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Abstract: The increase in network applications diversity and different service quality requirements
lead to service differentiation, making it more important than ever. In Wide Area Network (WAN),
the non-responsive Long-Term Fast (LTF) flows are the main contributors to network congestion.
Therefore, detecting and suppressing non-responsive LTF flows represent one of the key points for
providing data transmission with controllable delay and service differentiation. However, the existing
single-queue management algorithms are designed to serve only a small number of applications with
similar requirements (low latency, high throughput, etc.). The lack of mechanisms to distinguish
different traffic makes it difficult to implement differentiated services. This paper proposes an active
queue management scheme, namely, SQM-LRU, which realizes service differentiation based on
Shadow Queue (SQ) and improved Least-Recently-Used (LRU) strategy. The algorithm consists
of three essential components: First, the flow detection module is based on the SQ and improved
LRU. This module is used to detect non-responsive LTF flows. Second, different flows will be
put into corresponding high or low priority sub-queues depending on the flow detection results.
Third, the dual-queue adopts CoDel and RED, respectively, to manage packets. SQM-LRU intends
to satisfy the stringent delay requirements of responsive flow while maximizing the throughput
of non-responsive LTF flow. Our simulation results show that SQM-LRU outperforms traditional
solutions with significant improvement in flow detection and reduces the delay, jitter, and Flow
Completion Time (FCT) of responsive flow. As a result, it reduced the FCT by up to 50% and attained
95% of the link utilization. Additionally, the low overhead and the operations incur O(1) cost per
packet, making it practical for the real network.

Keywords: non-responsive LTF flow; responsive flow; dual-queue management; shadow queue;
improved LRU; service differentiation; AQM

1. Introduction

With the emerging applications such as virtual reality, video conferencing, real-time
online gaming, etc., the requirements for latency, jitter, and throughput have reached
a new level. These new requirements indicate that there is a demand for new designs
for the network protocols. The early queue management algorithms, such as RED [1],
CoDel [2], etc., were built to mainly serve a small range of applications with identical needs
primarily based on a throughput-oriented design. It also did not incorporate mechanisms
to distinguish different traffic. Since the beginning of this year, there has been an increase
in the type of Internet transfer. However, there was not any significant improvement made
on the queue management algorithm to properly support the growing network traffic’s
complex demands. This raises the question of “How to meet differentiated service quality”
in order to overcome the critical challenge seen by Internet networks today.

The detection and control of LTF flow have attracted much attention [3–7]. The non-
responsive LTF flow accounted for most network traffic and is the main contributor to
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network congestion, and there is only a limited performance gain by dropping packets from
the responsive flow. However, scheduling packets preferentially from the non-responsive
LTF flow can significantly enhance the Quality of Service (QoS) [8]. Therefore, the detection
and control of the non-responsive LTF flow can effectively protect the responsive flow from
the lack of resources and improve network transmission’s performance.

The LRU caching scheme [6] with a partial flow state to detect the non-responsive LTF
flow and allots fixed size cache to record recent flows by constantly bringing the incoming
flow to the top of the cache and replacing the least hit flow with the newly sampled flow.
Each flow maintains a packet counter to identify the non-responsive LTF flow and updates
the counter as each packet enters. Only when the counter exceeds the pre-defined threshold,
the flow is reported as non-responsive LTF flow. Although it works well when the cache
size is large, the performance degrades when the cache becomes smaller. Figure 1 shows
the accuracy of flow detection in different LRU size. A large-size cache is required to
achieve higher flow detection. This is due to the excessive number of Short-Lived or Slow
(SLS) flows, which results in frequent removal of LTF flows to make room for SLS flows so
that they will be added into LRU. More real, non-responsive LTF flows are not reported
correctly as they can be expelled from the cache before the count exceeds the threshold.
Similarly, the malicious on/off flows will be flushed out of the cache as soon as it stops
sending packets, pushing the intermittent packets and easily escaping the LRU. Intuitively,
this problem can be addressed by simply increasing the cache size. However, this scheme
requires searching and updating the cache at the order of line speed for each incoming
packet. The implementation of the LRU cache requires costly high-speed static Random
Access Memory (RAM) or Content Addressable Memory (CAM). Therefore, adopting
a large-size cache can cause scalability concern for the LRU scheme to be deployed at
high-speed routers. The LRU-based scheme principle can be seen in Figure 2, in which
the new flow is inserted and updated at the TOP node. When the cache is full, the longest
non-hit flow record will be removed.

Figure 1. The influence of Least-Recently-Used (LRU) size on accuracy.

Figure 2. The LRU concept map.
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Motivated by above issues, we propose a novel dual-queue active queue management
algorithm (SQM-LRU) based on the SQ and Mark-LRU (M-LRU). Our main contributions
are as follows:

• First, the SQM-LRU is presampled in the SQ, then for further comparison and update
in the M-LRU. The M-LRU includes a Mark node to separate the non-responsive LTF
and responsive flow. The new flow and flow with the counter below the threshold
will be placed at the Mark location. Furthermore, it can use less space to achieve a
higher flow detection accuracy, and the operations incur O(1) cost per packet.

• Then, by placing packets detected as the non-responsive LTF flow into the low-priority
sub-queue and others into the high-priority sub-queue to contain and penalize non-
responsive LTF flow to achieve fairness when responsive flow coexists with non-
responsive LTF flow.

• In addition, the dual-queue adopts the improved RED and CoDel for active queue
management coupled with the method above. In this way, it enables low delay for
responsive flow while maximizing the throughput for non-responsive LTF flow.

The rest of the paper is organized as follows. Section 1 provides a brief review of the re-
lated work. Section 2 explains the design of SQM-LRU and its components. Section 3 gives
the detailed performance evaluation and discussions, and Section 4 concludes this paper.

