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Abstract: Large datasets are often used to improve the accuracy of action recognition. However,
very large datasets are problematic as, for example, the annotation of large datasets is labor-intensive.
This has encouraged research in zero-shot action recognition (ZSAR). Presently, most ZSAR methods
recognize actions according to each video frame. These methods are affected by light, camera angle,
and background, and most methods are unable to process time series data. The accuracy of the model
is reduced owing to these reasons. In this paper, in order to solve these problems, we propose a three-
stream graph convolutional network that processes both types of data. Our model has two parts. One
part can process RGB data, which contains extensive useful information. The other part can process
skeleton data, which is not affected by light and background. By combining these two outputs with
a weighted sum, our model predicts the final results for ZSAR. Experiments conducted on three
datasets demonstrate that our model has greater accuracy than a baseline model. Moreover, we also
prove that our model can learn from human experience, which can make the model more accurate.

Keywords: deep learning; zero-shot learning (ZSL); zero-shot action recognition (ZSAR); DeViSE

1. Introduction

Human action recognition is currently a popular research field. However, it is a com-
plex task, involving recognition of the action performed by a person, interaction between
people, and interaction between people and the environment. With the improvement in
the living standards of people, the demand for action recognition is increasing. Therefore,
research on action recognition has gained importance. For example, in terms of human–
computer interaction, machines need to accurately recognize the actions of humans and
respond appropriately to assist humans. An effective action recognition method will make
people feel more comfortable. Action recognition is of immense use in many fields. In
video surveillance, action recognition can detect a shoplifter in a supermarket and dial the
police. It can detect people requiring assistance on the road, such as a senior citizen who
has accidently fallen on the road, and seek timely aid. During autonomous driving, action
recognition can recognize the activity of a passerby to determine whether the person’s
walking trajectory will interfere with the current driving path so that it can be adjusted
in time.

Currently, there are two methods for action recognition. One is the traditional method,
which requires artificial features. The other is a method based on deep learning. The
traditional method requires the researcher to define the features of the actions, and train
the corresponding classifier accordingly. Then, the researcher will use the trained classifier
to generate predictions. Traditional action recognition methods have been developed over
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many years and have several advantages. Compared with the deep learning method, the
traditional method is easy to understand, the features can be modified artificially, and the
calculation speed is faster. However, it has some shortcomings as well. The quality of the
feature design has a significant effect on the accuracy of recognition. Moreover, the accuracy
of recognition is not very high. The deep learning method does not need to manually
define the features; it can automatically learn the features with the data, which reduces the
influence of human factors and improves the recognition accuracy. However, certain special
features can still be manually extracted and put into the model. With the development of
deep learning and GPUs, the mainstream methods for action recognition have gradually
changed from traditional methods to deep learning methods. Moreover, deep learning
methods have achieved good performance on many datasets. The features in the action
recognition methods based on deep learning are automatically generated according to
the training data, i.e., these methods extract key features from the data. Therefore, the
recognition accuracy is greatly affected by the data. A large amount of data should be used
to improve the accuracy of the model.

Presently, the datasets used for action recognition are increasing in size, resulting
in increasing labor cost for collecting and labeling videos. From the KTH (six categories,
2391 videos) to the current Kinetics-700 (700 categories, approximately 650,000 videos),
the number and categories of videos have increased exponentially. Increasing the size of
the dataset will result in increased labor cost to annotate the videos. A very large dataset
will require considerable time for training, and the addition of a new class will require
retraining the model. In this case, the training cost will be very high. These are some of the
current challenges in action recognition. However, in contrast, human beings do not need
a large amount of data for action recognition. They can learn how to recognize new objects
with few data or only text descriptions.

In order to solve the problems of excessive training data and labor cost, researchers
have attempted to combine action recognition methods and zero-shot learning (ZSL). In
2009, zero-shot was applied for the first time to process images [1]. This method can
recognize the picture of a new class, even if it has not been trained with this class before.
Therefore, this method is convenient when adding a new class, which has made it an
attractive option for researchers and inspired new research goals. ZSL can imitate humans
and use knowledge that has been learned in the past to reason unseen images.

