011 −0.001647 0.000009 −0.000030 0.000018 −0.001895 0.000023
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3. Results
3.1. Geometry Analysis

The geometric quality of developed relief models was evaluated using the methods
described in [78]. An M3C2 distance map (multiscale model to model cloud comparison)
was developed for each point cloud. The M3C2 distance map computation process utilized
3-D point precision estimates stored in scalar fields. Appropriate scalar fields were selected
for both point clouds (referenced and tested) to describe measurement precision in X, Y,
and Z (σX , σY, σZ). The results for the cases are shown in Figure 6.
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The statistical distribution of M3C2 distances is close to normal, which means that
a significant part of the observations is concentrated around the mean (Table 9). The
mean (µ) for the comparison of night-time and day-time cases shows, both from MP1
and MP2, that the models are 0.4 to 1.6 m apart. Furthermore, standard deviation (σ)
(above 4 m) indicates that there are significant differences between the models. A visual
analysis Figure 6 explicitly shows that the highest distance differences can be seen in the
area of the flyover, which is a structure located much higher than the average elevation
of the surrounding terrain in the case of the flight with UAV MP1 (Figure 6a). The same
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comparison of the night-time and day-time models for UAV MP1 does not exhibit such
significant differences in this area (Figure 6b). It should be noted that M3C2 values are
clearly higher in the area remote from GCP (south-eastern section of Figure 6a,b, values in
yellow). It follows directly that, within the model development process, upon a significantly
reduced tie point number, which is the case for night-time photos, aerotriangulation
introduces a significant error. This is error is greater the farther the tie points are from
identified GCPs. This phenomenon does not occur to such an extent for day-time cases
(day MP1/day MP2) shown in Figure 6c. It is confirmed by the visual and parametric
assessment of statistical data (Table 9).

Table 9. Mean distance value and standard deviation for M3C2.

M3C2 Case Mean (m) Std.Dev (m)

MP1-D/N −0.39 4.14
MP2-D/N 1.63 4.59

D-MP1/MP2 0.11 2.52
N-MP1/MP2 −3.17 5.04

The D-MP1/MP2 case exhibits values µ = 0.11 m σ = 2.52 m, and a clear elevation
of the deviation occurs only in the flyover area. The analysis of the night/night case
clearly emphasizes the issue of reconstructing higher structures (flyover, building), which
is particularly based on correct aerotriangulation. The error of reconstructing objects
located higher than the average terrain elevation, with rapidly increasing elevation is
significant. This confirms that a reduction in the tie point number caused by low intensity
has a great impact on reconstruction errors. It is clearly demonstrated in the area of the
flyover highway, where the software does not identify so many tie points.

3.2. Autocalibration Process Analysis

Intrinsic orientation parameters (IOPs), including lens distortion parameters, have
a significant impact on the geometry of a photogrammetric product. The automatic cali-
bration process executed by Agisoft is based primarily on correctly identified tie points.
Figure 7 shows a graphical comparison of the parameters, previously shown in Table 8.
The graphical presentation of grouped results with corresponding error, for day/night
cases, shows a noticeable trend and relationships that translate to the above reduced
image quality.

Theoretically, and in line with previous experience [18,19,79], the calibration param-
eters for a single camera should be the same or very similar. Typically, especially for
non-metric cameras, the recovered IOP are only valid for that particular project, and they
can be slightly different for another image block under different conditions. In the case of
night-time calibration, which can be seen in Figure 7, IOPs are significantly different than
in the case of day-time calibration. This difference is particularly higher for cameras with
lower quality and sensitivity (UAV MP1). The focal length (F) for MP1 changes its value by
50% during the night, and only by 6% in the case of MP2. Tie point location (Cx, Cy) for
MP1 was displaced by more than 60 pixels in the x-axis during the night. B coefficients for
night-time cases tend to strive to zero. We can also observe significant differences in terms
of radial and tangential distortion for UAV MP1. Whereas the distortion parameters for the
MP2 camera remain similar, they exhibit a higher error at night. The intrinsic orientation
and distortion parameter determination error is significantly higher at night in all cases.

In order to achieve additional comparison of calibration parameters, their distribution
within the image plane and a profile depend on the radial radius. Figures 8 and 9 show
corresponding visualisations for MP1 and MP2, respectively.
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As noted, the IOP and distortion determination error is significantly higher at night
in each case. This means that these values are determined less precisely than during the
day, which directly translates to reduced model development precision. In order to verify
this hypothesis, the authors conducted additional analyses and calculated the maximum
possible point ground displacement for a single air photo at an altitude of 100 m, taking
into account the value of intrinsic orientation and distortion parameters increased by the
maximum error value reported by photogrammetric software. In other words, formulas
(1) to (7) were used to convert u and v to the spatial position of the points (Xc, Yc, Zc) for
a flight altitude of 100 m, considering IOPs and distortion parameters increased by the
maximum error. The result of this operation is shown in Figure 10.

