A Robust SMC-PHD Filter for Multi-Target Tracking with Unknown Heavy-Tailed Measurement Noise
Abstract
:1. Introduction
2. Background
2.1. Tracking Model and Measurement Noise Model
2.2. PHD Filter
2.3. SMC-PHD Filter
3. The Robust SMC-PHD Filter
3.1. VB Approximation
3.2. The Update of Unknown Student-t Distribution Parameters
3.3. The Implementation of RSMC-PHD Filter
3.4. The Modification of Particles Weight
Algorithm 1. The robust SMC-PHD filter. |
Step 1 Prediction for end for for end for |
Step 2 Update For Perform iteration initialization, set the iteration number , and update the parameters of measurement noise by Equations (49)–(60). end for |
Step 3 Resampling Step 4 State extraction Step 3 and step 4 are the same as that in the standard SMC-PHD filter. |
4. Simulation Results
4.1. The Choice of Threshold
4.2. Linear Scenario
4.3. Nonlinear Scenario
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mahler, R.P.S. Statistical Multisource-Multitarget Information Fusion; Artech House: Norwood, MA, USA, 2007. [Google Scholar]
- Blom, H.; Bloem, E. Interacting multiple model joint probabilistic data association avoiding track coalescence. In Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, NV, USA, 10–13 December 2002; pp. 3408–3415. [Google Scholar]
- Blackman, S. Multiple hypothesis tracking for multiple target tracking. IEEE Aerosp. Electron. Syst. Mag. 2004, 19, 5–18. [Google Scholar] [CrossRef]
- Mahler, R.P.S. Multitarget bayes filtering via first-order multitarget moments. IEEE Trans. Aerosp. Electron. Syst. 2003, 39, 1152–1178. [Google Scholar] [CrossRef]
- Vo, B.-N.; Ma, W.-K. The Gaussian Mixture Probability Hypothesis Density Filter. IEEE Trans. Signal Process. 2006, 54, 4091–4104. [Google Scholar] [CrossRef]
- Vo, B.-N.; Singh, S.S.; Boucet, A. Sequential monte carlo methods for multi-target filtering with random finite sets. IEEE Trans. Aerosp. Electron. Syst. 2005, 41, 1224–1245. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Li, Y.; He, B. Entropy distribution and coverage rate-based birth intensity estimation in GM-PHD filter for multi-target visual tracking. Signal Process. 2014, 94, 650–660. [Google Scholar] [CrossRef]
- Yan, B.; Xu, N.; Xu, L.; Li, M.Q.; Cheng, P. An improved partitioning algorithm based on FCM algorithm for extended target tracking in PHD filter. Digit. Signal Process. 2019, 90, 54–70. [Google Scholar] [CrossRef]
- Sarkka, S.; Nummenmaa, A. Recursive Noise Adaptive Kalman Filter ing by Variational Bayesian Approximations. IEEE Trans. Autom. Control 2009, 54, 596–600. [Google Scholar] [CrossRef]
- Sarkka, S.; Hartikainen, J. Non-linear noise adaptive Kalman filtering via variational Bayes. In Proceedings of the 2013 IEEE International Workshop on Machine Learning for Signal Processing (MLSP), Southampton, UK, 22–25 September 2013; pp. 1–6. [Google Scholar]
- Huang, Y.; Zhang, Y.; Wu, Z.; Li, N.; Chambers, J.A. A Novel Adaptive Kalman Filter With Inaccurate Process and Measurement Noise Covariance Matrices. IEEE Trans. Autom. Control 2018, 63, 594–601. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Huang, G.M.; Gao, J. Adaptive noise variance identification for probability hypothesis density-based multi-target filter by variational Bayesian approximations. IET Radar Sonar Navig. 2013, 7, 895–903. [Google Scholar] [CrossRef]
- Yang, J.; Ge, H. Adaptive probability hypothesis density filter based on variational Bayesian approximation for multi-target tracking. IET Radar Sonar Navig. 2013, 7, 959–967. [Google Scholar] [CrossRef]
- Wu, X.; Huang, G.; Gao, J. Particle filters for probability hypothesis density filter with the presence of unknown measurement noise covariance. Chin. J. Aeronaut. 2013, 26, 1517–1523. [Google Scholar] [CrossRef] [Green Version]
