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Abstract: The interest in contactless or remote heart rate measurement has been steadily growing in
healthcare and sports applications. Contactless methods involve the utilization of a video camera
and image processing algorithms. Recently, deep learning methods have been used to improve
the performance of conventional contactless methods for heart rate measurement. After providing
a review of the related literature, a comparison of the deep learning methods whose codes are
publicly available is conducted in this paper. The public domain UBFC dataset is used to compare
the performance of these deep learning methods for heart rate measurement. The results obtained
show that the deep learning method PhysNet generates the best heart rate measurement outcome
among these methods, with a mean absolute error value of 2.57 beats per minute and a mean square
error value of 7.56 beats per minute.

Keywords: remote PPG; heart rate measurement methods; deep learning

1. Introduction

Physiological measurements are widely used to determine a person’s health condi-
tion [1–6]. Photoplethysmography (PPG) is a physiological measurement method that is
used to detect volumetric changes in blood in vessels beneath the skin [1]. Medical devices
based on PPG have been introduced to measure different physiological measurements
including heart rate (HR), respiratory rate, heart rate variability (HRV), oxyhemoglobin
saturation, and blood pressure [2–6]. Due to its low cost and non-invasive nature, PPG
is utilized in many devices such as finger pulse oximeters, sports bands, and wearable
sensors.

PPG-based physiological measurements can be categorized into two types: contact-
based and contactless. Several survey articles have appeared in the literature on contact-
based PPG methods as well as on contactless PPG methods. Contact-based methods deploy
a light source and a photodetector. On the other hand, contactless methods deploy a
video camera to measure the PPG signal. The previous survey articles mostly addressed
conventional signal processing approaches. The recently developed deep learning-based
methods have shown more promising results compared to the conventional methods. The
focus of this review paper is thus placed on deep learning-based contactless methods for
heart rate measurement.

A common practice in the medical field to measure the heart rate is ECG or electrocar-
diography [7,8], where voltage changes in the heart electrical activity are detected using
electrodes placed on the skin. In general, ECG provides a more reliable heart rate measure-
ment compared to PPG [9,10]. Hence, ECG is often used as the reference for evaluation of
PPG methods [7–10]. Typically, 10 electrodes of the ECG machine are attached to different
parts of the body including the wrist and ankle. Different from ECG, PPG-based medical
devices possess differing sensor shapes placed on different parts of the body such as rings,
earpieces, and bands [7,11–16], and they all use a light source and a photodetector to detect
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the PPG signal with signal processing, see Figure 1. The signal processing is for the purpose
of processing the reflected optical signal from the skin [1].
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Early research in this field concentrated on obtaining the PPG signal and ways to
perform pulse wave analysis [17]. A comparison between ECG and PPG is discussed
in [18,19]. There are survey papers covering different PPG applications that involve
the use of wearable devices [20,21], atrial fibrillation detection [22], and blood pressure
monitoring [23]. Papers have also been published which used deep learning for contact-
based PPG, e.g., [24–27]. The previous survey papers on contact-based PPG methods are
listed in Table 1.

Table 1. Previous survey papers on contact-based PPG methods.

Emphasis Ref Year Task

Contact [17] 2007 Basic principle of PPG operation, pulse wave analysis, clinical applications

Contact
ECG and PPG [18] 2018 Breathing rate (BR) estimation from ECG and PPG, BR algorithms and its

assessment

Contact [22] 2020 Approaches for PPG-based atrial fibrillation detection

Contact
Wearable device [20] 2019 PPG acquisition, HR estimation algorithms, developments on wrist PPG

applications, biometric identification

Contact
ECG and PPG [19] 2012 Accuracy of pulse rate variability (PRV) as an estimate of HRV

Contact
Wearable device [21] 2018 Current developments and challenges of wearable PPG-based monitoring

technologies

Contact
Blood pressure [23] 2015 Approaches involving PPG for continuous and non-invasive monitoring of

blood pressure

Although contact-based PPG methods are non-invasive, they can be restrictive due
to the requirement of their contact with the skin. Contact-based methods can be irritating
or distracting in some situations, for example, for newborn infants [28–31]. When a
less restrictive approach is desired, contactless PPG methods are considered. The use
of contactless PPG methods or remote PPG (rPPG) methods has been growing in recent
years [32–36].