The statistical values of the maximum error in metres, for a flight altitude of 100 m,
are shown in Table 10.

As shown in Table 10 the maximum displacement of ground points can occur in the
MP1-N case and can even exceed 3 metres, with the mean displacement of approximately
60 cm. This displacement, resulting from the occurrence of a maximum error, is only
informative, and according to Gaussian distribution, achieving such a situation in real
life is very unlikely. Nonetheless, the increased error analysis conducted during night-
time calibration proves that methods functioning correctly during the day are not able to
accurately determine IOPs at night.

3.3. Relationships

Spatial relationships between point intensity, reprojection error and tie point deter-
mination precision are shown in Figure 11. The intensity map was calculated for each tie
point (Ii) according to the formula [80]:

Ii = 0.21 R + 0.72 G + 0.07 B, (8)
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where: i mean a tie point number, and R, Gm and B represent spectral response
values recorded by a camera sensor for a given tie point and a red, green, and blue
spectrum, respectively.
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Figure 10. Simulated maximum ground point displacement for a flight altitude of 100 m, taking into account IOP and
distortion parameter determination errors (a) MP1-D, (b) MP1-N, (c) MP2-D, (d) MP2-N.

Table 10. Statistical values of the maximum error, in metres.

MP1-D MP2-D MP1-N MP2-N

EXC EYC EZC EXC EYC EZC EXC EYC EZC EXC EYC EZC

Max 0.4697 0.3570 0.0001 0.1019 0.0724 0.0000 3.0835 1.7038 0.0003 0.1768 0.1017 0.0001
Min −0.1712 −0.1351 0.0001 0.0781 0.0568 0.0000 −1.2506 −0.9880 0.0003 0.0664 0.0375 0.0001

Mean 0.1073 0.0804 0.0001 0.0897 0.0642 0.0000 0.6104 0.3072 0.0003 0.1187 0.0689 0.0001
Range 0.6409 0.4921 0.0000 0.0238 0.0156 0.0000 4.3340 2.6917 0.0000 0.1105 0.0642 0.0000

Std 0.0691 0.0458 0.0000 0.0032 0.0018 0.0000 0.5651 0.2492 0.0000 0.0160 0.0071 0.0000

In order to evaluate the tie point precision distribution, the authors introduced a value
of the precision vector (vPrec—dσ), such that:

dσi =

√
(σXi)

2 + (σYi)
2 +

(
σZi

)2, (9)

where: σX , σY, σZ means the measurement precision for the i-th tie point, obtained throug
the method described in [78]. These values are calculated in millimetres (mm).
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Figure 12 shows the relationships of the dσi precision vector (vPrec) reprojection error
and intensity, calculated for each tie point. The blue line represents accurately obtained
values, while the red line averages them in order to visualise the trend and relationships.
All data were sorted in ascending order of intensity.

Sensors 2021, 21, x FOR PEER REVIEW 16 of 24 
 

 

As shown in Table 10 the maximum displacement of ground points can occur in the 
MP1-N case and can even exceed 3 metres, with the mean displacement of approximately 
60 cm. This displacement, resulting from the occurrence of a maximum error, is only in-
formative, and according to Gaussian distribution, achieving such a situation in real life 
is very unlikely. Nonetheless, the increased error analysis conducted during night-time 
calibration proves that methods functioning correctly during the day are not able to accu-
rately determine IOPs at night. 

3.3. Relationships 
Spatial relationships between point intensity, reprojection error and tie point deter-

mination precision are shown in Figure 11. The intensity map was calculated for each tie 
point (ܫ) according to the formula [80]: ܫ = 0.21 ܴ + + ܩ 0.72  (8) ,ܤ 0.07 

where: i mean a tie point number, and R, Gm and B represent spectral response values 
recorded by a camera sensor for a given tie point and a red, green, and blue spectrum, 
respectively. 

In order to evaluate the tie point precision distribution, the authors introduced a 
value of the precision vector (vPrec—݀ఙ), such that: ݀ఙ = ට൫ߪ൯ଶ + ൫ߪ൯ଶ + ൫ߪ൯ଶ, (9)

where: ߪ ߪ , ߪ ,  means the measurement precision for the i-th tie point, obtained 
throug the method described in [78]. These values are calculated in millimetres (mm). 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 11. Tie point quality measurements—night cases (a) MP1 intensity, (b) MP1 RE (c) MP1-vPrec (d) MP2 intensity, 
(e) MP2 RE (f) MP2-vPrec. 