2. Related Work

Today, the traffic on the Internet tends to be fluctuating and demanding. Thereby,
the queue management algorithm is designed to tame overflowing traffic and penalize
flows that persistently overuse bandwidth. There are two categories of queue management
algorithms: Passive Queue Management (PQM) and Active Queue Management (AQM) [9].
In PQM, the router discards packets if the queue is full. Traditional Internet routers employ
DropTail for managing the queue. It simply sets a maximum length for the queue, and it
enqueues packets until the maximum length is reached, then drops subsequent incoming
packets until the queue is decreased below its maximum value. DropTail allows the router
to maintain high queue occupancy, but it tends to discriminate against bursty traffic and
drops many packets while producing global synchronization of sources. However, with
DropTail, the decision to drop a packet is essentially a passive way, and it has several flaws
that prompted research into a more active approach to router queue management. These
flaws are most apparent during periods of persistent congestion and include lock-out and
full queues. When network congestion occurs, it only simply treat congestion and can
not avoid congestion occurrence. Besides, it does not distinguish between UDP and TCP
flows. Moreover, the TCP flow is disadvantageous in resources competing, not having
a fair guarantee. Approaches like Random Drop or Drop Front are similar to DropTail
and do not solve the problem above. The only difference they have from DropTail is the
criteria used to choose which packet to discard when the queue get full. The Random Drop
randomly chooses a packet in the queue, and the latter drops the packet at the front of the
queue. In practice, most routers use the simplistic DropTail algorithm, which is simple to
implement with minimal computational overhead. The solution to the above problem is
for routers to drop packets before a queue becomes full so that that end nodes can respond
to congestion before buffers overflow. Such a proactive approach is called AQM, which by
dropping/marking packets before network congestion, so that end nodes can respond to
packet losses and reduce the sending rates.

Random Early Detection (RED) is a typical AQM algorithm designed to minimize
packet loss and maintain high link utilization. RED evaluates the changes in network
congestion by calculating the average queue length. When the average queue length
increases rapidly, the probability of packet drop increases, notifying the sender to decrease
their packet sending rate appropriately and avoid network congestion. However, RED
is sensitive to the parameter settings, a sudden increase in the packet drop probability
may occur when the average queue length is greater than the queue length upper limit.
FXRED, presented by Adamu et al. [10], recognizes the state of the current network’s
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traffic load and auto-tunes its drop probability suitable to the observed load situation to
maintain stable and better performance. Su et al. [11] use the Q-learning algorithm to
achieve self-adaptive adjustment for the maxp of RED. The QRED algorithm avoids the
sensitivity of the RED algorithm parameters and adapts the packet loss rate according to
the specific network service type. To meet the strict delay requirements, researchers have
proposed low-latency AQM such as CoDel (Controlled Delay Management) [2] and PIE
(Proportional Integral controller-Enhanced) [12]. CoDel directly controls the router/host
queuing delay. It timestamps packets as they are enqueued. If the sojourn time spent
by a packet within the queue is higher than a predefined threshold, the algorithm sets a
timer to drop a packet at dequeue and indirectly signals the end-hosts to adjust the packet
sending rates for maintaining the low delay when the burst traffic arrives. An alternate
AQM scheme, Proportional Integral controller Enhanced (PIE), was also proposed to ensure
the transmission of delay-sensitive flow. The Minstrel PIE proposed [13] can significantly
improve traffic performance when there are multiple traffic bottlenecks. Sadek et al. [14]
present the design of a PID controller based on state feedback. The PID parameters are
computed using the Linear Matrix Inequality (LMI) technique and were applied to AQM
at the router to avoid congestion.

Furthermore, the above scheme avoids congestion by dropping/marking packets.
Different schemes use feedback to avoid congestion efficiently, and various schemes use
Explicit Congestion Notification (ECN) [15]. The ECN allows end-to-end congestion
notification between two end-hosts on TCP/IP-based networks, where ECN must be
enabled on both end-hosts and all intermediate devices. Typical ECN schemes [16–19]
have shown that ECN schemes help increase throughput and reduce delay.

Meanwhile, some LRU-based schemes have been proposed to distinguish flows, such
as LRU-DCBF [20], hierarchical LRU [21], etc. These schemes perform flow recording and
updating by constructing the LRU cache. However, when storage is limited, all suffer from
performance degradation. Besides, Li et al. [22] proposed low-rate flow elimination and
d-Left hash table for flow detection.

Most of the above schemes were designed to serve only a small number of applications
with similar needs (achieving only low-latency or high-throughput), which hardly achieve
differentiated services. When the responsive flow coexists with non-responsive LTF flow,
they have different bandwidth-grabbing capabilities, and the performance of responsive
flow is is significantly impaired. Besides, these schemes cannot meet the different flows’
QoS requirements. In order to tackle above issues, we propose the SQM-LRU. It adopts SQ
and M-LRU to detect the non-responsive LTF flow. Based on the flow detection results, the
priority dual-queue is used to ensure transmission demand and achieve fairness. The dual-
queue adopts CoDel and RED to achieve low delay for responsive flow while maximizing
the throughput of non-responsive LTF flow. The low overhead involved and the operations
incur O(1) cost per packet, making it feasible in current high-speed routers and data centers.

3. Proposed SQM-LRU Scheme
3.1. Motivation

The response to network congestion distinguishes responsive and unresponsive flows.
When network congestion occurs, the responsive flow actively reduces the packet sending
rates. Flows based on Transmission Control Protocol (TCP) protocol, such as Telnet,
FTP and HTTP, are typical responsive traffics [23]. In this paper, flows generated by
interactive applications, such as Unreliable Datagram Protocol (UDP) with lower sending
rates, are unified into the responsive flow. A typical unresponsive flow is generated by the
unresponsive protocol such as UDP. This flow is also known as malicious or selfish flow.
During network congestion, it does not reduce the packet sending rates, which further
exacerbates network congestion. UDP-based flow does not have a built-in congestion
control protocol, and it cannot react to network congestion. In this paper, UDP with high
sending rates is classified as the non-responsive LTF flow.
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When the responsive flow coexists with non-responsive LTF, as DropTail, RED, and
CoDel are unable to distinguish flow, which leads to poor fairness, also, these queue
management algorithms are only designed to serve a single quality of service and cannot
provide differentiated service requirements for different flows. It can be seen from Figure 3
that the throughput and delay of TCP (responsive flow) cannot be guaranteed when it coex-
ists with UDP (non-responsive LTF flow) under DropTail (PQM), RED, and CoDel (AQM).
Therefore, the effective distinction between different flows helps to achieve fairness. Based
on fairness, the responsive flow is more sensitive to delay and jitter. The non-responsive
LTF flow tends to obtain higher throughput as soon. Therefore, assigning differentiated
queue management algorithms for different flows could meet their QoS requirements.

