Atmospheric Boundary Layer Wind Profile Estimation Using Neural Networks Applied to Lidar Measurements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Multi-Hidden Layer Neural Network
2.2. Wind Data
3. Optimal Configuration
3.1. Numbers and Definition of the Training Patterns
3.2. Selection of the Number of Hidden Neurons, Learning Algorithm and Input Data
4. Results of the Wind Profile Prognosis
- Six nodes in the input layer which took the 10-min average values of u and v from the last three measurements at m.
- The training data corresponded to 5 days of each month.
- 128 nodes in the hidden layer, using the sigmoid function as activation function.
- Two output neurons which gave the values of u and v for a certain altitude.
- There was one neural network for each of the altitudes.
4.1. Global Performance
4.2. Validation against Alternative Methods
4.3. Flexibility and Growth Capacity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
a | Sound speed |
ABL | Atmospheric boundary layer |
AGL | Above ground level |
ANN | Artificial neural networks |
ATM | Air traffic management |
Pearson correlation coefficient | |
d | Displacement length |
DBS | Doppler beam swinging |
h | Height |
Temporal cross-covariance | |
lidar | Light Detection and Ranging |
Mean absolute error | |
Mean absolute percentage error | |
MHL-NN | Multi-hidden layer neural networks |
Root mean square | |
Root mean square error | |
Sum of squares of the network errors | |
u | North wind component |
v | West wind components |
Wind speed modulus | |
Roughness parameter | |
Wind speed direction | |
Mapping function |
References
- Gopalan, H.; Gundling, C.; Brown, K.; Roget, B.; Sitaraman, J.; Mirocha, J.D.; Miller, W.O. A coupled mesoscale—Microscale framework for wind resource estimation and farm aerodynamics. J. Wind Eng. Ind. Aerodyn. 2014, 132, 13–26. [Google Scholar] [CrossRef]
- Duncan, J.B., Jr.; Hirth, B.D.; Schroeder, J.L. Enhanced estimation of boundary layer advective properties to improve space-to-time conversion processes for wind energy applications. Wind Energy 2019, 22, 1203–1218. [Google Scholar] [CrossRef]
- Petrini, F.; Ciampoli, M. Performance-based wind design of tall buildings. Struct. Infrastruct. Eng. 2012, 8, 954–966. [Google Scholar] [CrossRef]
- Tominaga, Y.; Stathopoulos, T. Ten questions concerning modeling of near-field pollutant dispersion in the built environment. Build. Environ. 2016, 105, 390–402. [Google Scholar] [CrossRef]
- Kataoka, H.; Ono, Y.; Enoki, K. Applications and prospects of CFD for wind engineering fields. J. Wind Eng. Ind. Aerodyn. 2020, 205, 104310. [Google Scholar] [CrossRef]
- de Grado, J.G.; Tascon, C.S. On the Development of a Digital Meteorological Model for Simulating Future Air Traffic Management Automation. In Proceedings of the 2011 IEEE 20th International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises, Paris, France, 27–29 June 2011; pp. 223–228. [Google Scholar]
- Gonzalo, J.; Domínguez, D.; López, D.; García-Gutiérrez, A. An analysis and enhance proposal of the atmospheric boundary layer wind modelling techniques for the automation of air traffic management. Chin. J. Aeronaut. 2021, 34, 129–144. [Google Scholar] [CrossRef]
- Emeis, S. Surface-Based Remote Sensing of the Atmospheric Boundary Layer; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010; Volume 40. [Google Scholar]