Contactless PPG methods usually utilize a video camera to capture images which are
then processed by image processing algorithms [32–36]. The physics of rPPG is similar
to contact-based PPG. In rPPG methods, the light-emitting diode in contact-based PPG
methods is replaced with ambient illuminance, and the photodetector is replaced with a
video camera, see Figure 2. The light reaching the camera sensor can be separated into
static (DC) and dynamic (AC) components. The DC component corresponds to static
elements including tissue, bone, and static blood, while the AC component corresponds to
the variations in light absorption due to arterial blood volume changes. Figure 3 provides
an illustration of the image processing framework in rPPG methods. The common image
processing steps involved in the framework are illustrated in this figure. In the signal
extraction part of the framework, a region of interest (ROI), normally on the face, is
extracted.



Sensors 2021, 21, 3719 3 of 21

Sensors 2021, 21, x FOR PEER REVIEW 3 of 21 
 

 

processing steps involved in the framework are illustrated in this figure. In the signal ex-
traction part of the framework, a region of interest (ROI), normally on the face, is ex-
tracted. 

 
Figure 2. Illustration of rPPG generation: diffused and specular reflections of ambient illuminance 
are captured by a camera with the diffused reflection indicating volumetric changes in blood ves-
sels. 

 
Figure 3. rPPG or contactless PPG image processing framework: signal extraction step (ROI detec-
tion and tracking), signal estimation step (filtering and dimensionality reduction), and heart rate 
estimation step (frequency analysis and peak detection). 

In earlier studies, video images from motionless faces were considered [37–39]. Sev-
eral papers relate to exercising situations [40–44]. ROI detection and ROI tracking consti-
tute two major image processing parts of the framework. The Viola and Jones (VJ) algo-
rithm [45] is often used to detect face areas [46–49]. As an example of prior work on skin 
detection, a neural network classifier was used to detect skin-like pixels in [50]. In the 
signal estimation part, a bandpass filter is applied to eliminate undesired frequency com-
ponents. A common choice for the frequency band is [0.7 Hz, 4 Hz], which corresponds to 
an HR between 42 and 240 beats per minute (bpm) [50–53]. To separate a signal into un-
correlated components and to reduce dimensionality, independent component analysis 
(ICA) was utilized in [54–57] and principal component analysis (PCA) was utilized in [38–
40,58,59]. In the heart rate estimation module, the dimensionality-reduced data will be 
mapped to certain levels using frequency analysis or peak detection methods. The survey 

Figure 2. Illustration of rPPG generation: diffused and specular reflections of ambient illuminance
are captured by a camera with the diffused reflection indicating volumetric changes in blood vessels.

Sensors 2021, 21, x FOR PEER REVIEW 3 of 21 
 

 

processing steps involved in the framework are illustrated in this figure. In the signal ex-
traction part of the framework, a region of interest (ROI), normally on the face, is ex-
tracted. 

 
Figure 2. Illustration of rPPG generation: diffused and specular reflections of ambient illuminance 
are captured by a camera with the diffused reflection indicating volumetric changes in blood ves-
sels. 

 
Figure 3. rPPG or contactless PPG image processing framework: signal extraction step (ROI detec-
tion and tracking), signal estimation step (filtering and dimensionality reduction), and heart rate 
estimation step (frequency analysis and peak detection). 

In earlier studies, video images from motionless faces were considered [37–39]. Sev-
eral papers relate to exercising situations [40–44]. ROI detection and ROI tracking consti-
tute two major image processing parts of the framework. The Viola and Jones (VJ) algo-
rithm [45] is often used to detect face areas [46–49]. As an example of prior work on skin 
detection, a neural network classifier was used to detect skin-like pixels in [50]. In the 
signal estimation part, a bandpass filter is applied to eliminate undesired frequency com-
ponents. A common choice for the frequency band is [0.7 Hz, 4 Hz], which corresponds to 
an HR between 42 and 240 beats per minute (bpm) [50–53]. To separate a signal into un-
correlated components and to reduce dimensionality, independent component analysis 
(ICA) was utilized in [54–57] and principal component analysis (PCA) was utilized in [38–
40,58,59]. In the heart rate estimation module, the dimensionality-reduced data will be 
mapped to certain levels using frequency analysis or peak detection methods. The survey 

Figure 3. rPPG or contactless PPG image processing framework: signal extraction step (ROI detec-
tion and tracking), signal estimation step (filtering and dimensionality reduction), and heart rate
estimation step (frequency analysis and peak detection).

In earlier studies, video images from motionless faces were considered [37–39]. Several
papers relate to exercising situations [40–44]. ROI detection and ROI tracking constitute two
major image processing parts of the framework. The Viola and Jones (VJ) algorithm [45] is
often used to detect face areas [46–49]. As an example of prior work on skin detection, a
neural network classifier was used to detect skin-like pixels in [50]. In the signal estimation
part, a bandpass filter is applied to eliminate undesired frequency components. A common
choice for the frequency band is [0.7 Hz, 4 Hz], which corresponds to an HR between 42 and
240 beats per minute (bpm) [50–53]. To separate a signal into uncorrelated components and
to reduce dimensionality, independent component analysis (ICA) was utilized in [54–57]
and principal component analysis (PCA) was utilized in [38–40,58,59]. In the heart rate
estimation module, the dimensionality-reduced data will be mapped to certain levels using
frequency analysis or peak detection methods. The survey papers on rPPG methods that
have already appeared in the literature are listed in Table 2. These survey papers provide
comparisons with contact-based PPG methods.