We use ZSL in action recognition, called zero-shot action recognition (ZSAR). With
ZSAR, we no longer need a large number of labeled videos as training datasets. We only
need to know the features of an action, such as the speed of performing the action and
whether it is performed indoors or outdoors. Then, we determine if a video involves this
action based on these features. ZSAR does not involve high labor costs, but it is very
dependent on the selection of features. Despite the use of deep learning, we rarely need
to extract features manually. However, for ZSL, it is necessary to select the appropriate
features artificially. Failure to select good features will result in poor accuracy. Therefore,
the extraction of good features is an important research focus for ZSL.

The two-stream graph convolutional network (TS-GCN) [2] is a high-accuracy model
that builds knowledge graphs of actions and objects to predict unseen videos on the basis
of objects in the video. However, this model only uses the RGB data of the videos and does
not use human motion data at all. This approach ignores a large amount of useful data.
The addition of motion data to the model can improve the model’s accuracy. In this study,
we added a branch to the baseline model, which has two branches, to improve the model’s
accuracy. The added stream is designed for processing motion data. We used a pre-trained
spatial temporal graph convolutional network (ST-GCN) [3] to extract the motion data
of the video and then used the deep visual-semantic embedding model (DeViSE) [4] to
predict the unseen video. This approach compensates for the shortcomings of the baseline
model and improves model accuracy.

The original input data of our model has two parts, one is RGB image data, the other
is human skeleton data. The RGB data is captured with cameras. The image sensor of
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the camera converts the optical information into the digital image data and saves it into
the video. For skeleton data, the traditional method is to wear sensors to capture the
motion of human joints. However, this method has limitations and is not convenient to
use in some cases, such as outdoors or underwater. If we want to detect the movement
of athletes in the competition, we have to put on sensors for everyone to compete, but it
is difficult to do. Since the cost of this method is high, we need to buy special equipment
to capture the motion of human joints. Therefore in this paper, we use a special module,
such as OpenPose [5], to recognize the skeleton data from images. This method is cheap
and convenient.

The major contributions of this study are as follows.

• We propose a three-stream graph convolutional network (three-stream GCN) model.
This model can process not only the RGB data of the video, but also the motion data
of the person. With the motion branch, we can extract the motion data of the video
and recognize the unseen video;

• By comparing with the accuracy of the baseline model, we evaluate the effectiveness
of our method. In addition, we evaluate the effects of several parameters;

• We experimentally prove that our model can learn from human experience. We
generate a training set based on human experience and improve the accuracy of
the model.

An earlier version of this paper was presented at an international conference [6]. In
this extended version, we have used additional datasets and methods to evaluate our
model. The number of datasets has been increased from one to three, and our proposed
method is now compared with four methods, including the baseline method. Moreover, we
use three word embeddings in the motion branch instead of one. In addition, we calculate
the distribution of the optimal weight and visualize the semantic space. To improve the
comprehensibility of the paper, we have revised the description of the proposed method
and its evaluation.

2. Related Work
2.1. Action Recognition

With the development of action recognition in the last few years, researchers have
been studying how to extract video features so that a machine can better classify the video.
Several models are highly popular, such as two-stream networks [7], 3D convolutional
neural networks (C3D) [8], and two-stream inflated 3D ConvNet (I3D) [9]. Two-stream
networks use convolutional neural networks (CNNs) to process the RGB images and optical
flow data of the video, and then place them together at the end. C3D treats video as a 3D
image and uses a CNN with a 3D convolution kernel to process videos. These models all
use the RGB data of the video to recognize actions.

Human skeleton data can also be used. Compared with RGB images, the skeleton
has the advantage of having clear and simple features and it is not easily affected by the
appearance. In contrast, the method based on RGB images is easily disturbed by changes
in appearance, such as changes in brightness or different skin colors in the training set
and testing set, which affect the accuracy of recognition. The input of a skeleton-based
model is the position of human joints; as a result, the model is hardly affected by changes
in appearance. If the skeleton data are not included in the dataset, OpenPose [5] must first
be used to extract the skeleton data from the RGB images. Early skeleton-based action
recognition methods [10–16] rarely considered the relationship between joints. These
methods use simple models such as support vector machine (SVM) or fully connected
networks. Yan proposed ST-GCN [3], which uses GCN to process the skeleton data of
humans. Recently, GCN has been increasingly used in models. The common method to
judge the relationship between two joints is based on whether they are connected by bones.
The work of [17] proposed the spatio-temporal graph routing (STGR) scheme, which can
reveal the potential connection between two joints even if they are not directly connected.
Su [18] proposed a model based on an encoder–decoder recurrent neural network for action
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recognition. The input of this model is skeleton data. Khalid [19] proposed a multi-modal
three-stream network for action recognition. This model used two-stream networks to
process RGB data and a CNN to process skeleton data.