(a)

(b)

Figure 3. TCP and UDP coexist. (a) The throughput when TCP and UDP coexist. (b) The delay when
TCP and UDP coexist.

3.2. SQM-LRU’s Design

The big picture of the SQM-LRU is shown in Figure 4. It mainly consists of three
components: classifier, dual queue, and scheduler. The classifier adopts SQ and M-LRU
to detect the non-responsive LTF flow and figure out the flow’s current condition. In the
following sections, the features of each block in Figure 4 will be explained in detail.
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Figure 4. The big picture of SQM-LRU’s design.

The flowchart is shown in Figure 5. The fid is the globally unique value of the packet’s
quadruple information (source IP, destination IP, source port, and destination port) via
the hash function. Packets have the same fid as belongs to the same flow. When a new
packet enqueues, the fid is first obtained and pre-sample with probability psamp in SQ.
Furthermore, the sampling result is matched with the fid. Then, according to the matched
outcome, further updates in the M-LRU to detect whether the packet belongs to the non-
responsive LTF flow. Based on the detection results, the packets are placed into different
priority sub-queues. After, the WRR scheduling algorithm is used to schedule between
high- and low-priority sub-queues when dequeuing packets.

Figure 5. The SQM-LRU’s algorithm flow-chart.

3.3. Pre-Sampling in SQ

The SQ records the historical packet information by constructing a copy of the packet
that flows through the route. Moreover, it maintains a fixed-length queue. Its length is
larger than the physical queue in route. Therefore, it can record more historical packet
information as soon. Moreover, it only records the fid of the packet, so it takes less
additional space. SQ reflects the packet distribution, and the probability of each flow being
sampled is shown in Equation (1), where bn represents the number of packets belonging to
flow n in the SQ. With the high packet sending rate flow with the more frequently packet
distributed in the SQ and the flow with a lower sending rate or actively reduces the sending
rate, the distribution is more sparse. By analyzing the distribution of packets in the SQ, we
can identify the type of flow preliminarily.

ppick = psamp
bn

SQ
(1)

Figure 6 shows a pictorial example of how the SQ functions. When a new packet enters
the router, first, the SQM-LRU gets the fid of the new packet, and then pre-sampling with
a setting probability psamp in SQ. In addition, SQM-LRU matching the sampling results
with a new package in fid for further updating in the M-LRU. Furthermore, the SQ is
updated with the new packet’s fid. The larger the psamp, the smaller the sampling error, and
the more it can reflect packets’ distribution. However, a larger psamp may cause a heavy
computational burden, so it is necessary to select an appropriate psamp to balance efficiency.
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Figure 6. The SQ’s principle.

3.4. The M-LRU

As shown in Figure 7, the M-LRU contains three empty nodes: TOP, MARK, and
BOTTOM. It differs from LRU in the following aspects: (a) Only packets that are suc-
cessfully matched in the SQ and then updated in M-LRU based on the pin f o. (b) After
updating the packet counter pcount, if it below the threshold plth, this item will be moved
to after MARK node. Otherwise, it is moved to the TOP node. If the pin f o does not exist
in M-LRU, it will be inserted into the MARK node and initialize its pcount to 0. (c) If the
M-LRU is full, the MARK or BOTTOM node will be deleted, i.e., the longest responsive or
non-responsive LTF flow that has not appeared.

The traditional LRU scheme will update and insert all only at the TOP node (as shown
in Figure 2). However, in SQM-LRU, the insertion is performed at the MARK node, and
only the packet counter reaches the threshold plth are brought to the TOP node. This way
effectively addresses the non-responsive LTF flow frequently replaced by a large number
of SLS flows in the LRU and effectively enhances the flow detection efficiency.

Figure 7. Schematic diagram of M-LRU.

3.5. The Classifier Combined of SQ and M-LRU

Figure 8 shows the combination of the SQ and M-LRU for efficient flow detection.
First, when a new packet enqueues, it is pre-sampled in the SQ before further comparison
and updates in the M-LRU. Then, it matches the sampling result with the new packet. If the
match is successful, it needs to be updated in M-LRU according to the pin f o. If unmatched,
it indicates the packet in the route is infrequent, and then it will be judged whether it
belongs to the non-responsive LTF flow, which is already recorded in the M-LRU. If it is,
the corresponding record in the M-LRU will be brought to the TOP node. The use of SQ
and M-LRU reduces the space requirements for deployment in high-speed routing and
prevents the non-responsive LTF flow from being frequently replaced with guaranteed
flow detection efficiency.

The SQ is implemented as a queue, and a double-linked list is used for the M-LRU
and its insertion, deletion of flow cost O(1) time. As a doubly-linked list, searching would
take linear time, and instead a hash table is used to make search O(1). When a new item is
added to the M-LRU, a corresponding entry is made in the hash table so that the search
would take O(1) time. The memory cost is proportional to the size “S” of the M-LRU cache
and the SQ, and the double-linked list includes three empty nodes: Top, Mark, and Bottom.
In which the Mark node separates the non-responsive LTF flow and the responsive flow
units. Algorithm 1 describes the classifier combining with SQ and M-LRU. pcount is the
number of this packet successfully matched in M-LRU.
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Figure 8. Combine SQ and M-LRU for flow detection.