There are challenges in rPPG which include subject motion and ambient lighting
variations [60–62]. Due to the success of deep learning in many computer vision and speech
processing applications [63–65], deep learning methods have been considered for rPPG to
deal with its challenges, for example, [44,49]. In deep learning methods, feature extraction
and classification are carried out together within one network structure. The required
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datasets for deep learning models are collected using RGB cameras. As noted earlier, the
focus of this review is on deep learning-based contactless heart rate measurement methods.

Table 2. Survey papers on conventional contactless methods previously reported in the literature.

Emphasis Ref Year Task

Contactless [66] 2018 Provides typical components of rPPG and notes the main challenges; groups
published studies by their choice of algorithm.

Contactless [67] 2012
Covers three main stages of monitoring physiological measurements based
on photoplethysmographic imaging: image acquisition, data collection, and

parameter extraction.

Contactless
and contact [68] 2016 States review of contact-based PPG and its limitations; introduces research

activities on wearable and non-contact PPG.

Contactless
and contact [69] 2009

Reviews photoplethysmographic measurement techniques from contact
sensing placement to non-contact sensing placement, and from point

measurement to imaging measurement.

Contactless
newborn infants [28] 2013 Investigates the feasibility of camera-based PPG for contactless HR

monitoring in newborn infants with ambient light.

Contactless
newborn infants [30] 2016 Comparative analysis to benchmark state-of-the-art video and image-guided

noninvasive pulse rate (PR) detection.

Contactless
and contact [70] 2017 Heart rate measurement using facial videos based on

photoplethysmography and ballistocardiography.

Contactless
and contact [71] 2014

Covers methods of non-contact HR measurement with capacitively coupled
ECG, Doppler radar, optical vibrocardiography, thermal imaging, RGB

camera, and HR from speech.

Contactless
RR

and contact
[72] 2011 Discusses respiration monitoring approaches (both contact and non-contact).

Contactless
newborn infants [31] 2019 Addresses HR measurement in babies.

Contactless [73] 2019 Examines challenges associated with illumination variations and motion
artifacts.

Contactless [74] 2017

Covers HR measurement techniques including camera-based
photoplethysmography, reflectance pulse oximetry, laser Doppler technology,

capacitive sensors, piezoelectric sensors, electromyography, and a digital
stethoscope.

Contactless
Main challenges [75] 2015 Covers issues in motion and ambient lighting tolerance, image optimization

(including multi-spectral imaging), and region of interest optimization.

In essence, this paper provides a review of combinations of conventional and deep
learning rPPG methods as well as end-to-end deep learning-based rPPG methods for
heart rate measurement. More specifically, the deep learning-based methods for heart rate
measurement are grouped into two main categories, and the ones whose codes are publicly
available are compared by examining the same public domain dataset.

2. Contactless PPG Methods Based on Deep Learning

Previous works on deep learning-based contactless HR methods can be divided into
two groups: combinations of conventional and deep learning methods, and end-to-end
deep learning methods. In what follows, a review of these papers is provided. Later, in
Section 3, the end-to-end deep learning methods whose codes are publicly available are
compared by applying them to the same public domain dataset.
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2.1. Combination of Conventional and Deep Learning Methods

Li et al. 2021 [76] presented multi-modal machine learning techniques related to heart
diseases. From Figure 3, it can be seen that one or more components of the contactless
HR framework can be achieved by using deep learning. These components include ROI
detection and tracking, signal estimation, and HR estimation.

2.1.1. Deep Learning Methods for Signal Estimation

Qiu et al. 2018 [77] developed a method called EVM-CNN. The pipeline of this method
consists of three modules: face detection and tracking, feature extraction, and HR estima-
tion. In the face detection and tracking module, 68 facial landmarks inside a bounding
box are detected by using a regression local binary features-based approach [78]. Then,
an ROI defined by eight points around the central part of a human face is automatically
extracted and inputted into the next module. In the feature extraction module, spatial
decomposition and temporal filtering are applied to obtain so-called feature images. The
sequence of ROIs is down-sampled into several bands. The lowest bands are reshaped
and concatenated into a new image. Three channels of this new image are transferred
into the frequency domain; then, fast Fourier transform (FFT) is applied to remove the
unwanted frequency bands. Finally, the bands are transferred back to the time domain by
performing inverse FFT and merging into a feature image. In the HR estimation module, a
convolutional neural network (CNN) is used to estimate HR from the feature image. The
CNN used in this method has a simple structure with several convolution layers which
uses depth-wise convolution and point-wise convolution to reduce the computational
burden and model size.