2.2. Zero-Shot Learning

In ZSL, because the training data and test data are separate, there is no commonality
between them. Therefore, we need to establish a connection between them. We can then
obtain the relevant knowledge from the seen data and use this knowledge to predict the
unseen data. The output of the traditional image classification model is a one-hot vector,
but this method cannot recognize unseen data. Therefore, we need to add a new space
between the input and output, called the shared semantic space. In this case, the labels
of each category are no longer independent, but are represented by vectors in the shared
semantic space. The ZSL model has three spaces: (1) Visual space, composed of all images
or videos; (2) label space, composed of the labels of all categories; and (3) shared semantic
space, obtained through artificial definition (attribute space) or learning by using existing
knowledge (word embedding space).

The training of ZSL involves the creation of a mapping model from the visual space
to the shared semantic space. After the image data is mapped, it will reach the shared
semantic space. In an ideal situation, the distance between the data of the same category
will be small in this space. The input data are divided into seen and unseen data. The
seen data constitute the training dataset, which contains the complete image data and label
information. The unseen data constitute the test dataset, which has neither image data nor
category information. We only know the names of the labels. In the input part of the model,
there is a model that extracts features from the images. There are two methods to extract
the features. One is the traditional method, which uses artificially created features such as
HSV color histogram, SIFT, or SURF. The other is a deep learning model based on CNN,
such as GoogLeNet, ResNet, or VGG, which is currently the mainstream method. Next, we
use a mapping model to map the features of the image to the shared semantic space. The
commonly used shared semantic space can be the artificially defined features or the word
embedding space of natural language processing (NLP). The shared semantic space builds
a bridge from the low-level visual space to the high-level label space. In this space, the
seen and unseen classes can share knowledge. In other words, during training, the model
uses the seen data to construct the shared semantic space and then, during testing, it can
use the knowledge of this space to classify the unseen data.

At the same time, we need to map the category information of seen and unseen data to
the shared semantic space. If the artificially defined features are used as the shared semantic
space, the value of each category should be manually set in the shared semantic space. If
the word embedding space is chosen, the name of each category should be mapped to this
space. In the training step, we mainly use the seen data to train the mapping model from
the image to the semantic space. After the completion of training, when an instance of
unseen data is presented, the model will output the corresponding vector, which represents
the position of this data in the shared semantic space. We compare this vector with the
values of all categories in the shared semantic space, and select the closest category as the
label of this data. The nearest neighbor method is usually used to find the nearest label.
Thus, an unseen instance of data can be classified with the ZSL method.

Figure 1a depicts the training process in ZSL. The inputs of the mapping model are
images of horses and tigers, and the outputs of the model are the features of horses and
tigers. The feature of a horse is horse-like, and the feature of a tiger is its stripe. After
training the model with the training dataset, the model can recognize whether there are
horse-like or stripe features on the images. Figure 1b is the prediction process. We first use
the text data to generate the features of all unseen animals. Then, we input an unknown
image into the mapping model. The mapping model can generate the features of the animal
in this image. Finally, we use the nearest neighbor search algorithm to search in the features
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of all unseen animals. The vector closest to the current image feature is identified, and the
label corresponding to this vector is used as the label of this unknown image.

Shared Semantic Space 
Visual Space 

horse-like 

stripe 

(a) Training step

horse-like true 

stripe true 

foot false 

horse-like true 

stripe true 

……… 

Nearest 

Neighbor 

Search 

(b) Prediction step

Figure 1. Zero-shot learning.

Larochelle proposed ZSL in 2008 to solve the problem of character recognition [20].
Lampert applied ZSL to the field of computer vision. His model can classify unseen animals.
The AwA2 dataset [1] was assembled to evaluate the algorithm for ZSL. Thereafter, ZSL has
been extensively researched. Later, Akata proposed label-embedding [21] and structured
embedding [22]. Early ZSL methods [23–25] used attributes to represent the categories.
Some researchers have used generative adversarial networks (GANs) to solve the zero-shot
issue. The methods reported in [26–29] use GAN to generate the corresponding images
based on the features of the category. Recently, researchers have used word embedding
to generate the shared semantic space. DeViSE is a classic model in ZSL. It can learn the
projections from the visual features to the embedding of labels. The model can then use a
nearest neighbor search to find the label of the unseen video. Other methods to solve ZSL
include error correcting codes [30] and generative models [31].