Algorithm 1: The Classifier algorithm combining with SQ and M-LRU.
input : The Packets Sequence
output : The type of Packets

1 Initialize: pcount = 0; plth = 5; pkt_num = 0; M− LRU_size = 200; pkt_num = 0;
psamp = 0.4.

2 for Packet← Packets do
3 pkt_in f o← new Packet;
4 pkts_samp = PreSampling(SQ,psamp);
5 if pkt_in f o ∈ pkts_samp then
6 if pkt_in f o ∈ M-LRU then
7 pcount += 1;
8 if (pcount > plth)&&(pkt_in f o_type==Responsive Flow) then

9 MoveToTOP(pkt_info) ;
10 pkt_in f o_type = Non-Responsive LTF ;
11 Non-Responsive LTF count + = 1 ;
12 Responsive Flow count − = 1;
13 if Non-Responsive LTF count>Non-Responsive LTF Unit Size then

14 Drop(LRU-MARK);
15 else if (pcount > plth)&&(pkt_in f o_type==Non− Responsive LTF) then

16 MoveToTOP(pkt_info);
17 else
18 MoveToMARK(pkt_info);
19 else
20 InsertToMARK(pkt_info);
21 pkt_in f o_type = Non-Responsive LTF;
22 Responsive Flow count += 1;
23 pcount = 1;
24 if Responsive Flow count > Responsive Flow Unit Size then
25 Drop(LRU-BOTTOM);
26 pkt_num += 1;
27 SQ[pkt_num]← pkt_in f o;

3.6. Dual-Queue

This paper adopts the priority dual-queue to achieve fairness while meeting the
flow differentiated performance requirements. The dual-queue includes the high and low
priority sub-queues. When a packet enters the router, the SQ and M-LRU are used to
detect the flow. According to the detection result, if the packet belongs to the responsive
flow, it will be put into the high priority sub-queue. Otherwise, it will be placed into
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the low priority sub-queue. The priority queue could achieve fairness when responsive
flow coexists with non-responsive LTF flow. Furthermore, the high priority sub-queue
adopts the CoDel to reduce the delay and jitter of responsive flow. The RED is used for
low-priority sub-queues to maximize the bandwidth of non-responsive LTF flow. Each
sub-queue adopts differentiated queue management schemes to meet various QoS of flows.
When the packet is leaving, a scheduling algorithm is used to schedule packets between
the high and low priority sub-queues.

RED [24] adds some new mechanisms compared to the DropTail: (a) minimizing
packet loss and queuing delay, (b) avoiding global synchronization of sources, (c) main-
taining high link utilization, and (d) removing biases against bursty sources. RED drops
packets with a certain probability by computing the average queue length, expressed as
Equation (2), where wq ∈ [0,1] is the weight equivalent to the low pass filter time constant,
and q is the current queue length. The dropping probability can be calculated as Equation
(3). RED can achieve high throughput in large-volume data transmission. However, for
delay-sensitive applications, such as audio, control, Telnet, etc., RED may result in packet
loss and high delay. CoDel [4] was developed to minimize delay by packets in the run-
ning buffer window. The aim is to keep the delay below 5 milliseconds. If the minimum
delay rises too high, packets are dropped from the queue until the delay drops below the
maximum level. Therefore, in this paper, we adopt CoDel for high priority sub-queue and
RED for low priority sub-queue based on the above analysis. The use of RED and CoDel
for the priority sub-queue will satisfy the stringent delay requirements of responsive flow
while maximizing non-responsive LTF flow throughput. The impact of different sub-queue
management algorithms will be detailed in Section 3.

avg =

{ (
1− wq

)
× avg + wq × q1 × q, if q < 0(

1− wq
)
× avg, otherwies

(2)

pb =


0, avg ∈ [0, minth)
maxp(avg−minth)

maxth −minth
, avg ∈ [minth, maxth)

1, avg ∈ [maxth,+∞]

(3)

The queue scheduling algorithm aims to control the sending order of packets in
priority sub-queues and balance the output rate of each sub-queue to utilize the network
link resources. The common queue scheduling algorithms include FIFO (First In First Out),
WFQ (Weighted Fairness Queuing), RR (Round Robin), WRR (Weighted Round Robin), SP
(Strict Priority), etc. The impact of queue scheduling algorithms will be briefly analyzed in
Section 3. The dual-queue algorithm (Algorithm 2) can be summarized as follows:

Algorithm 2: The Dual-Queue Algorithm.
input :The type of Packets
output :The ordered Packets Sequence

1 Initialize: High sub-Queue = CoDel; Alg = WRR; Low sub-Queue = RED.
2 for Packet← Packets do
3 if pkt_in f o_type == Responsive Flow then

4 EnQueueToHigh(Packet);
5 else
6 EnQueueToLow(Packet);
7 packet = Scheduling(High sub-Queue,Low sub-Queue, Alg);

4. Simulation Analysis

In this section, the NS-2 [25] was used to evaluate the performance of SQM-LRU.
This section first introduces the experimental settings, topology, and evaluation metrics,
followed by analyzing the effects of different numbers of parallel flows on throughput
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and other performance, then details the impact of parameter settings. The sub-queue
management and queue scheduling algorithms are also involved.

4.1. Simulation Scene and Parameter Setting

The simulation uses the typical single-bottleneck network topology, as shown in
Figure 9. There are 20 senders (S1–S20), 20 receivers (R1–R20), and 2 core routers (R1 and
R2) in the network. The link between each end-host and edge router has a bandwidth
of 300 Mbps and a baseline delay of 1 ms. Between the two core routers R1 and R2, the
bandwidth and base delay are 1000 Mbps and 1 ms, respectively. In the simulation, the
standard parameters are set as follows: the senders have 180 flows transmitted in parallel,
which includes 120 standard TCP (60 Telnet and 60 FTP flows) and 60 UDP flows. The
Telnet and FTP randomly select the packet sending time and the flow size. The UDP flow
pumping packet with a 3 Mbps rate and the CBR is selected as the traffic generator. Packets
have a fixed size of 1000 bytes. Besides, we are also adding noise in the link to simulate the
real network. The SQM-LRU algorithm in the implementation of the link between the two
core routers. The other links perform the DropTail algorithm.