- Domínguez, D.; Gonzalo, J.; López, D. A wind speed profile measurement method based on free bubble tracking in the lower atmosphere. Flow Meas. Instrum. 2013, 34, 134–141. [Google Scholar] [CrossRef]
- Gonzalo, J.; Domínguez, D.; López, D.; Fernández, J. Lighter-than-air particle velocimetry for wind speed profile measurement. Renew. Sustain. Energy Rev. 2014, 33, 323–332. [Google Scholar] [CrossRef]
- Alley, R.B.; Emanuel, K.A.; Zhang, F. Advances in weather prediction. Science 2019, 363, 342–344. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.W.; Yang, H.J.; Kim, J.J. Wind speed estimation in urban areas based on the relationships between background wind speeds and morphological parameters. J. Wind Eng. Ind. Aerodyn. 2020, 205, 104324. [Google Scholar] [CrossRef]
- Sun, W.; Wang, Y. Short-term wind speed forecasting based on fast ensemble empirical mode decomposition, phase space reconstruction, sample entropy and improved back-propagation neural network. Energy Convers. Manag. 2018, 157, 1–12. [Google Scholar] [CrossRef]
- Singh, S.; Mohapatra, A. Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting. Renew. Energy 2019, 136, 758–768. [Google Scholar]
- Hu, R.; Hu, W.; Gökmen, N.; Li, P.; Huang, Q.; Chen, Z. High resolution wind speed forecasting based on wavelet decomposed phase space reconstruction and self-organizing map. Renew. Energy 2019, 140, 17–31. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, N.; Lu, H. A novel system based on neural networks with linear combination framework for wind speed forecasting. Energy Convers. Manag. 2019, 181, 425–442. [Google Scholar] [CrossRef]
- Mohandes, M.A.; Rehman, S. Short term wind speed estimation in Saudi Arabia. J. Wind Eng. Ind. Aerodyn. 2014, 128, 37–53. [Google Scholar] [CrossRef]
- Di, Z.; Ao, J.; Duan, Q.; Wang, J.; Gong, W.; Shen, C.; Gan, Y.; Liu, Z. Improving WRF model turbine-height wind-speed forecasting using a surrogate- based automatic optimization method. Atmos. Res. 2019, 226, 1–16. [Google Scholar] [CrossRef]
- Kareem, A. Emerging frontiers in wind engineering: Computing, stochastics, machine learning and beyond. J. Wind Eng. Ind. Aerodyn. 2020, 206, 104320. [Google Scholar] [CrossRef]
- Kent, C.W.; Grimmond, C.S.B.; Gatey, D.; Barlow, J.F. Assessing methods to the vertical wind-speed profile from surface observations in a city centre during strong winds. J. Wind Eng. Ind. Aerodyn. 2018, 173, 100–111. [Google Scholar] [CrossRef]
- Tieo, J.J.; Skote, M.; Srikanth, N. Suitability of power-law extrapolation for wind speed estimation on a tropical island. J. Wind Eng. Ind. Aerodyn. 2020, 205, 104317. [Google Scholar] [CrossRef]
- Ruijun, D.; Yang, Y.; Hu, F.; Wang, Z.; Zhang, S. A Review of Techniques for Diagnosing the Atmospheric Boundary Layer Height (ABLH) Using Aerosol Lidar Data. Remote Sens. 2019, 11, 1590. [Google Scholar] [CrossRef] [Green Version]
- Vassallo, D.; Krishnamurthy, R.; Fernando, H.J.S. Decreasing wind speed extrapolation error via domain-specific feature extraction and selection. Wind Energy Sci. 2020, 5, 959–975. [Google Scholar] [CrossRef]
- Turkan, Y.; Aydoğmuş, H.; Erdal, H. The prediction of the wind speed at different heights by machine learning methods. Int. J. Optim. Control Theor. Appl. 2016, 6, 179–187. [Google Scholar] [CrossRef]
- Mohandes, M.A.; Rehman, S. Wind Speed Extrapolation Using Machine Learning Methods and LiDAR Measurements. IEEE Access 2018, 6, 77634–77642. [Google Scholar] [CrossRef]
