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Abstract: Among the several emerging dimensioning, control and deployment of future commu-
nication network paradigms stands out the human-centric characteristic that creates an intricate
relationship between telematics and human activities. The hard to model dynamics of user be-
havior introduces new uncertainties into these systems that give rise to difficult network resource
management challenges. According to this context, this work reviews several decision-making
computational methods under the influence of uncertainties. This work, by means of a systematic
literature review, focuses on sensor-based Internet of Things scenarios such as Smart Spaces and
Industry 4.0. According to our conclusions, it is mandatory to establish a means for modeling the
human behavior context in order to improve resource assignment and management.

Keywords: uncertainty; resource management; decision-making

1. Introduction

Data communication networks (DCN) provide the digital transmission of data be-
tween their hosts under a telecommunications infrastructure in which they share operations,
administration, and maintenance. As usual, technological advances have driven the devel-
opment of new approaches in DCN, giving rise to new challenges in resource management
that must be tackled to take into account, for example, the data provided by end users such
as in crowdsensing applications.

In traditional DCN management, performance is evaluated according to quantitative
technical data, for example, packet delivery rate and throughput, among others, because
DCNs were first conceived to provide a reliable and fault-tolerant infrastructure. In this
approach, the data are provided by sensors, and mobile and network equipment.

However, the ever-growing interaction between individuals and their devices asso-
ciated with the activity-tracking capability of such devices transforms individuals from
passive to active actors in the context of DCNs [1–3]. Accordingly, human activities ascer-
tain network usage profiles. Given this circumstance, the inherent uncertainty of human
behavior and perception impacts DCN performance to a large extent. This new perspective
is the reason for the change from infrastructure-centric networks to a Human-Centric
Network (HCN) approach.

The flourishing DCN-related concept of HCN proposes the optimization of both
services and network applications, focusing their decisions on the individual’s welfare. In
this case, the network performance is assessed by means of quantitative and qualitative
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data. Individuals generate qualitative data by several means: (i) posting their opinions
on web pages, (ii) using social media platforms, and (iii) logging the interactions between
individuals and their devices on different platforms.

Several works have addressed these new phenomena from different points of view.
In [4], decision-making support and knowledge extraction methods that may be

implemented by machine-learning techniques guided by the feedback provided by Internet
of Things (IoT) and cyber-physical systems combined to cloud and fog computing have
been studied.

In [5], a system implementation architecture that facilitates the interaction between
entities that act based on observations of their environment called agents, in this case,
human agents and machines in the manufacturing sector of the Industry 4.0 context,
was described. The proposed architecture has five levels with different challenges to
be mastered.

In [6], the authors proposed a logical Markovian network-based online framework for
the development of voice-driven home automation systems. The objective was to enhance
comfort and autonomy at home, fighting uncertainty by means of context awareness.

In [7], the authors studied the technology in networks that allows for the automation of
planning, management, and optimization called Self-Organizing Networks (SON) and de-
scribed a decision-making framework in which fifth-generation mobile network resources
are managed by a set of machine-learning algorithms. The distinguished characteristic of
their approach is the adoption of a Software-Defined Network (SDN)/Network Function
Virtualization (NFV) architecture as the basis to implement decision-making technologies.
The SDN are emerging communications networks that separate the control plane from
the data plane to allow for interoperability, programmability, and flexibility to co-exist as
features [8], and NFV allows for virtualization of network services in virtual machines,
which are generally implemented individually on dedicated hardware for each service,
improving scalability and agility in the deployment of new services.

It can be seen that HCN features can be advantageously used in different IoT-based
applications domains such as Industry 4.0 and Smart Spaces. In theses cases, interactions
between individuals and machines suggest that new computational methods combining
concepts from hard and soft disciplines may improve models’ accuracies and performances
as decision-making methods when uncertainty is present.

In this work, 200+ journals, conferences articles, and technical reports were thoroughly
reviewed according to the guidelines of the methodology called Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) [9] as presented in Figure 1. The
peer-reviewed data were sourced from the following primary databases: IEEE, Elsevier,
Springer, and MDPI.

This has led us to design a search classification for our literary review, as shown in
Figure 2. The inclusion and exclusion criteria were a title and abstract screening followed
by a full-text and a second abstract screening process.

Three main categories were identified, namely, Information Extraction, Computational
Methods, and Application Domains.

The first category, Information Extraction, has two subcategories, which are Semantic
Data Mining and the Computational Tools used for extracting information.

The second category has three subcategories: Multiple Criteria for Decision-Making
(MCDM), Optimization, and Machine Learning. In particular, the second subcategory,
Optimization, includes developments for decision-making under uncertainty using fuzzy
logic, game theory, Bayesian networks, stochastic processes, and support vector machines.
On the other hand, the third subcategory contains the most significant works related
to managing uncertainty for decision-making using machine learning methods, such as
supervised learning, unsupervised learning, reinforcement learning, and deep learning.

The third category comprises the works of application domains that are of interest for
this work, which are classified into three subcategories: IoT, Industry 4.0, and Smart Spaces.
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The contributions of this work are (i) to present a systematic literature review of
information extraction methods and computational methods to address decision-making
processes under uncertainty, (ii) to illustrate some scenarios within the IoT application
domain in which the presence of uncertainty has a great impact, and (iii) to introduce a
new approach to deal with uncertainty. After this Introduction, the rest of the paper is
organized according to the scheme presented in Figure 2 as follows: Section 2 reviews
several information extraction methods, which represent previous and essential contribu-
tions to the decision-making process. In Section 3, a classification of various computational
methods to address decision-making under uncertainty is presented. Section 4 assesses
several application domains for which the implementation of these concepts is pertinent.
Next, Section 6 discusses open problems and future research options. In Section 5, a novel
research proposal is presented to address uncertainty. Finally, the conclusions of this work
are summarized in Section 7.

Figure 1. Prisma diagram.
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Figure 2. Literary review structure.

2. Information Extraction Methods

Currently, massive Internet use, IoT, and 4G mobile telephony data transmission
generate large amounts of data. Although some of these data are produced by individuals,
others are produced by sensors, which register everything that happens in their environ-
ments in diverse formats, such as text, sound, images, or videos. Regarding data storage,
the following options can be considered: (i) location, which may be local or cloud-hosted,
and (ii) the organization of stored data, whether structured or non-structured in databases.