Figure 11. Tie point quality measurements—night cases (a) MP1 intensity, (b) MP1 RE (c) MP1-vPrec (d) MP2 intensity,
(e) MP2 RE (f) MP2-vPrec.

The mean value for models based on day-time photos is 113 and 124 with a standard
deviation of 51 and 44, respectively (Table 11). The mean RE value for day-time models
is 0.6656 px (sRE(MP1D) = 0.5253) and 0.3130 px (sRE(MP2D) = 0.3659), respectively. The
maximum RE value for day-time models does not exceed 21 pixels. The sRE analysis for day-
time cases indicates that values are relatively constant for all points, which is also confirmed
by the graph (Figure 12). The mean value for models based on night-time photos is 25 and
32 with a standard deviation of 23 and 27, respectively. The mean RE value for night-time
models is 1.3311 px (sRE(MP1N) = 1.407) and 1.168 px (sRE(MP2N) = 1.26), respectively, and
the maximum RE value is significantly higher at approximately 37 pixels. Conversely, for
night-time cases, sRE takes higher values, which proves high result variability. This can be
easily seen in the graphs (Figure 12), where the blue plot for RE and vPrec for night-time
cases shows a high amplitude change.
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Table 11. List of statistical data (m- mean, s-standard deviation).

Flight mI sI mRE (px) sRE (px) mvPrec (cm) svPrec (cm)

MP1-D 113.24 51.78 0.6656 0.5253 401.22 1458.20
MP2-D 124.76 44.90 0.3130 0.3659 290.63 1686.36
MP1-N 25.76 23.49 1.3311 1.4070 365.21 994.63
MP2-N 32.839 27.02 1.1680 1.26 803.42 2471.73

An analysis of relationships between intensity, RE and vPrec shows a strong correlation
between accuracy parameters in nigh-time photos, i.e., those, where the mean intensity is
in the range from 25 to 35. On the other hand, the same relationships are not exhibited by
models based on day-time photos. The results show that RE stabilizes towards the mean
only above an intensity of 30 and 50, respectively.

A decrease in the number of tie points following a decrease of intensity results directly
from the algorithm applied at the first stage of the photogrammetric stage, namely, feature
matching. The software developer uses a modified version of the popular SIFT (scale-
invariant feature transform) algorithm [81]. As shown by the studies in [82–87], the SIFT
algorithm is non-resistant to low intensity and low contrast. This leads to the generation of
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a certain number of false key points, which are later not found on subsequent photos, thus
becoming tie points.

The maximum total number of matches in MP1 night-time photos is 1080, including
1018 valid and 62 invalid matches. Similarly, the maximum total number of matches for
day-time photos is 3733, including 3493 valid and 240 invalid matches. A decrease in the
number of matches by more than 70% greatly impacts image quality. This phenomenon
was demonstrated for a pair of identical photos in the same region in Figure 13. The
figure shows a day-time example of a stereopair from 1238 total matches, and a night-time
stereopair from 208 total matches.
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4. Discussion

The results and analyses conducted within this study show the sensitivity of a pho-
togrammetric process applied in modern software, relative to photos taken in extreme
lighting conditions. The issues analysed by the authors can be divided as per the division
in [18], intro procedural, numerical and technical factors. Procedural factors that impact
the final quality of a photogrammetric product include GCP distribution and flight plan,
whereas in terms of numerical factors, it is the issue of night-time calibration. Thirdly,
presented technical factors included the difference between cameras on two different UAVs.

The reduction in geometry during night-time tests were greatly impacted by non-
uniform distribution of GCPs within the study area. As was noted, wherever there were
no placed GCPs, the distance between the reference model and the night-time model
significantly increased. In the case of day-time photos, these differences are not as important
since this phenomenon is compensated by high tie point density and their low mean
diameter. As recommended by most photogrammetric software developers, 5–10 ground
control points should be arranged uniformly in such a case. This ensures acceptable product
quality. The situation is quite the opposite at night, when the tie point density decreases by
up to 70%, which results in the formation of aerotriangulation errors. A night-time study
will lead to the reprojection error increasing with growing distance from GCPs and with a
change in object height. In the case in question, it was physically impossible to uniformly
arrange GCPs, due to safety (traffic on the flyover—expressway) and in the south-eastern
area, which is a closed seaport section. The location of the research in such a challenging
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area was not a coincidence. The authors decided on this location because there is indeed
a problem with light pollution in this area and there is a wide variety of urban lighting
of different types. The location of the study is closest to the real problems that can be
encountered during the measurements and can induce new and interesting challenges for
science. After all, it is not always physically possible to evenly distribute GCPs, which
during the day does not induce significant problems, but as shown, at night can be a rather
more significant factor.