- Bodini, N.; Optis, M. The importance of round-robin validation when assessing machine-learning-based vertical extrapolation of wind speeds. Wind Energy Sci. 2020, 5, 489–501. [Google Scholar] [CrossRef] [Green Version]
- Öztopal, A. Artificial neural network approach to spatial estimation of wind velocity data. Energy Convers. Manag. 2006, 47, 395–406. [Google Scholar] [CrossRef]
- Liu, Y.; Collett, I.; Morton, Y.J. Application of neural network to gnss-r wind speed retrieval. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9756–9766. [Google Scholar] [CrossRef]
- Zhou, Y.; Barnes, C.; Lu, J.; Yang, J.; Li, H. On the continuity of rotation representations in neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 5745–5753. [Google Scholar]
- Shanker, M.; Hu, M.Y.; Hung, M.S. Effect of data standardization on neural network training. Omega 1996, 24, 385–397. [Google Scholar] [CrossRef]
- Burden, F.; Winkler, D. Bayesian regularization of neural networks. In Artificial Neural Networks; Springer: Berlin/Heidelberg, Germany, 2008; pp. 23–42. [Google Scholar]
- Saini, L.M.; Soni, M.K. Artificial neural network-based peak load forecasting using conjugate gradient methods. IEEE Trans. Power Syst. 2002, 17, 907–912. [Google Scholar] [CrossRef]
- Mustafidah, H.; Putri, C.; Harjono, H.; Suwarsito, S. The most optimal performance of the Levenberg-Marquardt algorithm based on neurons in the hidden layer. J. Phys. Conf. Ser. Iop Publ. 2019, 1402, 066099. [Google Scholar] [CrossRef]
- Prechelt, L. Automatic early stopping using cross validation: Quantifying the criteria. Neural Netw. 1998, 11, 761–767. [Google Scholar] [CrossRef] [Green Version]
- Ketkar, N. Introduction to keras. In Deep Learning with Python; Springer: Berlin/Heidelberg, Germany, 2017; pp. 97–111. [Google Scholar]
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. Tensorflow: A system for large-scale machine learning. In Proceedings of the 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16), Savannah, GA, USA, 2–4 November 2016; pp. 265–283. [Google Scholar]
- Wouters, D.; Wagenaar, J. Verification of the ZephIR 300 LiDAR at the ECN LiDAR Calibration Facility for the offshore Europlatform measurement campaign. Wind Energy 2018, 2017, 2016. [Google Scholar]
- Wieringa, J. Updating the Davenport roughness classification. J. Wind Eng. Ind. Aerodyn. 1992, 41, 357–368. [Google Scholar] [CrossRef]
- Velo, R.; López, P.; Maseda, F. Wind speed estimation using multilayer perceptron. Energy Convers. Manag. 2014, 81, 1–9. [Google Scholar] [CrossRef]
- Petković, D.; Nikolić, V.; Mitić, V.V.; Kocić, L. Estimation of fractal representation of wind speed fluctuation by artificial neural network with different training algorothms. Flow Meas. Instrum. 2017, 54, 172–176. [Google Scholar] [CrossRef] [Green Version]
- Men, Z.; Yee, E.; Lien, F.S.; Wen, D.; Chen, Y. Short-term wind speed and power forecasting using an ensemble of mixture density neural networks. Renew. Energy 2016, 87, 203–211. [Google Scholar] [CrossRef]
- Bengio, Y. Rmsprop and equilibrated adaptive learning rates for nonconvex optimization. arXiv 2015, arXiv:1502.04390. [Google Scholar]
- Brutzkus, A.; Globerson, A.; Malach, E.; Shalev-Shwartz, S. Sgd learns over-parameterized networks that provably generalize on linearly separable data. arXiv 2017, arXiv:1710.10174. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Dozat, T. Incorporating nesterov momentum into adam. In Proceedings of the 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, 2–4 May 2016. [Google Scholar]