As shown in Figure 4, in this method, the first two modules which are face detec-
tion/tracking and feature extraction are conventional rPPG approaches, whereas the HR
estimation module uses deep learning to improve performance for HR estimation.
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2.1.2. Deep Learning Methods for Signal Extraction

Luguev et al. 2020 [79] established a framework which uses deep spatial-temporal
networks for contactless HRV measurements from raw facial videos. In this method, a 3D
convolutional neural network is used for pulse signal extraction. As for the computation of
HRV features, conventional signal processing methods including frequency domain analy-
sis and peak detection are used. More specifically, raw video sequences are inputted into
the 3D-CNN without any skin segmentation. Several convolution operations with rectified
linear units (ReLU) are used as activation functions together with pooling operations to
produce spatiotemporal features. In the end, a pulse signal is generated by a channel-wise
convolution operation. The mean absolute error is used as the loss function of the model.

Paracchini et al. 2020 [80] implemented rPPG based on a single-photon avalanche
diode (SPAD) camera. This method combines deep learning and conventional signal
processing to extract and examine the pulse signal. The main advantage of using a SPAD
camera is its superior performance in dark environments compared with CCD or CMOS
cameras. Its framework is shown in Figure 5. The signal extraction part has two components
which are facial skin detection and signal creation. A U-shape network is then used to
perform skin detection including all visible facial skin surface areas rather than a specific
skin area. The output of the network is a binary skin mask. Then, a raw pulse signal is
obtained by averaging the intensity values of all the pixels inside the binary mask. As for
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signal estimation, this is achieved by filtering, FFT, and peak detection. The experimental
results include HR, respiration rate, and tachogram measurements.
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In another work from Zhan et al. 2020 [81], the focus was placed on understanding
the CNN-based PPG signal extraction. Four questions were addressed: (1) Does the CNN
learn PPG, BCG, or a combination of both? (2) Can a finger oximeter be directly used as
a reference for CNN training? (3) Does the CNN learn the spatial context information of
the measured skin? (4) Is the CNN robust to motion, and how is this motion robustness
achieved? To answer these four questions, a CNN-PPG framework and four experiments
were designed. The results of these experiments indicate the availability of multiple
convolutional kernels is necessary for a CNN to arrive at a flexible channel combination
through the spatial operation but may not provide the same motion robustness as a multi-
site measurement. Another conclusion reached is that the PPG-related prior knowledge
may still be helpful for the CNN-based PPG extraction.

2.2. End-to-End Deep Learning Methods

In this section, end-to-end deep learning systems are stated which take video as
the input and use different network architectures to generate a physiological signal as
the output.

2.2.1. VGG-Style CNN

Chen and Mcduff 2018 [82] developed an end-to-end method for video-based heart
and breathing rates using a deep convolutional network named DeepPhys. To address
the issue caused by subject motion, the proposed method uses a motion representation
algorithm based on a skin reflection model. As a result, motions are captured more
effectively. To guide the motion estimation, an attention mechanism using appearance
information was designed. It was shown that the motion representation model and the
attention mechanism used enable robust measurements under heterogeneous lighting
and motions.

The model is based on a VGG-style CNN for estimating the physiological signal
derived under motion [83]. VGG is an object recognition model that supports up to
19 layers. Built as a deep CNN, VGG is shown to outperform baselines in many image
processing tasks. Figure 6 illustrates the architecture of this end-to-end convolutional
attention network. A current video frame at time t and a normalized difference between
frames at t and t + 1 constitute the inputs to the appearance and motion models, respectively.
The network learns spatial masks, which are shared between the models, and extracts
features for recovering the blood volume pulse (BVP) and respiration signals.

Deep PPG proposed by Reiss et al. 2019 [84] addresses three shortcomings of the
existing datasets. First is the dataset size. While the number of subjects can be considered
as sufficient (8–24 participants in each dataset), the length of each session’s recording can
be rather short. Second is the small numbers of activities. The publicly available datasets
include data from only two–three different activities. Additionally, third is data recording
in laboratory settings rather than in real-world environments.