2.3. Zero-Shot Action Recognition

In order to solve the problem of very large datasets for action recognition, we combine
action recognition with ZSL, which is called zero-shot action recognition (ZSAR). For
example, consider a case where the training dataset has walking videos, but the model
needs to recognize a running video, which is an instance of unseen data. We know that
running and walking are very similar actions, but the action of running is faster than that
of walking. Based on this feature, the model can recognize the running video, even if it
is unfamiliar.

ZSAR and ZSL are very similar, and the only difference is in the feature extraction
model. We replaced the image processing model with the video processing model. To
recognize an action based on the appearance information contained in the videos, we can
select a model that can handle RGB data. The iDT [32] model is a traditional video feature
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extraction model. Models based on deep learning include C3D [8], TSN [33], and I3D [9].
If the recognition is based on human skeleton data, ST-GCN [3] can be selected to extract
the features. Current ZSAR research is focused mainly on finding the projections from the
visual features to the semantic space, so that similar classes can be brought closer in the
semantic space.

Xu [34] used semantic embedding space to identify unseen actions. Jain proposed
objects2action [35] to recognize actions. This method does not require video data; it only
needs to detect the objects on the video, and then infer the action based on the relationship
between these objects and the action. Jasani and Mazagonwalla [36] built a prediction
model, but its accuracy is superior to that of other models only when the relationship
between the seen and unseen data is far. TS-GCN [2] uses a knowledge graph to learn
the relationships between objects and actions and achieves high accuracy. However, this
model uses only the video RGB image without the human motion data. In this study, we
selected this model as the baseline.

Although ZSL has made significant progress, there has been limited research on action
recognition based on ZSL. Moreover, most of the methods simply apply the method of static
image classification to action recognition. These methods use static images of the video, and
few models can process the time series data of the video. Image-based recognition methods
are strongly affected by the light and background; these issues need to be resolved.

3. Method

Our model consists of two components: (1) TS-GCN, which has two branches, and
(2) our proposed motion branch. We add this branch to the original model to process
human motion data. Figure 2 shows the architecture of our model.

Action Names

Object Names

Word 

Embedding
GCN

C
la

s
s
ifie

rs

K
G

 

M
a

p
p

in
g

V
id

e
o

 

S
e

g
m

e
n

ts

Object 

Classifiers

S
e

lf-

A
tte

n
tio

n

A
ttrib

u
te

-

fe
a

tu
re

s

C
la

s
s
ific

a
tio

n
 L

o
s
s

GCN

GCN GCN

K
G

 

M
a

p
p

in
g

Video 

Segments
Openpose

Transformation 

Network 2

C
la

s
s
ifie

rs

Classifier Branch

Instance Branch

Motion Branch

Transformation 

Network 1

Transformation 

Network 3

C
la

s
s
 S

c
o

re
 

F
u

s
io

n

Calculate 

Similarity

Calculate 

Similarity

Calculate 

Similarity

Feature

Extractor
(pre-trained)

Figure 2. Three-stream graph convolutional network architecture.

3.1. Two-Stream Graph Convolutional Networks

Many recent ZSAR models, including TS-GCN, use knowledge graphs. The knowl-
edge graph contains the relationship between words. TS-GCN uses a knowledge graph to
calculate the relationship between objects and actions. When the model knows the objects
in the video, it can predict the label of an unseen video with the relationship between objects
and actions. This model has two branches: A classifier branch and an instance branch.
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The Classifier Branch has a GCN. The nodes of its graph are composed of objects and
actions. If the relationship between an object and action is close, an edge exists between
them. The input of the classifier branch word embedding vectors is converted from the
names of all objects and actions. The word embeddings are converted by Global Vectors
(GloVe) [37]. Each word is converted to a vector. If a name has multiple words, we add the
vectors of these words together. If a word is not in GloVe, then we manually replace it with
a synonym. Finally, we put all word embeddings into GCN as input.