- Singh, P.; Dwivedi, P. Integration of new evolutionary approach with artificial neural network for solving short term load forecast problem. Appl. Energy 2018, 217, 537–549. [Google Scholar] [CrossRef]
- O’Malley, T. Hyperparameter Tuning with Keras Tuner 2020. Available online: https://github.com/keras-team/keras-tuner (accessed on 23 May 2021).
- Fan, G.F.; Qing, S.; Wang, H.; Hong, W.C.; Li, H.J. Support Vector Regression Model Based on Empirical Mode Decomposition and Auto Regression for Electric Load Forecasting. Energies 2013, 6, 1887–1901. [Google Scholar] [CrossRef]
- Li, M.W.; Wang, Y.T.; Geng, J.; Hong, W.C. Chaos cloud quantum bat hybrid optimization algorithm. Nonlinear Dyn. 2021, 103. [Google Scholar] [CrossRef]
- Romanic, D.; Hangan, H. The interplay between background atmospheric boundary layer winds and downburst outflows. A first physical experiment. In Proceedings of the Conference of the Italian Association for Wind Engineering; Springer: Berlin/Heidelberg, Germany, 2018; pp. 652–664. [Google Scholar]
Range | 10–300 m |
Height measurements | 10 User Configurable |
Sampling rate | 50 Hz |
Wind speed range | 1–70 m/s |
Accuracy | Wind speed: 0.1 m/s Direction variation: <0.5 |
Amount of Data | Selection | (m/s) | (m/s) | (m/s) | (rad) | (m/s) | (m/s) | (m/s) | (rad) | Simulated (m/s) | Real (m/s) |
---|---|---|---|---|---|---|---|---|---|---|---|
Full month | Jan | 1.95 | 2.12 | 2.27 | 1.54 | 1.37 | 1.51 | 1.63 | 0.80 | 5.02 | 5.71 |
Feb | 1.83 | 2.04 | 2.12 | 1.40 | 1.26 | 1.48 | 1.52 | 0.72 | 5.05 | ||
Aug | 1.69 | 2.09 | 1.98 | 1.38 | 1.19 | 1.47 | 1.38 | 0.70 | 4.70 | ||
Sept | 1.71 | 2.06 | 1.93 | 1.42 | 1.22 | 1.45 | 1.36 | 0.72 | 5.01 | ||
5 day/month | 1 to 5 | 1.67 | 2.00 | 1.88 | 1.38 | 1.17 | 1.42 | 1.33 | 0.70 | 5.14 | 5.71 |
6 to 10 | 1.65 | 2.00 | 1.89 | 1.38 | 1.15 | 1.43 | 1.34 | 0.70 | 5.10 | ||
Two full months | Jan and Feb | 1.78 | 2.07 | 2.12 | 1.42 | 1.24 | 1.49 | 1.51 | 0.73 | 5.18 | 5.71 |
Aug and sept | 1.69 | 2.08 | 1.95 | 1.39 | 1.20 | 1.45 | 1.36 | 0.71 | 4.77 | ||
2 neuronal networks | Jan and Sept | 1.75 | 2.12 | 2.07 | 1.44 | 1.25 | 1.51 | 1.46 | 0.73 | 5.04 | 5.71 |
Feb and Aug | 1.72 | 2.06 | 2.01 | 1.37 | 1.20 | 1.47 | 1.40 | 0.70 | 4.84 |
Amount of Data | Selection | (m/s) | (m/s) | (m/s) | (rad) | (m/s) | (m/s) | (m/s) | (rad) | Simulated (m/s) | Real (m/s) |
---|---|---|---|---|---|---|---|---|---|---|---|
Full month | Jan | 5.26 | 3.44 | 1.93 | 2.34 | 3.06 | 2.17 | 1.40 | 1.50 | 5.69 | 5.71 |
Feb | 3.32 | 2.80 | 1.83 | 2.01 | 2.26 | 1.93 | 1.33 | 1.21 | 5.34 | ||
Aug | 3.54 | 2.66 | 1.88 | 1.99 | 2.33 | 1.85 | 1.37 | 1.20 | 5.06 | ||
Sept | 2.76 | 2.32 | 1.86 | 1.84 | 1.90 | 1.77 | 1.39 | 1.05 | 5.25 | ||
5 day/month | 1 to 5 | 2.79 | 2.44 | 1.80 | 1.85 | 1.86 | 1.75 | 1.33 | 1.05 | 5.49 | 5.71 |
6 to 10 | 2.80 | 2.37 | 1.78 | 1.85 | 1.89 | 1.76 | 1.33 | 1.06 | 5.39 | ||
Two full months | Jan and Feb | 3.60 | 3.12 | 1.87 | 2.02 | 2.42 | 2.05 | 1.38 | 1.22 | 5.76 | 5.71 |
Aug and Sept | 3.07 | 2.37 | 1.84 | 1.91 | 2.08 | 1.74 | 1.35 | 1.11 | 5.20 | ||
2 neuronal networks | Jan and Sept | 4.10 | 2.60 | 2.36 | 1.79 | 1.91 | 2.04 | 1.38 | 1.21 | 5.38 | 5.71 |
Feb and Aug | 3.21 | 2.50 | 1.87 | 1.91 | 2.12 | 1.78 | 1.35 | 1.12 | 5.09 |
Nodes in 1º Layer | Nodes in 2º Layer | (m/s) | (m/s) | (m/s) | (rad) | (m/s) | (m/s) | (m/s) | (rad) | Simulated (m/s) | Real (m/s) |
---|---|---|---|---|---|---|---|---|---|---|---|