The high and the low priority sub-queue adopts CoDel and RED respectively. When
the data packets are out of the queue, the WRR scheduling algorithm [26] is used. The
hardware environment is as follows: the operating system is Ubuntu16.04, the processor is
Intel(R) Core i5, the architecture is X86, system memory is 8G. The initial setup parameters
are set as shown in Table 1.

Figure 9. Network topology.

Table 1. Experimental default parameters.

Parameters Value

SQ Size 200 pkts
psamp 30%
plth 5

M-LRU Size 50 items
Non-Responsive LTF Flow Unit Size 20 items

Responsive Flow Unit Size 30 items
Queue Size 100 pkts
Packet Size 1000 bits

Standard TCP Cubic
TCP Window 20

CBR Rate 3 Mbps

For comparison, we, respectively, analyze the throughput, delay, jitter, packet loss rate,
FCT, etc. We also use the confusion matrix to distinguish flow. The binary confusion matrix
is defined in Table 2, and the accuracy is shown in Equation (4). The Positive Predictive
Value (PPV) is defined as Equation (5) representing the non-responsive LTF flow that are
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correctly reported. True Negative Rate (TNR) measures the proportion of responsive flow
correctly identified as defined in Equation (6).

Acc =
TP + TN

TP + FN + TP + TN
× 100% (4)

PPV =
TP

TP + FP
× 100% (5)

TNR =
TN

TN + FN
× 100% (6)

Table 2. Confusion matrix.

Non-Responsive LTF Responsive Flow

Non-Responsive LTF TP FN
Responsive Flow FP TN

Fairness metrics are used in network engineering to determine whether flows are
receiving a fair share of system resources. It can be measured by Jain’s Fair Index (JFI) [27],
defined as Equation (7). The larger the JFI value, the better the fairness of this algorithm,
where xi represents the throughput of flow i, and N represents the number of flows.

JFI =

(
∑N

i=1 xi

)2

N ∑N
i=1 x2

i
(7)

4.2. The Delay, Throughput and FCT

This group of simulations compares the throughput and other metrics of SQM-LRU
with the traditional scheme. When the responsive and the non-responsive LTF flow coexist
in bottleneck links, the non-responsive LTF flow (CBR) is more aggressive and occupies a
wide bandwidth. Additionally, it does not respond to network congestion (reducing the
sending rate), which seriously affects the transmission of the responsive flow. DropTail
drops packets when the queue is full and unable to distinguish flow. RED also fails to
achieve fairness of TCP with UDP flow. The TCP flow responds to packet discard, but the
UDP flow does not, making UDP flow occupy much more bandwidth. Besides, RED does
not integrate the priority mechanism, and it cannot adapt to the different QoS requirements.
CoDel has been built and designed to solve the full buffer problem by limiting the packet
queue delay and packet loss to enhancing the network’s overall performance. However,
CoDel shows worse fairness comparing with RED. Therefore, the delay, jitter, and FCT of
the responsive flow are significantly worse than the non-responsive LTF flow. The LRU
and L-LRU have slightly improved performance but use a larger LRU cache space (500).
The SQM-LRU detects the non-responsive LTF flow more precisely and puts these packets
into the low priority sub-queue, and responsive flow packets are placed in a high priority
sub-queue. As a result, the delay jitter, FCT of FTP and Telnet are significantly improved.

The averages delay of these algorithms was presented in Figure 10. According to this
figure, as we have expected, DropTail, RED, and CoDel algorithm unable to distinguish
flows and achieve fairness, so the delay of the responsive flow is large. The LRU and
L-LRU schemes by constructing LRU cache to identify flows and then integrate with
the RED to active queue management. However, the flow detection effect is limited,
and single-queue is hard to achieve differentiated service requirements. The SQM-LRU
adopts SQ and M-LRU for efficient flow identification, and the priority queues are used
to achieve fairness and provide differentiated services. Therefore, the delay of responsive
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flow under SQM-LRU is reduced by about 57%, 55%, 20%, 30%, and 28%, respectively,
when compared with DropTail, RED, CoDel, LRU, and L-LRU. Figure 11 indicates the
jitter of responsive flow for each queue management algorithm. SQM-LRU can detect the
responsive flow and put it into the high-priority sub-queue and using CoDel for queue
management, so the performance is guaranteed. Therefore, the jitter of SQM-LRU is
reduced by approximately 80%, 83%, 71%, 70%, and 66%, respectively. This is because
the other algorithms cannot achieve fairness and differentiated services. Figure 12 further
illustrates that under other algorithms, the responsive flow can only obtain extremely
low bandwidth due to poor fairness. With SQM-LRU, the throughput of responsive flow
increased by 2 to 3×, respectively. Figure 13 shows the FCT of responsive flow was also
reduced by about 70% to 85%. The delay and jitter of non-responsive LTF flow (CBR) are
increased, and the throughput is reduced, but the decline is slight by approximately 20%,
which has little effect on its performance. The above experiments show that the proposed
SQM-LRU algorithm can achieve better fairness and help the responsive flow reduce the
delay and jitter while maximizing the link utilization of non-responsive LTF flow to ensure
their performance requirements.

Figure 10. Average delay comparison.

Figure 11. Average jitter comparison.
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Figure 12. Average throughput comparison.

Figure 13. Comparison of average FCT.

4.3. Varied Number of Flows

To check the SQM-LRU performance under different loads, we change the flow number
from 20 to 240. When parallel flow increases, the network congestion also increases
significantly. Figure 14 shows a detailed view of the various queue management algorithms
on the throughput of responsive flow (FTP) across the various parallel flow. On network
congestion, non-responsive LTF flow is more competitive and occupies huge network
resources. However, DropTail and RED algorithms fail to achieve fairness. As the number
of parallel flows increases, the responsive flow throughput decreases significantly. The
LRU and L-LRU algorithms adopt a cache to detect different flows, and the throughput
of responsive flow is improved compared to DropTail and RED. Because LRU and L-LRU
require a larger space to achieve a higher flow detection, the performance is reduced
when the number of parallel flows increases. SQM-LRU adopts the SQ and M-LRU to
achieve better flow detection. Besides, the responsive flow is enqueued in the high priority
sub-queue to ensure its transmission. As a result, its throughput has increased compared
to other algorithms. Figure 15 presents the average throughput of the non-responsive
LTF flow (CBR) in changing load. SQM-LRU enqueued the non-responsive LTF flow into
the low-priority sub-queue, and the low-priority sub-queue adopts the RED algorithm to
make full use of link resources, while the responsive flow is small and does not damage
to non-responsive LTF flow. Therefore, with the number of parallel flow increases, the
average throughput of CBR decreases, and SQM-LRU presents a similar trend compared to
other algorithms.
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Figure 14. FTP throughput varies with the number of parallel flows.