The Instance Branch is composed of object classifiers and GCN. We divide the video
into 16 segments of equal length, and put each frame of each segment into GoogLeNet [38]
to identify the objects. We employ a GoogLeNet model trained on a 12,988-category
shuffle [39]. The input of GoogLeNet is a frame, and the output is a 1 × 12,988 vector, which
is used as the object score. We put this vector into a self-attention module, and then use the
output of the module as the input of the GCN.

We use the information in ConceptNet [38] to build the GCN and calculate the related-
ness between each action and all objects. The top 100 most relevant objects are selected for
each action. If a word is not in ConceptNet, we will manually replace it with a synonym.
Unlike the classifier branch, this GCN uses all objects as nodes without actions.

3.2. Three-Stream Graph Convolutional Networks

DeViSE: This is a common ZSAR method that projects the name of each label to a
vector by word embedding. Words with similar meanings also have similar positions in the
vector space. In this way, if we put the seen video and the word embedding of its label into
the model, then we can determine the projection from video to word embedding. After
training, we put the unseen video into the model to predict the word embedding of the
video. Finally, with a nearest neighbor search, we can obtain the label closest to the current
vector as the final result.

Multiple word embeddings: If we use different word embeddings to process the same
word, the resulting vector will be different. Therefore, the result is affected by the word
embedding. If we have chosen an inappropriate word embedding, the result of the model
will be very poor. For example, GoogleNews is trained with the text reported in news. If
informal words are used, the result may not be accurate. Hence, when processing informal
words in our data, the GoogleNews model can be used to convert the words into vectors,
but the results may not be accurate. In order to reduce this effect and improve the stability
of the model, we use three different word embeddings separately. Then, their results are
combined to generate the final result.

Motion branch: We first use OpenPose or another model to extract the human skeleton
data in the video to generate 2D or 3D coordinate sequences. We then put these coordinate
data into the model. The model can recognize actions with human joint information. For
the ST-GCN model, we use the kinetics [40] for pre-training. After pre-training, we remove
the last layer of the model and use its output as the feature of the video. The feature of the
video is a 1 × 256 vector. We employ the DeViSE model and use the seen video as a training
dataset to train the model. The DeViSE model can learn the projection from video features
to word embeddings. According to [41], we use these three models to map the feature
data of the videos to three shared semantic spaces separately. We employ ConceptNet
Numberbatch, GloVe, and GoogleNews to obtain the word embeddings. After training,
we can input the unseen video into the model and predict its word embeddings. Then, we
calculate the similarity between the mapped semantic vectors and the word embedding of
each action label as the score of each action. Finally, we calculate the average of the output
of the three branches as the final score.

Three-stream graph convolutional networks: The first two branches are used as one
model, and finally a 1 × 101 vector is predicted. This vector represents the possibility of the
label of the video. The third branch also predicts the possibility of the label of the video. A
larger value means a greater probability that the video is the label. We train the two models
separately. After training, we use these two models to predict unseen videos separately.
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As an end-to-end model, the output of two-stream GCN is the probability of each class.
We take this probability as score1. For the motion branch, we convert all labels to word
embedding. We put the features of skeleton into the model, and then we get the predicted
word embedding, which is a vector. Then we calculate the cosine similarity between this
predicted word embedding and word embeddings of all labels:

s(p, qc) =
< p, qc >

‖p‖‖qc‖
, (1)

where p is the predicted word embedding and qc is the word embedding of class c,
c = 1, 2, . . .. They are any two vectors of the same dimension. < p, qc > is the inner
product. According to Equation (1), we can calculate the possibilities of all classes. Then
we concatenate all the possibilities as score2. We finally calculate the weighted sum of the
predicted scores as the final prediction result:

score = score1 + score2 × w, (2)

where score1 and score2 are the scores of the baseline and motion branch, respectively. w is
the weight of the motion branch.

3.3. Knowledge Graph

A knowledge graph describes knowledge using visualization methods, which can
show the relationship between objects. The knowledge graph was proposed by Google
and was first applied in the search engine. For example, when we search for “apple” with
Google, the results include not only the fruit, but also Apple Inc. (Cupertino, United
States), mobile phones, and computers, which are all related to this word. In this study,
ConceptNet was used as the knowledge graph. The nodes of ConceptNet are the words in
various languages, and the edges are the relationships between the words. It contains over
21 million edges, over 8 million nodes, and 83 languages. ConceptNet has approximately
1.5 million English words. In ZSAR, we use the knowledge graph to show the relationship
between objects and actions, and then recognize the action based on the objects that appear
in the video. For example, the presence of food in a video could indicate the action of
eating or cooking. Furthermore, if a pot does not appear in the video, then this action is
likely to be that of eating.