These features pose several technological challenges that must be addressed before
extracting information from generated data, as this information provides a more compre-
hensive idea of what takes place. In other words, it provides context awareness, which
is a determining factor for making more accurate decisions and contributes to improving
decision-making processes related to resource management for HCNs.

Based on its interdisciplinary nature, data mining reviews can be performed from
diverse perspectives, including databases, statistics, and machine learning [10]. However,
as machine learning approaches and statistics are reviewed in further sections, this section
focuses on the use of semantics as a method or procedure for extracting information as
well as analyzes a different approach.

2.1. Semantic Data Mining

Data mining is a process used to find significant or lost information stored in large
volumes of data [11]. In the information age, these processes become relevant, especially if
a symbiosis is sought between human beings and machines. In this case, if both parties are
able to understand the data generated by the other party, this symbiosis may prove itself
beneficial. At this stage, semantics plays a significant role, wherein one must understand
that “semantics is the meaning assigned to concepts and their relationships within the
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mind. The network of concepts and relationships is used to represent knowledge about the
world, which in turn enables the cognition and perception required for the interpretation
of daily experiences” [12].

Hence, in the area of semantic data mining, several studies grounded on diverse
approaches have been discussed, as presented in Table 1.

Table 1. Grouping of semantic data-mining work.

Work Area Related Work Key Points

IoT [12–19] Interoperability
Data sources

Semantic Web [11,20–25]

Association rules mining
Ontological data
Recommender systems
Knowledge extraction

Industry 4.0 [26,27] Data marketplace
Logistics infrastructure

IoT is a paradigm based on sensor interconnection, wherein the convergence with se-
mantic data mining has become a popular research area [12,13,17–19]. For example, in [14],
the authors improved resource management for wireless networks that operate cooper-
atively based on frameworks where semantic web techniques are applied. Furthermore,
another study on the interoperability of communications in IoT systems is described in [15].
Finally, in [16], data mining challenges are assessed for cases where data are provided from
different sources.

Another field related to this topic is the Semantic Web. “The Semantic Web is a Web
of actionable information, i.e., information derived from data through a semantic theory
for the interpreting of symbols” [28]. In this area, studies have described the diverse
standpoints and execution of semantic data mining, for example, through the web [20],
with association rules mining [21], based on ontology [11,22,23], and from the discovery of
knowledge [24,25].

In addition, in terms of Industry 4.0, data extraction aimed at improving business
profitability has been studied. For example, in [26], cyberphysical semantic systems were
used as support and, in [27], intelligent logistics were applied in electronic commerce.

2.2. Information Economy MetaLanguage

An interesting information extraction proposal is the Information Economy Metalan-
guage (IEML) led by Pierre Levy [29].

In fact, based on evidence of sustained increases in digital storage capacities, the
omnipresence of interconnectivity based on diverse kinds of media, and the unparalleled
capacity for processing, a possible question is how to take advantage of these abilities
to increase our own social cognitive processes to contribute to human development. A
possible reply is the collaborative and coordinated construction of a computable meta-
language without ontologies, as proposed in the book Semantic Sphere [30]: “IEML is
a formal and natural language, whose semantics is computable. It is designed for use
in a digital environment for data categorization, artificial intelligence and man/machine
interfaces” [29].

IEML seeks to contribute to the universal identification of concepts based on a se-
mantic coordinated system, which would allow, first, to address meanings and, second, to
accurately portray how securities circulate in the general information economy.
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3. Computational Methods for Decision-Making under Uncertainty

Decision-making consists of selecting the most adequate alternatives from a set of
possible solutions to solve a given problem in the best possible way. An agent makes
decisions according to its interaction with the environment. Agents can be persons, robots,
and software implemented entities [31]. This work focuses on computational decision-
making systems, especially those that handle designs with both a significant degree of
process automation and uncertainty. A classification of representative methods described
in the literature is shown in Figure 3.

Figure 3. Classification of computational methods for decision-making.

3.1. Multiple Criteria Decision-Making

MCDM methods assess a set of alternatives through several weighted criteria accord-
ing to their relevance to the issue at hand [32]. The problem to be solved is to define how
to assign appropriate weights to each of the criteria. Several MCDM methods have been
extensively studied [33,34], as shown in Table 2, which may be classified depending on
their academic origins, such as from European, American, and other schools.

Table 2. MCDM method review.

Method Related Work Key Points

ELECTRE [35–37] Execution time optimization

PROMETHEE [38–41]
Infrastructure construction
Energy sector
Engineering decision problems

AHP [42–44] Decision-making under uncertainty
Recommendation systems

VIKOR [45–47] Sentiment analysis in social networks
Performance evaluations

TOPSIS [48–50] Several combinations of methods

DEA [51] Evaluate relative efficiency

From Europe, the following methods are worth mentioning:

• The Elimination and Choice Expressing Reality (ELECTRE) [52] eliminates non-viable
solution alternatives and is usually employed along with another MCDM method in
order to optimize execution times [35–37].

• The Preference Ranking Organization Method for Enrichment of Evaluations
(PROMETHEE) [53] builds an external classification for various alternatives based on
a combination of mathematical and psychological methods developing its own under-
standing of the problem to help agents choose the option that best serves their purpose.



Sensors 2021, 21, 3791 7 of 30

This method has been evaluated by different domains such as infrastructure construc-
tion [38], the electric power sector [39,40], and engineering decision-making [41],
among others.

The North American school proposes the following:

• The Analytic Hierarchy Process (AHP) [54] combines conflicting physical and psycho-
logical elements based on appraisals and assessments to manage complex decisions.
In [42,43], decision-making is handled under uncertainty, while in [44], it is based on
subjective product recommendations from consumers.

From other origins, we may cite the following:

• The Multicriteria Optimization and Compromise Solution (VIKOR) [55] aims at de-
termining the best possible solution when dealing with conflicting options or with
different methods of measurement. In [45], VIKOR is combined with other tech-
niques to assess feelings in social media; in [46], group decision-making processes are
implemented; and in [47], it is used in the evaluation of airline service quality.

• The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) [56]
aims at finding an alternative solution using the shortest and longest Euclidean
distance from the optimal positive solution and the optimal negative solution, re-
spectively. This method is usually enhanced by additional algorithms, as shown
in [48–50].

• The Data Envelopment Analysis (DEA) [57] assesses the relative efficiencies of compa-
rable entity sets by solving a series of mathematical programming models [51].