A new dataset, called PPG-DaLiA [85], was thus introduced in this paper: a PPG
dataset for motion compensation and heart rate estimation in daily living activities. Figure 7
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illustrates the architecture of the VGG-like CNN used, where the time–frequency spectra
of PPG signals are used as the input to estimate the heart rate.
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Long short-term memory (LSTM) is a recurrent neural network (RNN) architecture 

which allows only process handling a single data point (such as images), but also an entire 
sequence of data points (such as speech or video). It has been previously used for various 
tasks such as connected handwriting recognition, speech recognition, and anomaly detec-
tion in network traffic [86–88]. 
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2.2.2. CNN-LSTM Network

Long short-term memory (LSTM) is a recurrent neural network (RNN) architecture
which allows only process handling a single data point (such as images), but also an
entire sequence of data points (such as speech or video). It has been previously used for
various tasks such as connected handwriting recognition, speech recognition, and anomaly
detection in network traffic [86–88].

rPPG signals are usually collected using a video camera with a limitation of being
sensitive to multiple contributing factors, which include variation in skin tone, lighting
condition, and facial structure. Meta-rPPG [89] is an end-to-end supervised learning
approach which performs well when training data are abundant with a distribution that
does not deviate too much from the testing data distribution. To cope with the unforeseeable
changes during testing, a transductive meta-learner that takes unlabeled samples during
testing for a self-supervised weight adjustment is used to provide fast adaptation to the
changes. The network proposed in this paper is split into two parts: a feature extractor and
an rPPG estimator modeled by a CNN and an LSTM network, respectively.
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2.2.3. 3D-CNN Network

A 3D convolutional neural network is a type of network with kernel sliding in three
dimensions. 3D-CNN is shown to have better performance in spatiotemporal information
learning than 2DCNN [90].

Špetlík et al. 2018 [46] proposed a two-step convolutional neural network to estimate
the heart rate from a sequence of facial images, see Figure 8. The proposed architecture has
two components: an extractor and an HR estimator. The extractor component is run over a
temporal image sequence of faces. The signal is then fed to the HR estimator to predict the
heart rate.
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In the work from Yu et al. 2019 [91], a two-stage end-to-end method was proposed.
This work deals with video compression loss and recovers the rPPG signal from highly
compressed videos. It consists of two parts: (1) a spatiotemporal video enhancement net-
work (STVEN) for video enhancement, and (2) an rPPG network (rPPGNet) for rPPG signal
recovery. rPPGNet can work on its own for obtaining rPPG measurements. The STVEN
network can be added and jointly trained to further boost the performance, particularly on
highly compressed videos.

Another method from Yu et al. 2019 [92] provides the use of deep spatiotemporal
networks for reconstructing precise rPPG signals from raw facial videos. With the constraint
of trend consistency in ground truth pulse curves, this method is able to recover rPPG
signals with accurate pulse peaks. The heartbeat peaks of the measured rPPG signal are
located at the corresponding R peaks of the ground truth ECG signal.

To address the issue of a lack of training data, a heart track convolutional neural
network was developed by Rerepelkina et al. 2020 [93] for remote video-based heart rate
tracking. This learning-based method is trained on synthetic data to accurately estimate
the heart rate in different conditions. Synthetic data do not include video and include only
PPG curves. To select the most suitable parts of the face for pulse tracking at each particular
moment, an attention mechanism is used.

Similar to the previous methods, the method proposed by Bousefsaf et al. 2019 [94]
also uses synthetic data. Figure 9 illustrates the process of how synthetic data are generated.
A 3D-CNN classifier structure was developed for both extraction and classification of
unprocessed video streams. The CNN acts as a feature extractor. Its final activations are
fed into two dense layers (multilayer perceptron) that are used to classify the pulse rate.
The network ensures concurrent mapping by producing a prediction for each local group
of pixels.
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Liu et al. 2020 [95] developed a lightweight rPPG estimation network, named Deep-
rPPG, based on spatiotemporal convolutions for utilization involving different types of
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input skin. To further boost the robustness, a spatiotemporal rPPG aggregation strategy
was designed to adaptively aggregate rPPG signals from multiple skin regions into a final
one. Extensive experimental studies were conducted to show its robustness when facing
unseen skin regions in unseen scenarios. Table 3 lists the contactless HR methods that use
deep learning.

Table 3. Deep learning-based contactless PPG methods.