Figure 15. CBR throughput varies with the number of parallel flows.

Figure 16 to Figure 17 provide the overall results of the FCT of FTP and Telnet. It can
be seen that when the number of the parallel flows is less, the FCT of those algorithms is
closer. As it increases, the FCT of DropTail, RED, LRU, and L-LRU will increase rapidly.
Even with the number of parallel flows still increasing, the FTP and Telnet flows cannot
be carried out normally. The reason is that FTP and Telnet are the typical responsive
flow, DropTail and RED unable to distinguish them. Therefore, the responsive flow can
only obtain limited network resources on network congestion, and it takes a long time to
complete the transfer. The LRU and L-LRU detect responsive flow when there are fewer
parallel flows, but the detection effect gets poor when the parallel flow increases. SQM-LRU
detects the responsive flow more efficiently and puts them into high priority sub-queue to
guarantee the transmission so that the FCT could be kept low and stable. This result shows
that SQM-LRU can achieve better network performance under different loads.

In the traditional queue management algorithms such as DropTail and RED, the JFI is
low and poor in fairness, and the unfairness is more significant during network congestion.
With parallel flows increase, there is a significant drop in JFI under LRU and L-LRU.
In SQM-LRU, the JFI remains at approximately 0.75 at network congestion, indicating
SQM-LRU can maintain the fairness between the responsive and non-responsive LTF flow
under varying scenarios. The above experiments show that precise flow detection can
effectively improve network performance. The parameters setting of the flow detection
will be detailed in the following experiments.
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Figure 16. The FCT of FTP varies with the number of parallel flows.

Figure 17. The FCT of Telnet varies with the number of parallel flows.

4.4. Different Shadow Queue Length and Pre-Sampling Probability

The following experiments investigate the efficiency of the SQ lengths and pre-
sampling probability. As shown in Figure 18, with the increases in SQ length, the LRU-
based algorithm can record more historical flow information, and the efficiency of flow
detection increases. Under the LRU and L-LRU, the non-responsive LTF flow is frequently
replaced due to a large number of responsive flows that lead to it cannot be reported
correctly, and the Acc only has a little gain. In SQM-LRU, the use of pre-sampling and
the separation mechanism helps to achieve a higher Acc is higher than LRU and L-LRU.
When the SQ length reaches 200 or above, the most non-responsive LTF flows are reported
correctly, and this may help the responsive flow obtains low delay, etc. Therefore, we
select 200 as the most appropriate SQ length setting. It can be seen from Figure 19 with the
sampling probability psamp increased, and the sampling results can reflect the distribution
of packets which leads the Acc to grow. When the sampling probability approaches 0.5, the
psamp improves the Acc slowly but leads to substantial computational load, so the proper
sampling probability psamp is set to 0.3–0.5.
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Figure 18. The influence of SQ length on Acc.

Figure 19. The influence of psamp on Acc.

4.5. The Influence of M-LRU Size

Figure 20 shows the effects of having a growing size of LRU on Acc. As the LRU size
increases, a greater historical flow could be recorded, which helps to improve flow detection.
However, as the non-responsive LTF flow will be frequently replaced by the responsive
flow, which results in it cannot be reported correctly, the LRU and L-LRU schemes are poor
in flow detection. M-LRU adopts pre-sampling and MARK node to separate the responsive
and non-responsive LTF flow units, effectively avoiding the decrease of accuracy caused
by the frequent replacement of non-responsive LTF flow in the cache. The detection of
non-responsive LTF flows is optimal when the size of the M-LRU is set to ~80. In addition,
by adjusting the size of the responsive and non-responsive flow units, the M-LRU’s ability
to detect different flows could be further enhanced. Compared to the LRU and the L-LRU, a
larger size (~400) is required to ensure accuracy, and the SQM-LRU scheme has a significant
improvement in space and accuracy.

4.6. Comparison Under Different Threshold plth

When the packet count in the M-LRU is greater than the threshold plth, the flow will be
reported as a non-responsive LTF flow. A similar experiment was repeated by varying the
threshold plth from 1 to 10. The plth determines the limit beyond which we start penalizing
a flow. A flow can send data and accumulate a count to threshold plth, where it is small,
and still get away unpunished if it is able to get out of the cache. The larger of threshold
plth, the burstier the flows can be without getting penalized. In short, if the plth is too small,
more responsive flows will be reported as non-responsive LTF flow, and put these flows
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into the low-priority sub-queue where they will be severely penalized. If the threshold
is too large, the non-responsive LTF flow will not be reported accurately and then placed
into the high priority sub-queue, which fails to control them, thereby severely affecting the
performance of the responsive flow.

Figure 20. The influence of LRU size on Acc.

A graphical representation of the detection performance of plth is shown in
Figure 21. When the threshold gets smaller, the TNR is more extensive, and the PPV
is smaller, which indicates that more responsive flows are incorrectly reported as non-
responsive LTF flow. As the threshold increases, the PPV increases, while the TNR
decreases. Meanwhile, the non-responsive LTF flow may be reported as responsive flow.
Hence, to ensure the flow detection, we choose about 5 as the default threshold plth, which
better affects the PPV and TNR, enhances the classifier’s performance to detect those flows.

Figure 21. The influence of threshold plth.