3.2. Optimization Methods

Optimization methods aim at maximizing profits or minimizing risks in the decision-
making process by ascertaining the option that best solves the problem pursuant based
on the target function. Consequently, research focused on optimizing and managing
decision-making uncertainty is classified as per our literature review findings, as shown in
Table 3.

Table 3. Review of optimization methods.

Method Related Work Key Points

Fuzzy logic [38,45,58–71] They handle diverse types of
uncertainties

Game theory [72–75] Decision learning
Decision-making

Bayesian networks [76–80] Decision-making under uncertainty

Stochastic process [6,81,82] Adaptive systems
Context-aware decision process

Support vector machine [83,84] Sustainability indicators

3.2.1. Fuzzy Logic

Fuzzy logic creates a mathematical framework that may be adapted to actual complex
problems that add uncertainty to human cognitive processes. Several purposes can be
achieved by this capability when using different fuzzy logic computational methods as
described below:

Fuzzy Set: In contrast to set theory, where each object has a binary value (member or
not member), the values of fuzzy set objects can range from 0 to 1 to reflect inaccurate or
uncertain conditions. For this method, several extensions exist, as listed below:

Interval-Valued Fuzzy Sets: This method intuitively addresses uncertainty and in-
accuracies whenever there is no accurate knowledge of the function to be assessed, as
in [58,59,61,62,71].
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Type-1 Fuzzy Set: “A type-1 fuzzy set A is a set function on universe X into [0, 1], possi-
bly constrained to belong to a family such as continuous functions, i.e., µA : X → [0, 1]” [69].

Type-2 Fuzzy Set: Unlike the Type 1 method, which is a special case of a Type-2
method, this method is regarded as a way to increase the fuzziness of a relation. Based on
its characteristics, it is an ideal method for addressing linguistic uncertainty, which may
arise since words have different meanings for different people, as described in [45,60,70].

Vague Set: This method estimates the lower and upper probability bounds that de-
termine whether any given element is a member of the set, and it is useful for finding
inconsistencies in interval assignments to the Boolean expressions used in sets. Its advan-
tages are listed in [63].

Rough Set: This method is applied when dealing with problems with incomplete
information. For these purposes, this method removes irrelevant data from the approximate
set without affecting the original system and generates decision rules to complete the
remaining values. In addition, References [38,64–66] discuss the wide range of fields to
which this method may be applied.

Mamdani-type: It is a fuzzy inference method that calculates an output value for an
input value, and it is used in cases of information uncertainty, as described in [67,85].

3.2.2. Game Theory

This is a mathematical tool applied to human decision-making. This theory assumes
that individuals are rational and have conflicting positions to address how they attempt to
maximize their benefits when interacting under defined rules. Consequently, new methods
have been proposed to address uncertainty, as described in [72–75].

3.2.3. Bayesian Networks

Bayesian networks use directed cyclic graphs to distribute probabilities among the
corresponding random variables for each node. Their advantage relies on their ability to
reduce the number of parameters required to determine a joint probability distribution.
However, as nodes are not connected, finding a path from one variable to another may
be not feasible. In fact, there are several algorithms that create inferences to learn about
Bayesian networks, which may be used to overcome uncertainty in decision-making
processes, as in [76–80].

3.2.4. Stochastic Process

Stochastic processes include a set of random variables associated with one another
wherein one of these variables usually represents time. Each random variable has its own
probability function and variables may be correlated to each other. These random features
have been used to cope with uncertainty in different fields, as in [6,81,82].

3.2.5. Support Vector Machine

These are several supervised learning algorithms applied to classification or regression
problems. These algorithms usually produce accurate results, at high computational costs,
which may even improve if data are scattered. Therefore, this method has been used to
treat uncertainty in studies, such as [83,84].

3.3. Machine Learning

Machine learning, a subfield of artificial intelligence, is focused on developing algo-
rithms that provide computers with learning capabilities about their environment, with
the purpose of improving and adapting themselves to the challenges faced. At present,
due to the large amount of data generated by several fields, such as telecommunications,
energy, transportation, finance, and health, among others, this capacity is commonly used
whenever data-based solutions are needed [86]. Machine learning algorithms have been
classified as supervised, unsupervised, reinforcement, and deep learning methods, as
described in Figure 4.
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Figure 4. Classification of machine-learning methods.

3.3.1. Supervised Learning

In this method, learning takes place through a training process using labeled datasets.
This method is commonly used when predicting something that is already known. Table 4
lists the works wherein this decision-making method under uncertainty has been applied.

Table 4. Works that apply supervised learning.

Work Area Related Work Key Points

Telecommunications [7,87–92]

Self-Organizing Network
Improve QoS
Virtual machine migration over WAN links
5G auto-configuration

Energy [93–96]
Operations planning
Behaviors nuclear energy system
Power grid

Transport [97–101]
Lane change
Driving on rough terrains
Robot mobility

Enhance decisions [102–105]
Complex negotiations
Combination of techniques
Support for human decisions

Complex systems [106–109] Human behavior

Optimization problems [84,110–114] Deal with uncertainty

• Telecommunications. In this field, supervised learning has been used based on factors
such as QoS and automatic configuration. For example, QoS has been used to create
resource appraisal and classification models for IoT [87] or for any type of network [88].
It has also been used as a retroactive measure to tailor service selection [89] and for
decreasing the time required by virtual machine migration processes through WAN
links [90]. In addition, in terms of automatic configuration processes, some studies
address 5G networks [7,92] and elastic cloud systems [91].

• Energy. Several types of problems of this field have been solved by applying the
supervised learning method, such as preventive planning of uncertain operations in
power systems [93]; by selecting the best maintenance route to minimize operational
costs when power grid failures occur [94]; by predicting nuclear power system be-
havior [95]; and by selecting the best location for wind turbines based on economic,
regulatory, and social factors [96].

• Transport. In this field, several studies focus on process improvement, such as speed
and accuracy in lane changing maneuvers when driving on highways [97], driving ter-
restrial vehicles on rural roads [98], robots learning routes through linguistic decision
trees [99], and methods used in biped robot walking processes [100,101].
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• Enhanced decisions. These studies focus on improving the performance of decision-
making results by choosing selection mechanisms in complex negotiation scenar-
ios [102], by considering environmental awareness when dealing with critical complex
systems processes under supervision [103], by assessing the advantages of combining
the learning process with multiple agents and weighted strategies [104], and by sug-
gesting two complementary stages that would exist between machine learning and
support vector machines [105].