Focus Ref Year Feature Dataset

End-to-end system
Robust to illumination changes

and subject’s motion
[46] 2018

A two-step convolutional neural network
composed of

an extractor and HR estimator

COHFACE
PURE

MAHNOB-HCI

Signal estimation enhancement [77] 2019
Eulerian video magnification (EVM) to extract
face color changes and using CNN to estimate

heart rate
MMSE-HR

3D-CNN for signal
extraction [79] 2020

Using deep spatiotemporal networks for
contactless HRV measurements from raw

facial videos;
employing data augmentation

MAHNOB-HCI

Single-photon camera [80] 2020 Neural network for skin detection N/A

Understanding of
CNN-based PPG methods [81] 2020

Analysis of CNN-based remote PPG to
understand

limitations and sensitivities

HNU
PURE

End-to-end system
Attention mechanism [82] 2018

Robust measurement under heterogeneous
lighting

and motions
MAHNOB-HCI

End-to-end system
Real-life conditions dataset [84] 2019

Major shortcoming of existing datasets:
dataset size,

small number of activities, data recording in
laboratory setting

PPG-DaLiA

Synthetic training data
Attention mechanism [93] 2020

CNN training with synthetic data to
accurately

estimate HR in different conditions

UBFC-RPPG
MoLi-ppg-1
MoLi-ppg-2

Synthetic training data [94] 2019 Automatic 3D-CNN training process with
synthetic data with no image processing UBFC-RPPG

End-to-end supervised
learning approach

Meta-learning
[89] 2017

Meta-rPPG for abundant training data with a
distribution

not deviating too much from distribution of
testing data

MAHNOB-HCI
UBFC-RPPG

Counter video
compression loss [91] 2019 STEVEN for video quality enhancement

rPPGNet for signal recovery MAHNOB-HCI

Spatiotemporal network [92] 2019 Measuring rPPG signal from raw facial video;
taking temporal context into account MAHNOB-HCI

Spatiotemporal network [95] 2020 Spatiotemporal convolution network,
different types of input skin

MAHNOB-HCI
PURE

3. Selected Deep Learning Models for Comparison

Among the deep learning-based rPPG methods, the codes for four methods are
publicly available. In this section, a comparison of these methods is carried out. First, the
architectures of these methods are stated in some detail.
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3.1. STVEN-rPPGNet

This deep learning-based method considers low-resolution input video clips to mea-
sure the heart rate. Its training occurs in two stages. The first stage involves a video
enhancement network (called STVEN) whose output corresponds to spatially enhanced
videos. The second stage involves a measurement network (called rPPGNet) whose output
provides the heart rate. The measurement network rPPGNet is formed using a spatiotem-
poral convolutional network, a skin-based attention module, and a partition constraint
module. The skin-based attention module selects skin regions. The partition constraint
module enables an improved representation of the rPPG signal. An illustration of the
two-stage architecture of STVEN-rPPGNet is shown in Figure 10.
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3.2. IPPG-3D-CNN

In this method, the training phase is performed on synthetic data. That is, the pseudo-
PPG video streams are formed by repeating waveforms, which are constructed by Fourier
series approximation. In the testing phase, no pre-processing step, such as automatic face
detection, is carried out. To synthesize video streams, the following steps are taken: (1) via
Fourier series, a waveform model fitted to the rPPG waveform is generated, (2) based on
the waveform in (1), a two-second signal is generated, (3) the signal is repeated to form a
video stream, and (4) random noise at a specified noise level is added to each image of a
video stream.

Then, video patches are fed into the network which are mapped to the targeted heart
rate. By subtracting the average value, each video is centered around zero. Training is
conducted by constantly adding 15,200 batches in duration (200 video patches in each of
the 76 levels of heart rates). Thus, each batch changes the network parameters with respect
to an input tensor of 15,200 × 25 × 25 × 60. An illustration of the architecture of this deep
learning-based method is shown in Figure 11.
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Figure 11. Architecture of iPPG-3D-CNN.

3.3. PhysNet

In this method, the RGB frames of the face are mapped into the rPPG domain directly
without any pre- and post-processing step. In fact, the solution developed is an end-to-end
one. The architecture of this deep neural network uses two different structures for training:
(1) the first architecture maps the facial RGB frames into the rPPG signal via several
convolution and pooling layers, and (2) the second architecture uses RNN processing units.
The difference between the first and second structures is that T-frames are inputted to the
first network structure at the same time, and 3D convolution layers are used in the second
network structure by inputting one frame at a time. An illustration of the architecture of
this deep learning-based method is depicted in Figure 12.
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3.4. Meta-rPPG

The idea of using meta-learning for heart rate measurement from the rPPG signal is to
fine-tune the parameters of a network for situations that are not covered in the training set.
The architecture of this network consists of two parts: one part enables a fast adaptation
process and the other part provides heart rate measurement. Its learning process involves
the following: (1) extracting facial frames from video, and the face area is cropped with the
region outside the face area set to zero to obtain facial landmarks, and (2) for each facial
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frame, the modified PPG signal, which is obtained by a small temporal offset, is used as
the network target.