4.7. Queue Management and Scheduling

The following series of experiments clarifies the impact of different sub-queue man-
agement schemes, such as DropTail, RED, and CoDel on flow performance. The delay and
jitter of high-priority sub-queue packets when using DropTail, RED, and CoDel are shown
in Figure 22. The responsive flow is placed into the high-priority sub-queue, and it requires
lower delay and jitter. CoDel can achieve lower delay and jitter than DropTail and RED, so
SQM-LRU employs CoDel for the high-priority sub-queue management. Figure 23 shows
the throughput of low-priority sub-queue when using CoDel, RED, and DropTail. CoDel
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and DropTail result in higher packet loss when the network get congested, while RED drops
packets with the probability based on queue length while achieving higher throughput.
The non-responsive LTF flow desires to maximize the bandwidth without excessive packet
loss. Compared with DropTail and CoDel, RED can obtain higher throughput and lower
packet loss. Therefore, RED is adopted as the low priority sub-queue management.

Figure 22. Different high-priority sub-queue management algorithm.

Figure 23. Different low priority sub-queue management algorithm.

We compare the SP and WRR Scheduling on the delay of the low priority sub-queue.
The low priority sub-queue packet is sent only when the high priority sub-queue is empty in
the SP algorithm, which results in a high delay of the low priority sub-queue, as can be seen
from Figure 24. The WRR schedules packets between high and low priority sub-queues
based on their weights, which effectively reduces the delay of low priority sub-queues and
prevents it from “starvation” without being served for a long time. Other more complex
queue scheduling algorithms may further enhance performance. Due to space limitations,
this paper will not cover the detailed analysis of various scheduling algorithms.
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Figure 24. Influence of queue scheduling algorithm.

5. Conclusions and Future Work

In this paper, the SQM-LRU is proposed, which supports the following: (a) SQM-LRU
pre-sampling in SQ and further comparing in M-LRU to detect different flows with low-cost
implementation and O(1) time consumption. (b) It adopts the priority dual-queue scheme
to put the responsive flow into the high priority sub-queue and the non-responsive LTF
flow into the low-priority sub-queue for achieving fairness when those flows coexist. (c)
The high- and low-priority sub-queues adopt CoDel and RED , respectively, to achieve
low delay, jitter and FCT for responsive flows while maximizing the throughput for non-
responsive LTF flows. The simulation results show that the proposed SQM-LRU scheme
significantly improves the key performance indicators such as delay, jitter, FCT, etc., com-
pared to the traditional schemes. Benefiting from the low space and time consumption, it is
practically deployable. Our next step is to extend the SQM-LRU with a more fine-grained
approach to managing queues for various service demands to meet the differentiated QoS
requirements and further enhance the overall network performance.

6. Patents

The authors of this work have applied for a patent and that patent is undergoing
substantive examination.

Author Contributions: Conceptualization and methodology, P.L. and X.J.; software and validation,
P.L., J.Z. and X.J.; formal analysis and investigation, J.Z. and X.J.; resources and data curation, P.L.;
writing—original draft preparation, P.L.; writing—review and editing, X.J., J.Z. and G.J.; supervision,
G.J.; project administration, G.J.; funding acquisition, G.J. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (61601252),
the Natural Science Foundation of Zhejiang Province (LY21F020006, LY20F020008), the Ningbo
Natural Science Foundation (202003N4085), the Ningbo Public Welfare Project (202002n3109), the
Special Research Funding from the Marine Biotechnology and Marine Engineering Discipline Group
in Ningbo University (No. 422004582), the Ningbo Key Science and Technology Plan (2025) Project
(2019B10125, 2019B10028, 20201ZDYF020077).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.



Sensors 2021, 21, 3568 20 of 20

References
1. Floyd, S.; Jacobson, V. Random Early Detection Gateways for Congestion Avoidance. IEEE/ACM Trans. Netw. 1993, 1, 397–413.

[CrossRef]
2. Nichols, K.; Jacobson, V. Controlling Queue Delay. Commun. ACM 2012, 55, 42–50. [CrossRef]
3. Kaur, G.; Saxena, V.; Gupta, J.P. Detection of TCP Targeted High Bandwidth Attacks Using Self-similarity. J. King Saud Univ.

Comput. Inf. Sci. 2020, 32, 35–49. [CrossRef]
4. Abbas, G.; Manzoor, S.; Hussain, M. A Stateless Fairness-driven Active Queue Management Scheme for Efficient and Fair

Bandwidth Allocation in Congested Internet Routers. Telecommun. Syst. 2020, 67, 3–20. [CrossRef]
5. Hong, G.; Martin, J.; Westall, J. Adaptive Bandwidth Binning for Bandwidth Management. Comput. Netw. 2019, 150, 150–169.

[CrossRef]
6. Reddy, A.N. LRU-RED: An Active Queue Management Scheme to Contain High Bandwidth Flows at Congested Routers. In

Proceedings of the IEEE Global Telecommunications Conference (Cat. No. 01CH37270), San Antonio, TX, USA, 25–29 November
2001; pp. 2311–2315.

7. Zhang, H.; Tang, F.; Barolli, L. Efficient Flow Detection and Scheduling for SDN-based Big Data Centers. J. Ambient. Intell.
Humaniz. Comput. 2019, 10, 1915–1926. [CrossRef]

8. Irazabal, M.; Lopez-Aguilera, E.; Demirkol, I. Active Queue Management as Quality of Service Enabler for 5G Networks. In
Proceedings of the 2019 European Conference on Networks and Communications (EuCNC), Valencia, Spain, 18–21 June 2019;
pp. 421–426.

9. Hamdi, M.M.; Rashid, S.A.; Ismail, M.; Altahrawi, M.A.; Mansor, M.F.; AbuFoul, M.K. Performance Evaluation of Active Queue
Management Algorithms in Large Network. In Proceedings of the 2018 IEEE 4th International Symposium on Telecommunication
Technologies (ISTT), Selangor, Malaysia, 26–28 November 2018; pp. 1–6.