• Complex systems. These problems are computationally difficult to model, especially
if related to human behavior in cooperative work, as discussed in [106–109].

• Optimization problems. When it is not feasible to find an optimal solution for uncer-
tain problems, a solution that satisfies problem constraints may be selected, as de-
scribed in [84,110–114].

3.3.2. Unsupervised Learning

In this method, non-labeled input data patterns are learned without any corresponding
output variables. As unsupervised learning is applied when the target in unknown,
its algorithms attempt to model the structure that underlies the data. Table 5 lists the main
works related to this method.

Table 5. Works supported by unsupervised learning.

Work Area Related Work Key Points

Transport [115–117] Overcoming obstacles

Health [118–120] Improve diagnostic accuracy
Decrease diagnostic times

Business decisions [83,121–124] Improve profits

Deal with uncertainty [125–129]
Battlefield decision-making
Geology decisions
Gambling

• Transport. When applying this method to this field, research is centered on obstacle
management for autonomous driving from various approaches. For example, in terms
of the epistemic uncertainty of images [115], semantic segmentation methods achieve
high inference classification accuracy in object recognition within interior spaces [116]
or in different other additional challenges, as listed in [117].

• Health. The works proposed in this field are aimed at improving unsupervised
learning accuracy and solution times, as denoted in [118], which discusses liver
fibrosis diagnoses. Furthermore, in [119], this method was used to customize patient
therapy processes and, in [120], it was used to diagnose complex vision pathologies.

• Business decisions. In this field, research works focus on earning profits by selecting
the best decisions, as described in [121], where feeling assessments are combined
with share price volatility. In addition, an evaluation of industrial systems in terms
of sustainability through hard-to-find indicators was presented in [83]. Another
study discussed learning from previous decisions through comparative evaluation
processes [122]. This method was also applied in the education sector to assign
students to a company depending on their skills [123] and to improve manager
actions at universities [124].

• Dealing with uncertainty. Studies seeking to solve unsupervised learning problems
dealing with uncertainty use different approaches, such as in battleground decision-
making [125]. In geology, it is used for water- and oil-flow systems [126]; in gambling,
its is used for the Khun poker game [127]; and it can be used when merely facing the
uncertainty of applying this method to any type of problem, such as in [128,129].
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3.3.3. Reinforcement Learning

Reinforced learning is used to train systems based on a sequence of punishments and
rewards. Therefore, sample datasets are not used since the system learns based on trial and
error. This method was first applied in video games, where the agent can go through all
possibilities until the optimal solution is found. At present, it is widely applied to complex
fields, such as autonomous driving. Several articles explore using this method in various
fields, as listed in Table 6.

Table 6. Studies supported by reinforcement learning.

Work Area Realted Work Key Points

Telecommunications [130–132]
Resource management
5G
Routing

Energy [133,134] Supply and demand balance

Transport [135–140] Autonomous driving
Driving experience

Optimization problems [141–145]

Noisy data
Scalable solutions
Data fitting
Computational costs

• Telecommunications. Based on this method, several topics have been addressed
within this field, such as resource management, particularly regarding power con-
sumption for large-scale IoT applications [130]. In [131], a framework was proposed
based on reinforcement learning for the SDN control plane to intelligently manage
uncertainty in 5G networks. In routing, as in [132], the authors planned to prevent
gateway bottlenecks by identifying the best path for reaching the best gateway through
reinforcement learning techniques.

• Energy. For energy companies, decision-making is complicated due to the high level of
uncertainty that exists. For these purposes, there are proposals, as in [133], seeking to
balance supply and demand in real time in Smart energy markets, or as in [134],
which improves previous energy market negotiations by adapting techniques such as
Q-learning.

• Transport. Based on reinforcement learning, specifically in this field, there are contri-
butions on issues such as autonomous driving [135–137,140] and experience manage-
ment [138,139].

• Optimization problems. By combining techniques with the reinforcement learn-
ing method, applications have been optimized, such as computational costs [141],
data noise management [142], scalable solutions in terms of time and scale [143], or
the adjustment of evaluation functions [144,145].

3.3.4. Deep Learning

This machine learning method mimics human learning processes. By using an inter-
active simulation process, this is accomplished with labeled and unstructured data, and
ultimately, a statistical output model is developed. In fact, this process can be conducted
without requiring supervision from the developer as it facilitates operational work and
prevents errors that may have been induced. However, the accuracy of the model relies on
the existence of a large amount of data to train the machine, which, in turn, requires high
processing capacity for running simulations. Nevertheless, technological advances and
their increasing interaction with human beings have fostered particular interest within the
scientific community regarding deep learning in certain fields, as described in Table 7.
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Table 7. Studies supported by deep learning.

Work Area Realted Work Key Points

Telecommunications [146–150] Resource allocation
SDN

Human behavior [151–153] Behavior modeling
Decision-making from psychology

Uncertainty [154–162] Noisy or incomplete data
Decision-making under uncertainty

• Telecommunications. In this field, research has been conducted on topics such as
resource allocation management in portable sensors [146], wireless networks [147],
low-power devices [148], and cognitive radio networks [149]. Another important
topic is SDN application in Smart cities [150].

• Human Behavior. On this subject, different research approaches have been used. For
example, as a first approach, human behavior prediction models have been developed,
either when decision-making is affected by peer pressure or by the inference of
human activities based on short videos [151]. The approach ranges from psychological
perspectives to assessing decision-making abstraction in human beings, both in regular
contexts [152] or with imperfect information [153].

• Uncertainty. Through deep learning, uncertainty challenges have been studied under
different approaches. Some examples are uncertainty problems due to subjective
opinions in heterogeneous networks [154]; in military scenarios, the uncertainty in
unmanned aerial combat vehicle decisions [155]; uncertainty modeling in real time
for the relocation of automatic visual systems [156,162]; issues when dealing with
missing data due to the calculation of uncertainty based on the remaining training
dataset [157]; and a random estimation method to calculate uncertainty in object
detection for applications that require reliable decisions [163]. Another area is decision-
making under uncertainty, such as whenever assessing complex structures [158] or
emotions are expressed in texts [159]. Finally, the work associated with taking risks
under uncertainty has been mentioned, either as analyzed from the perspective of
video games, as in [160], or in financial forecasts for customers [161].