The architecture of this network consists of three modules: convolutional encoder,
rPPG estimator (with LSTM), and a synthetic gradient generator. During its inference mode,
only the convolutional encoder and the rPPG estimator are used. The synthetic gradient
estimator is utilized in its transductive mode. This network is designed to remove spa-
tiotemporal features by modeling visual information using a deep convolutional encoder
and then by modeling the PPG signal using Bi-LSTM. An illustration of the architecture of
this deep learning-based method is provided in Figure 13.
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4. Comparison Results and Discussion

This subsection demonstrates the comparison results of the above four algorithms
whose codes are publicly available for the purpose of measuring the heart rate. The
performance of these four algorithms is found in terms of bpm.

4.1. Dataset

The UBFC database [96] is used here to train and test the above four methods. This
database consists of 37 uncompressed videos with a resolution of 640 × 480 in 8-bit RGB
format. Each video corresponds to a specific subject. The ground truth value of the video
data is PPG waveform (magnitude and time) along with heart rates recorded with a pulse
oximeter. There is no need to perform any pre-processing on this database. Ten randomly
selected subjects were used for our test set, and the rest were used for the training set.

4.2. Experimental Setup

In the studies conducted in [78,91,97,98], it was shown that the deep learning methods
performed better than the conventional methods. Hence, the focus of the experimentation
conducted here is placed on the above selected deep learning models. An overview of the
architecture of the selected deep learning models is provided in Table 4.

The experiments for this study were conducted in one phase, where the above-
mentioned dataset was divided into a training and a test set with no overlap. The image
frames were extracted from the video clips using the MATLAB toolbox [99]. A region of
interest (ROI) was then selected and cropped using the Viola–Jones algorithm [45] from
the original image. One of the deep learning models required the skin map of the frames.
The skin map of each image was extracted using the Bob package [100]. Finally, the ex-
tracted images and skin labels were then used to train and test the CNN-based pulse rate
measurement algorithms. The outcomes of each of the four algorithms were assessed as
a function of the mean square error (MSE) [101], mean absolute error (MAE) [102], and
standard deviation (SD) [103]. To be fair in terms of objective metrics, the ratio of training
and test sets was kept the same for all four selected deep models.
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Table 4. Overview of the selected network parameters.

Method Network Architecture

STVEN-rPPGNet

Module Layer Kernel

STVEN

Convolution 1 3 × 3 × 7

Convolution 2 3 × 4 × 4

Convolution 3 4 × 4 × 4

Spatiotemporal block [3 × 3 × 3] × 6

Deconvolution 1 4 × 4 × 4

Deconvolution 2 1 × 4 × 4

Deconvolution 3 1 × 7 × 7

rPPGNet

Convolution 1 1 × 5 × 5

Spatiotemporal block [3 × 3 × 3] × 4

Spatial global average pooling 1 × 16 × 16

Deconvolution 1 1 × 1 × 1

iPPG-3 DCNN

Convolution 1 58 × 20 × 20

Max pooling 2 × 2 × 2

Dense 512

Dense 76

PhysNet

Convolution 1 1 × 5 × 5

Max pooling 1 × 2 × 2

Convolution 2 3 × 3 × 3

Convolution 3 3 × 3 × 3

Spatial global average pooling

Convolution 4 1 × 1 × 1

Meta-rPPG

Convolution 1 3 × 3

Convolution 2 3 × 3

Convolution 3 3 × 3

Convolutional
Encoder Convolution 4 3 × 3

Convolution 5 3 × 3

Average pooling 2 × 2

rPPG Estimator

Bidirectional LSTM —

Linear —

Ordinal —

Synthetic
Gradient
Generator

Convolution 1 3 × 3

Convolution 2 3 × 3

Convolution 3 3 × 3

Convolution 4 3 × 3

The metrics used for evaluation are stated next. As mentioned above, to quantify the
performance of each deep learning method, the MSE and the MAE between the predicted
heart rate and the ground truth were considered. The SDs of the reference heart rate and
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the predicted heart rate are also reported. The MSE and MAE were computed using the
following equations:

MSE =

√√√√ 1
N

N

∑
i=1
|Ri − Pi| (1)

MAE =
1
N
|Ri − Pi| (2)

where Ri and Pi denote the ground truth and predicted heart rates, respectively, and N is
the total number of heartbeats.

4.3. Results and Discussion

The results obtained are reported in Table 5 for the test set. The reference value for
each metric is placed in the last row of the table. In most cases, the PhysNet method
performed better than the other deep learning methods in terms of the objective metrics.
For instance, the MAE and MSE of subject 10 in PhysNet were found to be lower than the
other methods.The same result was obtained for subject 5 as well. More specifically, the
MAE of rPPGNet, 3D-CNN, PhysNet, and Meta-rPPG for subject 10 was found to be 3.14,
3.36, 2.60, and 3.67, respectively, whereas the MSE measure was found to be 10.74, 12.34,
7.63, and 14.60. The better performance of PhysNet is attributed to its architecture enabling
the extraction of effective features from input frames.