- Bilik, I.; Tabrikian, J. Maneuvering Target Tracking in the Presence of Glint using the Nonlinear Gaussian Mixture Kalman Filter. IEEE Trans. Aerosp. Electron. Syst. 2010, 46, 246–262. [Google Scholar] [CrossRef]
- Kim, J.; Tandale, M.; Menon, P.; Ohlmeyer, E. Particle Filter for Ballistic Target Tracking with Glint Noise. J. Guidan. Control Dynam. 2010, 33, 1–4. [Google Scholar] [CrossRef]
- Li, K.; Chang, L.; Hu, B. A Variational Bayesian-Based Unscented Kalman Filter with Both Adaptivity and Robustness. IEEE Sensors J. 2016, 16, 6966–6976. [Google Scholar] [CrossRef]
- Piche, R.; Sarkka, S.; Hartikainen, J. Recursive outlier-robust filtering and smoothing for nonlinear systems using the multivariate student-t distribution. In Proceedings of the 2012 IEEE International Workshop on Machine Learning for Signal Processing, Santander, Spain, 23–26 September 2012; pp. 1–6. [Google Scholar]
- Huang, Y.; Zhang, Y.; Li, N.; Chambers, J. Robust student’s t based nonlinear filter and smoother. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 2586–2596. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Zhang, Y. Robust Student’s t-Based Stochastic Cubature Filter for Nonlinear Systems with Heavy-Tailed Process and Measurement Noises. IEEE Access 2017, 5, 7964–7974. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.; Wu, Z.; Li, N.; Chambers, J. A Novel Robust Student’s t-Based Kalman Filter. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 1545–1554. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Jia, Y.; Du, J.; Zhang, J. PHD filter for multi-target tracking with glint noise. Signal Process. 2014, 94, 48–56. [Google Scholar] [CrossRef]
- Dong, P.; Jing, Z.; Leung, H.; Shen, K.; Li, M. The Labeled Multi-Bernoulli Filter for Multitarget Tracking with Glint Noise. IEEE Trans. Aerosp. Electron. Syst. 2018, 55, 2253–2268. [Google Scholar] [CrossRef]
- Li, P.; Xu, C.; Wang, W.; Su, S. Robust Student’s T Distribution Based PHD/CPHD Filter for Multiple Targets Tracking Using Variational Bayesian Approach. Radioengineering 2020, 29, 529–539. [Google Scholar] [CrossRef]
- Xu, D.; Shen, C.; Shen, F. A Robust Particle Filtering Algorithm with Non-Gaussian Measurement Noise Using Student-t Dis-tribution. IEEE Signal Process. Letters 2013, 21, 30–34. [Google Scholar] [CrossRef]
- Zhu, H.; Leung, H.; He, Z. A variational Bayesian approach to robust sensor fusion based on Student-t distribution. Inf. Sci. 2013, 221, 201–214. [Google Scholar] [CrossRef]
- Christmas, J.; Everson, R. Robust Autoregression: Student-t Innovations Using Variational Bayes. IEEE Trans. Signal Process. 2010, 59, 48–57. [Google Scholar] [CrossRef] [Green Version]
- Schuhmacher, D.; Vo, B.-T. A Consistent Metric for Performance Evaluation of Multi-Object Filters. IEEE Trans. Signal Process. 2008, 56, 3447–3457. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, Y.; Cui, C. A Robust SMC-PHD Filter for Multi-Target Tracking with Unknown Heavy-Tailed Measurement Noise. Sensors 2021, 21, 3611. https://doi.org/10.3390/s21113611
Gong Y, Cui C. A Robust SMC-PHD Filter for Multi-Target Tracking with Unknown Heavy-Tailed Measurement Noise. Sensors. 2021; 21(11):3611. https://doi.org/10.3390/s21113611
Chicago/Turabian StyleGong, Yang, and Chen Cui. 2021. "A Robust SMC-PHD Filter for Multi-Target Tracking with Unknown Heavy-Tailed Measurement Noise" Sensors 21, no. 11: 3611. https://doi.org/10.3390/s21113611
APA StyleGong, Y., & Cui, C. (2021). A Robust SMC-PHD Filter for Multi-Target Tracking with Unknown Heavy-Tailed Measurement Noise. Sensors, 21(11), 3611. https://doi.org/10.3390/s21113611