4. Internet of Things Application Domain

Internet of Things emerged in the 1990s as a new concept from the possibilities offered
by the new communications technologies, for example, the Radio-Frequency Identification
(RFID). Kevin Ashton introduced the term IoT at a presentation in 1999 [164]. From
then on, the International Telecommunications Union (ITU), the Institute of Electrical
and Electronic Engineers (IEEE), the European Telecommunications Standards Institute
(ETSI), and the Internet Engineering Task Force (IETF), among others, have been working
on its standardization, having yet to reach a universally accepted IoT definition. In our
opinion, the definition provided by the EU-funded project Coordination and Support
Action for Global RFID-Related Activities and Standardization (CASAGRAS) captures the
essential characterisitics of IoT: “A global network infrastructure, linking physical and
virtual objects through the exploitation of data capture and communication capabilities.
This infrastructure includes existing and evolving Internet and network developments.
It will offer specific object-identification, sensor and connection capability as the basis
for the development of independent cooperative services and applications. These will
be characterized by a high degree of autonomous data capture, event transfer, network
connectivity, and interoperability” [165].

4.1. Mobile Wireless Sensor Network

A Mobile Wireless Sensor Network (MWSN) shows how uncertainty is present within
an IoT network. Let us consider the case depicted in Figure 5. MWSN resources are limited
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in terms of processing power, storage capacity, and energy availability. In this scenario,
mobile wireless sensors installed on drones monitor and identify intruders in specific
neighborhood areas. They can communicate directly with each other without using the
infrastructure of a deployed physical network. Figure 5A shows a late-night example, at
hours when it is unlikely that people are out in the streets. A sensor detects an intruder,
and based on the context of that moment, the only possible route to the sink node is found
and an alarm message to the control station is sent.

Nonetheless, the movement of the drones may lead the routes becoming unfeasible
because one or more sensors are outside the coverage range. Additionally, hardware
failures and lack of processing power may also disrupt the route. Figure 5B exhibits a case
in which one of the drones goes offline because the required resources exceed its capacity.
This may happen due to a catastrophic occurrence that may compel people to leave a
region hurriedly. This example shows the importance of context-based decision-making
algorithms in the presence of always possible, although unlikely, uncertain events.

Figure 5. A MWSN scenario. (A) Illustration depicting a scenario without uncertainty, (B) system
failure due to introduction of human uncertainty.

4.2. Smart Spaces

The consulting and IT research company Gartner declared Smart Spaces as one of
the top ten technological trends back in 2019. According to Gartner a Smart Space is “a
physical or digital environment in which humans and technology-enabled systems interact
in increasingly open, connected, coordinated and intelligent ecosystems” [166].

Figure 6 illustrates an assisted living scenario of a healthcare application to monitor
daily activities and vital signs of the patient. As health may also be influenced by changes
in light, temperature, humidity, and noise, these variables should also be monitored and
controlled. In this case, the house is equipped with the necessary sensors and devices
to control the environment and to alert a nearby hospital if needed. The application’s
objective is to provide immediate assistance either by making a phone call or by sending
paramedics. The patient’s social media is also monitored to provide additional data and
context-related information to be used alongside those extracted from the sensors. However,
some situations may occur for which it is not clear what is going on. For example, let us
assume that, because of back pain, the patient decides to lay on the floor and falls sleep.
Depending on when the images or videos provided by the cameras are seen or processed,
it may appear that the patient has fainted or suffered an accident. If the patient is having
a nightmare, their heart rate may be altered. If the images/video cannot be interpreted
correctly, the devices may send a false alarm message. This example illustrates once more
the importance of uncertainty management by automatic decision-making methods.
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Figure 6. A Smart Space scenario.

4.3. Industry 4.0

Beginning with the first industrial revolution, all disruptive technological advances
have marked an industrial evolution. The lives of people, society, and organizations
have been transformed by these developments. Nowadays, we are advancing toward
the fourth industrial revolution, which originated from the term Industry 4.0 used by the
federal German government during the presentation of its Industrie 4.0 initiative in 2011.
The Smart symbiosis between machines and human beings is the technological disruption
that was intended by Industry 4.0, which is spurred by information and communication
technologies [167].

To examine the impact of uncertainty on Industry 4.0, let us consider the case of
a call center that provides online customer services for a company in the context of an
Industry 4.0 scenario using the resources of a mobile phone company. The objective of
these centers is to manage as many customers as possible. As the network resources
both in terms of available telephone lines and bandwidth are limited, it is of paramount
importance to monitor and control the holding time of user calls. The call center has a
Customer Relationship Management (CRM) system to monitor, record, track, and forecast
events. Furthermore, the CRM builds up a profile of each user. After receiving an explicit
authorization, the system is able to record data extracted from social media databases,
cell phones, or any other means. These data can be used as ancillary information to
process the user requests received by telephone calls, chats, and emails in a more effective
way. Notwithstanding, if the information derived from the raw data is not accurate and
contextualized, the actual time spent providing an answer to a call may increase waste of
resources in the network infrastructure.

For example, let us consider the scenario where some users have been chosen to
respond to a survey with a maximum timeframe to identify their preferences to customize
a given product within the context of an Industry 4.0 environment. Users were selected
among those that are declared (i) to be highly satisfied with the products of the company
sponsoring the survey; (ii) to be young, as it is assumed that they can better handle new
technologies; (iii) to have a high income; (iv) to live in urban areas; and (v) to have achieved
a minimum academic degree. Surprisingly, some of the users that fulfill the predefined
criteria fail to complete the survey within the time limits due to conditions not captured
by the extracted data. For example, some of them may undergo some cognitive, hearing,
vision, or speech impairment and others may try to answer the survey while performing
some other task at the same time.

Industry 4.0 features may lead to deep changes and transformations in terms of
labor rights, gender and social inequality, and new business models. However, this new
scenario has to be supported by high-quality human-centered networks and computational
intelligence able to handle the uncertainty introduced by people behavior. As far as
communication networks challenges are concerned, according to the reviewed works, the
proposals focus on SDN. Industry 4.0 uses SDNs to implement network virtualization [168],
Ethernet network metrics [169], cloud manufacturing [170], cybersecurity [171], or resource
allocation and information exchange for IoT or Industry 4.0 [172,173].
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5. Radical New Approach to Deal with Uncertainty in HCNs

User-related and generated data (for simplicity referred just as user data) constitute
the basis of almost all social applications based on interactive media technologies. However,
in many situations of interest, mainly those that can be described as emotionally stressful,
user data lack reliability. The reasons for the lack of reliability are manifold, going from
simple mistakes when describing a situation to a distorted understanding of reality due to
an emotionally impaired perception.