3.4. Extracting Features

Extracting reliable features is very important in ZSAR, as it affects the accuracy of
the result. ZSAR uses three methods for extracting the features: (1) Manual extraction of
features [1]. This method requires high labor cost, as the features of each action should be
analyzed and annotated. The accuracy of annotation will be low in the case of features
that people cannot easily distinguish, such as variable motion, as precise features cannot
be extracted. (2) Extraction of the information of actions from the text and generation of
features [4]. One of the common methods is to use a large number of text data on the
Internet to create a model, and convert each action name to word embedding with this
model. The word embedding is the feature of this action. (3) Generation of features of
actions using the information of knowledge graphs [2]. In ZSAR, people can recognize the
relationship between actions and objects by building knowledge graphs. By using these
relationships, we can predict the label of a video according to the objects appearing in it,
even in the case of an unseen action. Method 1 uses several features of the actions, which
has very little information. Method 2 converts each word into a vector that represents the
position of the word in the vector space. Then, this data is processed using fully connected
layers (FCNs). Method 3 uses knowledge graphs, which can be processed by a GCN.
In comparison with FCNs, a GCN can process not only the data of nodes, but also the
relationship between the nodes. Method 3 can process more data than method 2, therefore,
it has more potential.
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3.5. Object Detection

There are several object detection methods, such as YOLO, SSD, and R-CNN. The
input of the object detection model is a picture, and the outputs are the label and location
of each object. These methods provide extensive information about the objects. However,
the presence of too many categories in the dataset will considerably increase the difficulty
of detection, resulting in a decline in the accuracy. In this paper, in order to improve the
accuracy of action recognition, we need to use several objects to predict the action. If the
categories of the objects are few, less information will be available for use, which will
reduce the accuracy. Our model only uses the information about the relationship between
the objects and actions, and cannot use the location information of the object. Therefore, we
use the image classification model to detect the object. The input of the image classification
model is an image, and the output is only the label, without the location information.
Most importantly, the number of classes in the model can be very high, resulting in high
accuracy. The label with the highest probability, N, is the output as the object that appears
on this image.

4. Experiments

In this section, we discuss the experiments for performance evaluation of the baseline
and our model, conducted on UCF101 [42].

4.1. Dataset

Datasets and splits: We used UCF101, HMDB51, and Olympic Sports as the datasets.
UCF101 is a video dataset with 101 categories and a total of 13,320 videos. We randomly
divided it into 51 seen videos for training and 50 unseen videos for testing. HMDB51
contains 51 categories and 6849 videos. We randomly divided it into 26 seen videos for
training and 25 unseen videos for testing. Olympic Sports contains 150 videos on sports,
with a total of 13 actions. We randomly divided it into 7 seen videos for training and 6
unseen videos. We used Numberbatch (9,161,912 words), GloVe (2,196,017 words), and
GoogleNews (3 billion words) as the word embeddings. The dimensions of their words are
all 300.

4.2. Baseline Comparison

Two-stream graph convolutional networks: In the construction of GCN, we selected
the top 100 most relevant objects of each action and removed the irrelevant objects. Of the
original 12,988 objects, 3467 remained, and we put them together to generate the graph of
the instance branch. Then, we added the actions into the graph, and generated the graph of
the classifier branch. After building the model, we put the word embeddings of actions and
objects into the classifier branch, and put the video into the instance branch. The output
of the model is a 1 × 101 vector, which represents the action probabilities. We selected
the most likely action as the final result. From this result, we calculated the accuracy of
this model.

Three-stream graph convolutional networks: We employed a TS-GCN model pre-
trained using kinetics. We put the skeleton of the seen video into the model to extract
features. Then, we put the extracted features into a three-layer network, with layer sizes of
256, 1000, and 300. We trained it for 50 epochs with SGD, a learning rate of 0.2, dropout of
0.5, and batch size of 64.