10. Adamu, A.; Shorgin, V.; Melnikov, S.; Gaidamaka, Y. Flexible Random Early Detection Algorithm for Queue Management in
Routers. In Proceedings of the International Conference on Distributed Computer and Communication Networks, Moscow,
Russia, 14–18 September 2020; Springer: Cham, Switzerland, 2020; pp. 196–208.

11. Su, Y.; Huang, L.; Feng, C. QRED: A Q-learning-based Active Queue Management Scheme. J. Internet Technol. 2018, 19, 1169–1178.
12. White, G.; Pan, R. Active Queue Management (AQM) Based on Proportional Integral Controller Enhanced PIE) for Data-over-

Cable Service Interface Specifications (DOCSIS) Cable Modems. RFC 2017, 8034, 1–17.
13. Patil, S.D.; Tahiliani, M.P. Minstrel PIE: Curtailing Queue Delay in Unresponsive Traffic Environments. Comput. Commun. 2019,

139, 16–31. [CrossRef]
14. Sadek, B.A.; El Houssaine, T.; Noreddine, C. A Robust PID Controller for Active Queue Management Framework in Congested

Routers. In Proceedings of the 2017 Intelligent Systems and Computer Vision (ISCV), Fez, Morocco, 17–19 April 2017; pp. 1–6.
15. Chen, C.X.; Nagaoka, K. Analysis of the State of ECN on the Internet. IEICE Trans. Inf. Syst. 2019, 102, 910–919. [CrossRef]
16. Ye, J.; Liu, R.; Xie, Z.; Feng, L.; Liu, S. EMPTCP: An ECN Based Approach to Detect Shared Bottleneck in MPTCP. In Proceedings

of the 28th International Conference on Computer Communication and Networks (ICCCN), Valencia, Spain, 29 July–1 August
2019; pp. 1–10.

17. Majidi, A.; Gao, X.; Jahanbakhsh, N.; Zheng, J.; Chen, G. Priority Policy in Multi-Queue Data Center Networks via per-Port ECN
Marking. In Proceedings of the 14th International Conference on Ubiquitous Information Management and Communication
(IMCOM), Taichung, Taiwan, 3–5 January 2020; pp. 1–8.

18. Wang, M.; Yuan, L. FDCTCP: A Fast Data Center TCP. In Proceedings of the 2019 IEEE International Conference on Computer
Science and Educational Informatization (CSEI), Kunming, China, 16–19 August 2019; pp. 76–80.

19. Majidi, A.; Jahanbakhsh, N.; Gao, X.; Zheng, J.; Chen, G. DC-ECN: A Machine-Learning based Dynamic Threshold Control
Scheme for ECN Marking in DCN. Comput. Commun. 2020, 150, 334–345. [CrossRef]

20. Wen, S.; Qin, D.; Lv, T.; Ge, L.; Yang, X. Traffic Identification Algorithm based on Improved LRU. In Proceedings of the 2020 7th
IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2020 6th IEEE International Conference on
Edge Computing and Scalable Cloud (EdgeCom), New York, NY, USA, 1–3 August 2020; pp. 157–159.

21. Imakiire, Y.; Sato, T.; Okamoto, S.; Yamanaka, N. Proposal of the Data Center-centric Flow Classification Method using Traffic
Paterns. IEICE Tech. Rep. 2017, 117, 63–68.

22. Chunqiang, L.; Yongqiang, D.; Guoxin, W. Elephant Flow Detection Algorithm Based on Lowest Rate Eviction Integrated with
d-Left Hash. J. Comput. Res. Dev. 2019, 56, 349–362.

23. Hanif, M.K.; Aamir, S.M.; Talib, R.; Saeed, Y. Analysis of Network Traffic Congestion Control over TCP Protocol. Int. J. Comput.
Sci. Netw. Secur. (IJCSNS) 2017, 17, 21.

24. Ma, L.; Liu, X.; Wang, H.; Deng, X. Congestion Tracking Control for Multi-router TCP/AQM Network based on Integral
Backstepping. Comput. Netw. 2020, 175, 107278. [CrossRef]

25. Issariyakul, T.; Hossain, E. Introduction to network simulator 2 (NS2). In Introduction to Network Simulator NS2; Springer: Boston,
MA, USA, 2009; pp. 1–18.

26. Ding, D.; Wang, Z.; Han, Q.L.; Wei, G. Neural-Network-Based Output-feedback Control under Round-Robin Scheduling Protocols.
IEEE Trans. Cybern. 2018, 49, 2372–2384. [CrossRef] [PubMed]

27. Jain, R.; Durresi, A.; Babic, G. Throughput Fairness Index: An Explanation. ATM Forum Contrib. 1999, 9, 1–13.

http://doi.org/10.1109/90.251892
http://dx.doi.org/10.1145/2209249.2209264
http://dx.doi.org/10.1016/j.jksuci.2017.05.004
http://dx.doi.org/10.1007/s11235-017-0306-3
http://dx.doi.org/10.1016/j.comnet.2018.12.019
http://dx.doi.org/10.1007/s12652-018-0783-6
http://dx.doi.org/10.1016/j.comcom.2019.03.006
http://dx.doi.org/10.1587/transinf.2018NTP0006
http://dx.doi.org/10.1016/j.comcom.2019.10.028
http://dx.doi.org/10.1016/j.comnet.2020.107278
http://dx.doi.org/10.1109/TCYB.2018.2827037
http://www.ncbi.nlm.nih.gov/pubmed/29994553

	Introduction
	Related Work
	Proposed SQM-LRU Scheme
	Motivation
	SQM-LRU's Design
	Pre-Sampling in SQ
	The M-LRU
	The Classifier Combined of SQ and M-LRU
	Dual-Queue

	Simulation Analysis
	Simulation Scene and Parameter Setting
	The Delay, Throughput and FCT
	Varied Number of Flows
	Different Shadow Queue Length and Pre-Sampling Probability
	The Influence of M-LRU Size
	Comparison Under Different Threshold plth 
	Queue Management and Scheduling

	Conclusions and Future Work
	Patents
	References