GCP arrangement at night should be properly planned. Objects intended to serve
as natural or signalled points should be illuminated. This is a rather obvious statement.
However, it requires a certain degree of planning when developing the photogrammetric
matrix and, more importantly, such a selection of control points so that they are sufficiently
contrasting. Low contrast of natural control points results in a significant reduction of
identifiability at low lighting intensity. An active (glowing marker), new type of control
point might be a good solution in insufficiently illuminated spots, where it is impossible to
place or locate control points.

A developed and executed night-time flight plan covered manual flight execution,
following a single grid. The UAV had to be stopped every time for 1–3 s, until hover was
stabilized, and the shutter released. The time required to stabilise the hover depends, of
course, on the inertia of the UAV itself and its flight dynamics. Such a procedure enables
taking a photo without clear blur and allows to optimally extend the exposure time, and
reduce ISO sensitivity in order to avoid excessive matrix noise. It seems impossible to
take sharp, unblurred photos without stopping in-flight, as is the case with a traditional
day-time flight. Commercially available software for planning and executing UAV flights
(Pix4D Capture—Android version) does not offer a function of automatic breaking during
exposure, and furthermore, does not enable full control over exposure parameters. The
same software offers the possibility to stop the UAV while taking picture only on iOS
(mobile operating system created Apple Inc., Cupertino, CA, USA). Full control is possible
also via UAV manufacturer’s dedicated software. However, it does not enable automatic
flight plan execution.

Commercial aerial systems are equipped with built-in non-metric digital cameras, the
intrinsic orientation and distortion parameters of which are not constant. Such cameras
require frequent calibration, which is practically achieved every time, with each photogram-
metric process. This process, as demonstrated, is sensitive to poor lighting conditions,
which leads to the generation a higher determination error for each intrinsic orientation and
distortion parameter. Since it is these parameters that significantly influence the geometric
quality of a product, their correct determination is extremely important. As indicated by
studies, a brighter camera of a generally better quality, used onboard Mavic 2 Pro, exhibited
clearly lower deviation of night-time calibration parameters, relative to the same settings
during the day. This enables obtaining clearly more stable results.

As evidenced, uniformly illuminated photos can be used to construct a model with
lower RE, and each tie point exhibits greater precision. The issue of decreasing precision at
low photo brightness results from the type of algorithm used to detect tie points, which
means that, potentially, improving this element within the software would improve the
geometric quality of the model generated based on night-time photos.

5. Conclusions

As shown in the introduction, a number of publications on night-time photogrammet-
ric products did not analyse the issue of model geometry. These studies assumed, a priori,
that geometry would be similar to that during the day, and focused on the application-
related aspects of night-time models. As indicated in this research, popular photogram-
metric software generates night-time models with acceptable geometry. However, their
absolute quality is poor. It can be concluded that the geometry of night-time models cannot
be simply used for surveying or cartographic projects. This is greatly influenced by the
image processing itself and used algorithm.
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A more in-depth analysis of the photogrammetric process indicated that a decrease is
experienced on many levels, starting with procedural factors (data acquisition, photogram-
metric flight), through numerical factors (calibration process and algorithms applied to
detect key points), to technical factors (camera type and brightness). These factors blend
and mutually impact image quality. It cannot be clearly stated which of the factors has the
greatest influence on the geometric quality of an image, although it seems obvious that
a precise camera and a stable UAV flight will be the best combination. Therefore, it can
be concluded that technical factors will be the most decisive in terms of night-time image
quality. They will be followed by procedural factors. The very procedure of night-time
photo acquisition must ensure taking a sharp photo, namely a stable hover during the
exposure time. Such a solution will ensure a sharp photo without blur. Another element of
the procedure is uniform GCP distribution in an illuminated location. Distribution uni-
formity has a significant impact on image geometry, especially with low tie point density.
The last element is the numerical factor, which the user has little influence on in this case.
Software does not allow to change applied algorithms or the calibration procedure, and
one can guarantee conditions correct for the operation of these algorithms only through
good practice. The biggest problem was noted in the terms of the calibration algorithm,
with even a slight error increase resulting in significant geometric changes and ground
point displacement, by up to several metres.
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