After training the model using the seen video, we input the unseen video into the
model for prediction. After the prediction of the motion branch, we combine the two
models together with the weight of 0.1. We then obtain the final prediction result, as shown
in Figure 3. Table 1 shows the accuracy of each model. Figure 3a depicts the confusion
matrix of our model. Figure 3b shows the improvement from the baseline to our model:

V = V2 −V1, (3)
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where V2 and V1 are the confusion matrices of our model and the baseline. Figure 3b
shows that there are more red squares on the diagonal than blue, which means that the
accuracy of our model is higher than that of the baseline. The results may be different
in parameter settings or some details. The accuracy of the baseline is lower than that
previously reported [2]. However, it can be seen from the comparison that the motion
branch improves the accuracy of the baseline.

Figure 3. Confusion matrix of our model (UCF101).

Table 1. Accuracy of each model.

Model Reference UCF101 HMDB51 Olympic Sports

DAP CVPR2009 14.3 N/A 43.2
IAP CVPR2009 12.8 N/A 42.7

ESZSL ICML2015 14.5 17.6 37.9
Two-Stream GCN (baseline) AAAI2019 17.0 19.3 51.3

Motion Branch Ours 14.8 16.6 46.9
Three-Stream GCN Ours 17.9 20.4 54.1

In Figure 3a, we can see that some classes have very low accuracy, such as band
marching. Half of its videos are predicted as a military parade. Figure 4 shows the video
frames for band marching and a military parade. From this figure, we can see that the two
classes of videos are very similar, in terms of not only the RGB images but also the human
motions, thus resulting in low accuracy. In fact, the difference between these two classes of
actions is that the person in the band marching video plays an instrument while walking.

After analyzing Figure 3b, we find that the result of label 2 has worsened whereas
that of label 12 has improved. Label 2 is basketball dunking and label 12 is long jumping.
The baseline classified most of these two classes of videos as basketball dunking. After
adding the motion branch, most of these videos were classified as long jumping. Figure 5
shows the example images of basketball dunking and long jumping. The people in the
video run and then jump. These two classes of actions are very similar and thus are
easily misclassified.



Sensors 2021, 21, 3793 11 of 16

(a) Band marching video frames

(b) Military parade video frames

Figure 4. Mistake-prone video frames.

(a) Basketball dunk video frames

(b) Long jump video frames

Figure 5. Video frames for which the performance worsens upon adding the motion branch.

4.3. Learning from Human Experience

In order to improve the accuracy of the model, we need to find which category has
a low accuracy, and analyze why it is low. For two-stream GCN, we firstly calculate the
accuracy of each class, and sort them from small to large and calculate what each class is
most often wrongly predicted. Then we find the category which have potential to improve
the accuracy. If an object exists in the correct category but not in the wrong category, we
can improve the accuracy by modifying the relationship between object and action. By
analyzing the experimental results, we find that the accuracy of band marching is 0%. Most
of the videos are classified as a military parade. From Figure 4, we can see that the two
classes of videos are very similar. The difference between these two classes of actions is
that the person in the band marching video plays an instrument while walking. Therefore,
we need to improve the relationship between instruments and band marching as well as
reduce the relationship between instruments and military parade. This will improve the
accuracy of the band marching.

We generate the training data of the two-stream GCN, and the input is the score of
each object. Then, we use GloVe to convert each object into word embedding and calculate
the similarity between it and the instrument. We use objects with a similarity of more
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than 0.3 as instruments. Several instruments are randomly selected, the score is set to a
decimal greater than 0.2, and these scores are used as input. There are two kinds of output
data. One is the word embedding of band marching. We convert the military parade to
the opposite vector of word embedding. This vector is another output that can reduce
the possibility of it being a military parade. We randomly generate 120 sets of data. The
amount of data is set according to experience. Too much data will affect the accuracy of
other categories, whereas too little data may not improve the model. Next, the training
set is used to train the model and the generated data is used to continue training. We use
the test set to evaluate the new model; the results are shown in Table 2. We can see that
our method improves the recognition ability of the model for band marching and does not
affect other categories. However, for all categories, the accuracy only increased by 0.2%,
which is too small. This is because we have only modified one class. The more rules that
are added, the higher the accuracy that can be obtained.