The latency or computation time associated with each of the methods is also reported
in Table 6 for a batch with a size of 64. As seen from this table, 3D-CNN takes only 0.74 s to
predict the heart rate from 64 images. In other words, 3D-CNN runs the fastest among the
four methods.

To have an overall assessment of the four methods, the results were averaged for
all the subjects. Figure 14 shows this outcome. As shown in this figure, the vertical axis
corresponds to the range of the heart rate in bpm and the reference of the heart rate is
denoted by the first bar from the left. From this figure, one can see that the average of the
PhysNet method is closer to the reference. The results of individual subjects in the test set
are shown in Figure 15. In this figure, the first bar from the left represents the reference. The
legend associated with each bar is shown on the right side of the bar charts. By comparing
the bar charts shown in this figure, one can see that PhysNet performs better than the other
methods in terms of the mean and standard deviation. In other words, it provides the
highest accuracy on average.
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Figure 14. Averaged heart rate measurement of all the subjects in the test set. The vertical axis
indicates the heart rate for each method in bpm. Each bar shows the mean and the standard deviation
of a method. The first bar from the left indicates the reference.
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Table 5. Objective metrics for the four compared deep learning methods.

Subject # Method
HR (bpm)

MAE MSE SD

Subject 1

rPPGNet 3.22 11.41 3.93

3D-CNN 3.75 14.92 3.86

PhysNet 2.53 7.31 3.96

Meta-rPPG 4.09 17.67 3.95

Subject 2

rPPGNet 2.72 7.82 3.82

3D-CNN 2.87 8.81 3.93

PhysNet 2.25 5.47 3.79

Meta-rPPG 3.18 10.71 4.01

Subject 3

rPPGNet 3.12 11.14 2.32

3D-CNN 3.43 13.28 2.33

PhysNet 2.74 8.74 2.42

Meta-rPPG 3.63 14.78 2.36

Subject 4

rPPGNet 2.63 7.79 1.79

3D-CNN 2.74 8.42 1.74

PhysNet 2.14 5.48 1.75

Meta-rPPG 2.83 8.96 1.77

Subject 5

rPPGNet 2.82 8.90 5.48

3D-CNN 2.96 9.72 5.50

PhysNet 2.38 6.66 5.54

Meta-rPPG 3.22 11.37 5.48

Subject 6

rPPGNet 3.76 15.09 5.71

3D-CNN 4.21 18.91 5.66

PhysNet 2.93 9.26 5.95

Meta-rPPG 4.56 22.34 5.63

Subject 7

rPPGNet 3.42 12.40 8.79

3D-CNN 3.85 15.78 8.66

PhysNet 2.91 9.04 8.94

Meta-rPPG 4.01 17.02 8.72

Subject 8

rPPGNet 3.66 14.51 4.87

3D-CNN 3.93 16.82 4.92

PhysNet 3.18 11.21 4.92

Meta-rPPG 4.20 19.07 4.96

Subject 9

rPPGNet 2.24 5.49 3.47

3D-CNN 2.52 6.76 3.47

PhysNet 2.04 4.76 3.55

Meta-rPPG 2.78 8.13 3.58

Subject 10

rPPGNet 3.14 10.74 5.65

3D-CNN 3.36 12.34 5.63

PhysNet 2.60 7.63 5.77

Meta-rPPG 3.67 14.60 5.62

Averaged across all
subjects

rPPGNet 3.07 10.53 4.58

3D-CNN 2.98 12.58 4.57

PhysNet 2.57 7.56 4.66

Meta-rPPG 3.62 14.47 4.61

Reference value 0 0 0
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Table 6. Latency or computation time for the four compared deep learning methods.

Method rPPGNet 3D-CNN PhysNet Meta-rPPG

Time 1.12 (s) 0.74 (s) 1.19 (s) 1.7 (s)
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reference for a subject.
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5. Conclusions

This paper has provided a comprehensive review of deep learning-based contactless
heart rate measurement methods. First, an overview of contact-based PPG and contactless
PPG methods was covered. Then, the review focus was placed on deep learning-based
methods that have been introduced in the literature for heart rate measurement using
rPPG. Among the deep learning-based contactless methods, four methods whose codes are
publicly available were identified, and a comparison among these methods was conducted
to see which one generates the highest accuracy for heart rate measurement by considering
the same dataset across all four methods. Among these four methods, PhysNet was
identified to provide the highest accuracy on average.
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