A scenario that accurately exemplifies the long-term vision of this new approach
application can be illustrated in disaster management. In a hypothetical event of a car
accident on a frequented highway, where many other cars pass by, we can imagine many
social media posts describing details about it before any truly reliable information (e.g.,
the police arriving) is conveyed. In such a case, if the high volume of uncertain quality
user-based information is instantly filtered so that a reliable source that, e.g., accurately
reports the degree of passenger injury severity, is identified, the timely arrival of an
ambulance could have a life-saving impact. Of course, the above is a nontrivial task as it
implies mechanisms which are yet non-existent; it is certain though that an interdisciplinary
approach is necessary to capture the diverse aspects of methods of human social expressions
of perception in terms of data and to model it in a formal way in order to conceptualize
such mechanisms and to infer the reliability of the information and knowledge that can be
acquired from such data.

Due to this lack of reliability associated to user data, interactive media technologies-
based applications that depend on the characterization and prediction of the information
and knowledge acquired from such data may be severely impaired and are rarely adopted
by the actors involved in real-life scenarios.

We conjecture that psychoanalysis theories may be used to objectively measure the
reliability of the user’s discourse. From now on, this new approach is referred to as
Psychoanalysis-Driven Computing (PDC).

User data characterization and processing in the form of text and speech are the input
of PDC. Apart from traditional user data, such as the aforementioned, PDC considers
new and emerging media type issues, such as crowdsourced data that are collected using
public participation. In particular, by identifying specific patterns in user data regarding
an individual, a group of people, or even a crowd, one can associate the user’s data stream
in the context of the structural entities of the Lacanian theory, namely, the Lacanian Dis-
courses. The Four Discourses theory constitutes an attempt of formalization of the different
ways people relate to each other and the economy of knowledge and enjoyment in social
relationships. The Lacanian framework defines a more complex representation of the roles
assumed by two interacting parties, formulating four discrete discourse types [174–176]:
Discourse of the Master—struggle for mastery/domination/penetration; Discourse of the
University—provision and worship of “objective” knowledge, usually in the unacknowl-
edged service of some external master discourse; Discourse of the Hysteric—symptoms
embodying and revealing resistance to the prevailing master discourse; and Discourse of
the Analyst—deliberate subversion of the prevailing master discourse.

Later, Lacan defined an additional fifth discourse, which is also considered: the
discourse of the Capitalist [177], where the subject is commanded to enjoy commodities.

Each discourse is represented by an algorithm, containing four elements distributed in
the four places of Lacan’s formal representation of an interaction (Figure 7). It is possible to
draw a parallel between the terms of a discourse and the components of a communication
process, in such a way that the dynamics of a given discourse, i.e., the internal relations
between elements arranged in different places, can serve to characterize the dynamics of a
given media process.

Precisely, the idea is that, by distinguishing the discourse type, the “truth” status of
an enunciation can be qualified, i.e., it is the formal characteristics of the discourse that
inform whether the truth is based on authority, on documented sources, on the needs of the
speaker, or on provocation. For instance, in a hysteric discourse, the truth is strictly singular
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and reflects an individual experience; in a master discourse, the truth has been decreed by
authority; in a university discourse, the truth has been documented by elements that act
as sources of authority (e.g., objective counting); and finally, in an analyst discourse, the
statement is to be heard as a question (or a provocation) in the hope of obtaining a reaction
on that point. Nonetheless, mapping of an interaction with the Lacanian Discourses
does not happen in an absolute way; instead, percentages of association with each of the
discourses are derived, with the sum of all being 100%.

Figure 7. The four places of the discourse: the “agent”, the giver of the discourse; the “other”, the
one to whom the discourse is addressed; under the message of the agent is hidden the “truth”, which
is masked by the official statement; and hidden under the other is the “production”, or what the
agent gets out of the relationship.

In this work, we propose the reconcilation of two fields that are both exceptional to
the scientific discourse today: modern computing theory and psychoanalysis.

Tools coming from fields such as data mining, semantic and linguistics, or ma-
chine learning are necessary for analyzing the different kinds of user-generated language.
A trained psychoanalyst can detect the above signifiers based on semantical analysis of
the language; by using digital analysis of user data, we aim to abstract the methodology
of a psychoanalyst in order to identify particularities in the speech signal in a purely
computational manner. Given enough annotated data, we envision that, using machine
learning, pattern recognition techniques, and games theory, such methodologies can be
generalized to other typess of support, such as interactive discussion in social networks.

More specifically, to address implicit, hidden (i.e., unconscious) user expectations,
emotions, attitudes, and interpretations of exchanged information, we use a variety of
Computer Science (CS) methods such as the following:

• Text mining and semantic analysis techniques, towards semantically rich representa-
tions of exchanged user texts;

• Graph-based representations of user data and relevant network metrics (such as
centrality), towards identifying key user behavior types and patterns;

• Markovian models (Hidden Markov chains, dynamic graphs processes, information
spreading, etc.) [178] to capture inherent dynamics and complex impacts of user data
and Partially Observable Markov Decision Process (POMDP) to cope with the inherent
uncertainty due to unreliable and/or incomplete information [179];

• Bayesian Games [180–183], since in many situations, decision makers are not perfectly
informed about the characteristics of others;

• Non-Markovian models (to capture special dependency on the current state) such as
Martingales [184];

• Key algorithmic methodologies (primarily machine learning and cognitive reasoning)
to characterize the user data, their reliability level, and the associated discourse
types; and

• Game theory methods, which can contribute to behavior prediction of rational in-
dividuals (and the society as a whole) [185–188]. It is worth noting that variants of
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game theory models (including penalties) can even address (and perhaps mitigate)
“irrational” behavior, due to, e.g., to hidden, latent, or even unconscious mechanisms
in one’s behavior and actions.

It can be argued how the Lacanian Discourse approach can be extended to groups
with more than two interacting parties. The answer to this concern comes from recognizing
that psychoanalysis is a general framework for the interpretation of situations expressed
in any format and by any number of people. Since its development by Freud, it has
been stated and shown that it can be used to interpret works of art [189], to analyze
social situations [190,191], or to conjecture about the future of civilization [192,193]. These
are just a few examples of Freud’s works applying psychoanalysis techniques out of the
psychoanalytical setting of a patient and an analyst.