32 | - | 1.66 | 2.02 | 1.93 | 1.38 | 1.15 | 1.43 | 1.36 | 0.71 | 5.01 | 5.71 |
64 | - | 1.67 | 2.00 | 1.88 | 1.38 | 1.17 | 1.42 | 1.33 | 0.70 | 5.14 | |
128 | - | 1.65 | 1.98 | 1.87 | 1.37 | 1.16 | 1.41 | 1.31 | 0.70 | 5.08 | |
256 | - | 1.65 | 1.99 | 1.86 | 1.37 | 1.15 | 1.43 | 1.32 | 0.70 | 5.20 | |
64 | 8 | 1.65 | 1.99 | 1.91 | 1.375 | 1.15 | 1.41 | 1.34 | 0.70 | 5.00 | |
128 | 4 | 1.67 | 2.05 | 2.01 | 1.39 | 1.15 | 1.46 | 1.4 | 0.71 | 4.78 |
Time Period | (m/s) | (m/s) | (m/s) | (rad) | (m/s) | (m/s) | (m/s) | (rad) | Simulated (m/s) | Real (m/s) |
---|---|---|---|---|---|---|---|---|---|---|
30 min | 1.65 | 1.98 | 1.87 | 1.37 | 1.16 | 1.41 | 1.31 | 0.70 | 5.08 | 5.71 |
60 min | 1.64 | 2 | 1.89 | 1.41 | 1.17 | 1.41 | 1.33 | 0.72 | 4.99 | |
10 min | 1.69 | 2.04 | 1.93 | 1.41 | 1.19 | 1.46 | 1.38 | 0.73 | 4.10 | |
3 h | 1.65 | 2 | 1.95 | 1.41 | 1.16 | 1.43 | 1.38 | 0.72 | 5.20 | |
6 h | 1.67 | 2.01 | 1.92 | 1.42 | 1.16 | 1.42 | 1.34 | 0.74 | 4.98 | |
12 h | 1.67 | 2.04 | 1.87 | 1.45 | 1.17 | 1.45 | 1.31 | 0.75 | 5.18 |
Algorithm | (m/s) | (m/s) | (m/s) | (rad) | (m/s) | (m/s) | (m/s) | (rad) | Simulated (m/s) | Real (m/s) |
---|---|---|---|---|---|---|---|---|---|---|
RMSprop | 1.65 | 1.98 | 1.87 | 1.37 | 1.16 | 1.41 | 1.31 | 0.70 | 5.08 | 5.71 |
SGD | 1.68 | 2.02 | 1.91 | 1.39 | 1.18 | 1.44 | 1.35 | 0.70 | 5.06 | |
Adam | 1.66 | 1.99 | 1.90 | 1.38 | 1.17 | 1.41 | 1.35 | 0.70 | 5.20 | |
Nadam | 1.65 | 2.02 | 1.91 | 1.37 | 1.15 | 1.42 | 1.33 | 0.70 | 4.92 | |
Ftrl | 1.70 | 2.03 | 1.92 | 1.39 | 1.19 | 1.45 | 1.36 | 0.71 | 5.04 |
(m/s) | (m/s) | (%) | Pearson Coefficient | |||||
---|---|---|---|---|---|---|---|---|
Objective (m) | ||||||||
50 | 0.45 | 0.45 | 0.29 | 0.29 | 13.06 | 14.94 | 0.99 | 0.99 |
65 | 0.59 | 0.54 | 0.43 | 0.43 | 18.44 | 20.41 | 0.98 | 0.98 |
90 | 0.92 | 0.86 | 0.68 | 0.68 | 26.07 | 32.48 | 0.96 | 0.96 |
120 | 1.19 | 1.28 | 0.86 | 0.86 | 30.28 | 43.50 | 0.94 | 0.93 |
150 | 1.43 | 1.66 | 1.02 | 1.02 | 35.54 | 49.67 | 0.92 | 0.90 |
180 | 1.66 | 2.01 | 1.16 | 1.16 | 40.08 | 55.34 | 0.90 | 0.88 |
220 | 1.94 | 2.36 | 1.32 | 1.32 | 43.34 | 58.78 | 0.87 | 0.86 |
250 | 2.10 | 2.56 | 1.43 | 1.43 | 46.20 | 62.11 | 0.85 | 0.84 |
280 | 2.25 | 2.72 | 1.51 | 1.51 | 47.98 | 63.61 | 0.84 | 0.83 |
300 | 2.28 | 2.75 | 1.51 | 1.51 | 46.62 | 63.03 | 0.84 | 0.83 |
Model | Statistic | p Value |
---|---|---|
ANN vs. Random Forest | 238,018 | 0.09 |
ANN vs. Power Law | 100,668 | |
ANN vs. Constant Model | 110,970 | |
ANN vs. Logarithmic Law | 233,676 | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Gutiérrez, A.; Domínguez, D.; López, D.; Gonzalo, J. Atmospheric Boundary Layer Wind Profile Estimation Using Neural Networks Applied to Lidar Measurements. Sensors 2021, 21, 3659. https://doi.org/10.3390/s21113659
García-Gutiérrez A, Domínguez D, López D, Gonzalo J. Atmospheric Boundary Layer Wind Profile Estimation Using Neural Networks Applied to Lidar Measurements. Sensors. 2021; 21(11):3659. https://doi.org/10.3390/s21113659
Chicago/Turabian StyleGarcía-Gutiérrez, Adrián, Diego Domínguez, Deibi López, and Jesús Gonzalo. 2021. "Atmospheric Boundary Layer Wind Profile Estimation Using Neural Networks Applied to Lidar Measurements" Sensors 21, no. 11: 3659. https://doi.org/10.3390/s21113659
APA StyleGarcía-Gutiérrez, A., Domínguez, D., López, D., & Gonzalo, J. (2021). Atmospheric Boundary Layer Wind Profile Estimation Using Neural Networks Applied to Lidar Measurements. Sensors, 21(11), 3659. https://doi.org/10.3390/s21113659