As for the motion branch, according to human experience, the lower body of band
marching is walking and the upper body is playing instruments. Furthermore, the number
of people is very large and the team is neat. According to these rules, we can use the
skeleton data of walking and playing instruments to make the data for band marching.
Using this method, we can improve the accuracy of motion branch for band marching.
Due to the complexity of this method, we plan to evaluate its performance in future in a
separate study.

Table 2. Accuracy before and after learning from human experience.

Categories Before (%) After (%)

Band Marching 0 14.8
All Categories 17.0 17.2

4.4. Different Word Embeddings

To evaluate the effects of different word embeddings of the model, we used two
different word embeddings, and then calculated the ZSAR accuracy. We used Numberbatch
(9,161,912 words), GloVe (2,196,017 words), and GoogleNews (3 billion words) as the word
embeddings. The dimensions of their words are all 300.

As shown in Table 3, the weight and accuracy have different relationships in different
word embeddings. “All” denotes that the three word embeddings are used together. From
the table, it is apparent that the model is sensitive to the word embeddings. The accuracies
of different word embeddings are also different. Therefore, this model is sensitive to the
word embedding method. We use the three word embeddings together to reduce the effect
of this sensitivity.

Table 3. Accuracy of different word embeddings.

Word Embedding Motion Branch Accuracy (%) Three-Stream Accuracy (%)

Numberbatch 13.7 15.6
GloVe.840B.300d 13.2 17.0

GoogleNews 12.9 16.1
All 14.8 17.9

4.5. Different Weights

We randomly generate 50 different methods to split the UCF101 dataset, and use these
datasets to train 50 models. The dataset is divided into two parts: 51 seen classes and
50 unseen classes. We calculate the optimal weight that can yield the highest accuracy of
the model. Finally, we obtain 50 optimal weights. The calculation method is as follows.
According to Equation (2), we select w = 0.1, 0.2, 0.3.... Then, we use w to calculate the
accuracy of the model. When w = 0, there is no motion branch but only the output of
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the baseline model. After processing all values of w, we select the model with the highest
accuracy and record the corresponding value of w. Figure 6 shows the curves of the
relationship between w and the accuracy when training is performed with three datasets.
We can see that for different datasets, the optimal value of w is different. The addition of
a motion branch can improve the accuracy of the model. The optimal w of 50 models is
counted and the results are depicted in Figure 7. The horizontal axis denotes the value of
the optimal w, and the vertical axis denotes the number of occurrences of this value among
the 50 optimal w. From the figure, we can see that the value with the largest number is 0.1,
i.e., when w = 0.1, the model is more likely to have the highest accuracy.

(a) (b) (c)

Figure 6. Changes in accuracy with different weights.

Figure 7. Number of optimal w in 50 models.

4.6. Visualization of Semantic Space with Different Word Embeddings

To observe the effect of different word embedding on the accuracy more intuitively,
we reduced the number of transformation networks of the motion branch from 3 to 1. We
projected all the videos into different semantic spaces with the motion branch and then
visualized them with t-SNE [43]. The result is shown in Figure 8. We can see that the
results of mapping the videos to different word embeddings are similar. However, there
will be some differences at the boundary of two categories. Each word embedding has its
own advantages. Hence, we need to use the three word embeddings together to make the
model more stable rather than attempt to choose the best word embedding.
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(a) Numberbatch (b) GloVe (c) GoogleNews (d) Legend

Figure 8. Visualization of semantic space with different word embeddings.

5. Conclusions

In this study, first we proposed a three-stream GCN model for ZSAR. The proposed
model not only analyzed the data of the objects in a video, but also added the data of
human motion. We added a stream to the original model. Experiments to compare the
accuracy of our model with that of the baseline established the effectiveness of our method.
Second, we added a new experiment to prove that our model could learn from human
experience. We generated training data based on human experience and improved the
accuracy of the model. Moreover, we modified the weight of the model and tested the
effect of weight change on the accuracy. We also evaluated the effect of different word
embeddings on the accuracy.

This method uses both RGB data and motion data, which improves the accuracy of
recognition. However, it uses the outputs of two models. The two parts of the model
process the data separately. This prevents the model from making full use of the relationship
between the RGB data and motion data, which needs to be addressed. In future, we will
combine them such that the model can fully learn the relationship between them. We can
incorporate additional features to the model, such as the location data of the objects and the
audio data from the video. These enhancements will further improve recognition accuracy.
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