The Lacanian Discourses are a formal framework to apply psychoanalytical concepts
to interpret any real-life situation. The aforementioned Freud’s works can be used as a
reference model to interpret works of art, social situations, etc.

From the computational perspective, game-theoretic methods are applied to promote
rational behavior of people interacting with each other.

Nevertheless, the association of an interaction with one of the discourses is not an easy
task and has to be dealt with cautiously. An example that illustrates how a single media
phenomenon can be seen from various angles according to discourse theory is provided
by [194]: “When Google scans the Internet collecting information from each site, we are in
the discourse of university. When it meets our demand providing results, we are in the
discourse of hysteria. When we deify it, we are in the discourse of the master. When it
computes our data and customizes the results it offers us, as if it knew us, knew our
preferences and anticipate what we want, we are in the discourse of capitalism”. Therefore,
it is paramount that the context is well defined before proceeding to association, so that the
stakeholders of the discourse are clearly identified.

Context depends on the type of application. Kknowledge about the application implies
knowledge of the context and establishes the contextual elements to be considered. The
method proposed by PDC is general enough to be applied to any context.

To complement the above methodologies, user data are also analyzed independently
in terms of coherence, using text mining techniques, which again partly aim to abstract the
methodology of a psychoanalyst in a session but, this time, with respect to the theory of
primary process mentation.

It will be important to combine the Lacanian Discourse type with the primary process
index: it is more specifically in the Master and in the Hysterical Discourses that high pri-
mary process scores invalidate the reliability of the information conveyed in the discourse.
Repetition in either the University or in the Analyst Discourses does not necessarily need
to invalidate the reliability of the information (in the University Discourse, it might simply
denote the wish to repeat the same, valid information, while in the analyst discourse, the
repeated attempt is used to provoke a reaction). Thus, based on the above, the computa-
tional goal and challenge is to define methods to estimate these primary process indexes
and to produce an associativity coefficient based solely on user data. By doing so, we
acquire a metric that reflects the variance in a user’s language and that can serve as a
global score of “stability” in producing data that can be used to acquire reliable information
and knowledge.

Therefore, besides the Lacanian Discourses, the α and β concepts introduced by
Wilfried R. Bion (1897–1979) [195,196] are used. In short, α-elements may be considered
as the quanta of creative thoughts while β-elements are the quanta of useless thoughts.
These elements can prove helpful when formalizing the underlying rules of a subject’s
relationships with its social context, with the aim of producing quantifiable representations.
For instance, the efficacy of a Web Learning Environment was analyzed in [197,198] using
Bion’s concepts adapted to a remote learning session.

In summary, PDC proposes the building of a theoretical framework that allows for
the characterization of user input in social interactions in terms of reliability in a tangible
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way by providing corresponding reliability coefficients. This occurs in a systematic and
automatized way, starting from various forms of user data as input and by combining
quantitative association to the Lacanian Discourses with extracted associativity coefficients,
in order to produce a single reliability coefficient. This is undoubtedly a nontrivial task, as
currently, there is no theoretical framework for quantitative association to the Lacanian
Discourses or for such reliability coefficients. Therefore, during the PDC workflow, we
study and develop mathematical models to define the theoretical background to serve as a
basis for the above framework, providing methods and methodologies to automatically
calculate the aforementioned associations and to produce the desired coefficients. In
addition, a corresponding evaluation framework is established to provide quantifiable
metrics for estimating the accuracy of the developed tools.

To illustrate how the PDC approach can be applied to evaluate user data reliability,
consider the following hypothetical and extremely simple scenario illustrated in Table 8:
a car accident scene and two different persons (“users”) witnessing it. the reactions and
feelings of the two users are summarized below:

Table 8. Car accident scenario.

User 1 User 2

1. I’m in the middle of an accident
2. Everyone is dead
3. Photo: Selfie
4. I should have been in the shopping

mall, not here

1. There has been an accident
2. There are many injured people
3. Photo: showing several cars in the accident
4. Please send some help

In this simple case, it is easily seen that the data provided by User 2 is most likely much
more reliable than those provided by User 1. To arrive objectively at this conclusion, we
introduce Im, Iu, Ih, and Ia as indices corresponding to each one of the four basic Lacanian
Discourses; their aim is measuring closeness to each discourse type as a result of some
piece of data provided by a user. Additionally, let α and β be indices corresponding to the α
and β elements in Bion’s theory. An indicative assignment of values to these indices, based
on data provided by the users is given in Table 9 (their mean values are also calculated at
the end).

Table 9. Example of Lacan’s and Bion’s indices assignment.

User 1 User 2

Piece of user data Im Iu Ih Ia α β Im Iu Ih Ia α β

1 0.5 0.0 0.5 0.0 1 0 0.0 0.5 0.5 0.0 1 0

2 0.1 0.0 0.9 0.0 0 1 0.0 0.3 0.7 0.0 1 0

3 0.0 0.0 1.0 0.0 0 1 0.0 0.5 0.5 0.0 1 0

4 0.0 0.0 1.0 0.0 0 1 0.0 0.2 0.8 0.0 1 0

mean E[] 0.15 0.0 0.85 0.0 0.25 0.75 0.0 0.375 0.625 0.0 1 0

The utility function for any Lacanian index Ix given by U(Ix) = −4(Ix)2 + 4Ix is
chosen to promote a “balanced” discourse in the sense that both the complete lack of a dis-
course type and an exaggerated discourse dominance orrespond to an extreme, incoherent
discourse. The form of U(Ix) can be seen in Figure 8.
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Figure 8. Adopted utility function for any Lacanian index.

Furthermore, we assume that utilities of individual indices are additive; thus, a multi-
utility function (MUF) formulating closeness to the Lacanian Discourses may be given by
the following:

U(Im, Iu, Ih, Ia) =
1
4
[U(Im) + U(Iu) + U(Ih) + U(Ia)]

In a similar manner, we may formulate the associativity coefficient as follows:

CA =
1
n

n

∑
i=1

(αi − βi)

where n is the number of pieces of user data.
Applying these formulations to the specific example, we get the following:

• User 1: CR = 0.255− 0.500 = −0.245
• User 2: CR = 0.46875 + 1 = 1.46875

As we can see, the information acquired from User 2 is much more reliable than the
information acquired by User 1.

As mentioned before, this is just a preliminary, indicative derivation aiming to exem-
plify our approach. Our approach is significantly enriched during the development of the
PDC project, when we further study and evaluate different utility functions (potentially
context-dependent) and diverse formulas for the two fundamental coefficients (reliability
and associativity).

6. Discussion

The increased interweaving of networks and systems with human activities creates
new development possibilities within several contexts. However, this brings about several
challenges in the triad assessed in this work, such as the integration of decision-making
under uncertainty, network resource management, and HCN. At this stage, we describe
the main open research problems arising within this context, classified as presented in
Figure 9.

• Concerns in network connectivity. Mobility is one of the main characteristics of mod-
ern networks. However, depending on the technology, mobility may face challenges,
such as radio spectrum reservations and allocation, bandwidth allocation, transfers,
and routings. If communications are between heterogeneous networks, these sit-
uations may become quite complicated. Therefore, standardized self-organization
mechanisms are required for the infrastructure to adjust to the constant changes
caused by mobility and user demands, regardless of technology. However, cloud
computing support provides greater availability and possibility for distributed and
online processes to be implemented. Remote processes may be managed and moni-
tored in manufacturing, medical care, or surveillance, among others, through their
interaction with IoT. Nevertheless, in applications wherein response times are critical,
this technology must be correctly assessed to prevent proper operations from being
disrupted. Moreover, in contrast to cloud computing, fog computing uses a decen-
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tralized infrastructure that adapts to the specific nature of HCNs since devices can be
distributed in several regions. Consequently, with fog computing, the data produced
by devices is processed closer to the places where they are generated, which means
that they are not uploaded over long distances to any cloud, thus improving the
performance of the services offered by HCNs while decreasing response and reaction
times. However, as fog computing continues to face several new challenges, such as
business models, security, privacy, and scalability, further research on these areas may
be required [4].

• Concerns about security and privacy. Security risks can have economic, environ-
mental, and organizational consequences that may be related to personal, social, or
industrial environments. Even people’s lives may face some type of risk. Malware
that impacts devices connected to networks may reduce DCN performance and may
compromise package delivery to such an extent that the whole network may collapse,
among other examples. Attacks from malware, such as Mirai, take control over IoT
network devices, such as IP cameras, printers, routers, sensors, and others, to carry
out a distributed denial of service attack. The Mirai attack was considered the most
devastating in history because it affected around 164 countries and blocked Dyn,
one of the most important domain name system service providers for worldwide
companies. The attack affected application services provided by companies such as
WhatsApp, Github, Twitter, PayPal, and Spotify. Another consequence may be the
interception or modification of personal or business information. Issues related to
cybersecurity, where the authorization and authentication of sensors, devices, and
actuators, are critical for securing trust in HCN operations.

• Elements related to decision-making. It is somewhat challenging to make decisions
on cross-cutting issues such as HCN management due to the different types of re-
sources used, such as heterogeneous networks, several types of sensors and devices,
and the vast number of data collection sources, among others. Based on these rea-
sons, reaching agreements on standards is a continuous improvement issue [199,200].
Furthermore, integrating decision-making and machine learning is an exciting matter
due to the large amount of data, processing capacities, and the range of techniques
that must adjust to needs under data uncertainty. In fact, this may even include
exploring diverse possible potential integrations between MCDM methods and ma-
chine learning for each different phase of the decision-making process [94,201,202].
Another challenge faced is real-time decision-making processing because decisions
are effective only if made in real time [203]. This involves several factors that require
further research, such as data accuracy, low response times, distributed processing,
and security methods [204].

• Challenges related to sensors and devices. Regarding electronic devices, they take
samples and report the behavior of environment variables or of the individuals for
whom these variables were created. In both instances, problems arise in terms of
access conditions to power grids or communications networks [205,206], and espe-
cially for wireless sensors, which, in general, exhibit decreased processing resources,
battery autonomy, wireless range or security [207]. These constraints contrast with the
demands for resources needed when applying machine learning techniques, which
implies that identifying computationally efficient strategies is an essential component.
Various device manufacturers are another issue, since each has its own input and
output data formats, protocols, and interfaces and this hinders interoperability and
smooth operations.

We identify, at least, the following future research directions:

• IoT massification and the deployment of the 5G network will cause high network
densification, which brings about the need to examine new routing protocols that
may support constant changes in user contexts. This means that these protocols may
use context information whenever moment priorities change, employing the required
resources to meet new objectives.
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• The large level of ubiquity and information exchange among users and systems will
facilitate security threats sustained by artificial intelligence. Therefore, there is an
urgent need to set up policies and measures to protect personal information.

• HCNs can potentially generate large amounts of data due to the integration and
interconnection of individuals and machines as part of their network infrastructure.
The availability of data generated by people and machines brings about an opportunity
to compile context awareness. In this light, a new information technology paradigm
must be proposed to consider the rationality and irrationality of human behavior
when managing the resources of underlying infrastructures. For instance, to suppress
the data uncertainty that humans add to emerging networks, the structuralist nature
of psychoanalysis can be researched to model human uncertainty.

Figure 9. Open problem categories.

7. Conclusions

It is reasonable to assume that human-centric networks have a great impact on people’s
lives. However, the intensive use of HCNs give rise to a huge amount of generated data
traffic consuming a large quantity of DCN resources in terms of processing power, storage
capacity, and energy. However, these data represent the raw material from which important
information is derived to be used by new disruptive applications.

In this work, we presented a quite comprehensive review of decision-making compu-
tational methods such as MCDM, optimization algorithms, and machine learning that have
been proposed to be used in different applications domains, for example, telecommunica-
tions, healthcare, transport and logistics, business and investment decisions, and industrial
production planning. It has been shown that all of the proposed methods can be severely
impaired by the uncertainty present in extracted data that may corrupt the information
derived from them. Uncertainty is very difficult to deal with because of the diversity of
sources ranging from electrical noise to human behavior. Clearly, a new multidisciplinary
computational paradigm must be developed to assess and address uncertainty factors.

Data security and privacy are of paramount importance to be taken into account due
to the implications and consequences of improper use of sensitive personal, technical, and
business information. A strong emphasis must be put on promoting the establishment of
governance rules to prevent abuse of sensitive data to protect society in all its dimensions.
Otherwise, HCN will loose credibility and will not be accepted and adopted by anyone.

A closer look at the emerging concepts as Smart Spaces or Industry 4.0 reveals a
worrying lack of worldwide accepted standards, even at the level of the concept definitions,
that may jeopardize interoperability of devices, and single- and cross-domain applications.
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