Ammonia Gas Sensor Based on Graphene Oxide-Coated Mach-Zehnder Interferometer with Hybrid Fiber Structure
Abstract
:1. Introduction
2. Sensor Structure and Principle
3. Sensing Head Fabrication
3.1. Fusion and Tapering of the Sensor
3.2. Preparation and Coating of Graphene Oxide
4. Experimental Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Timmer, B.H.; Olthuis, W.; Albert, V.D.B. Ammonia sensors and their applications—A review. Sens. Actuator B Chem. 2015, 107, 666–677. [Google Scholar] [CrossRef]
- Liu, A.; Lv, S.Y.; Jiang, L.; Liu, F.M.; Zhao, L.J.; Wang, J.; Hu, X.L.; Yang, Z.J.; He, J.M.; Wang, C.G.; et al. The gas sensor utilizing polyaniline/MoS2 nanosheets/SnO2 nanotubes for the room temperature detection of ammonia. Sens. Actuator B Chem. 2021, 332, 129444. [Google Scholar] [CrossRef]
- Li, Z.; Yi, J.X. Drastically enhanced ammonia sensing of Pt/ZnO ordered porous ultra-thin films. Sens. Actuator B Chem. 2020, 317, 128217. [Google Scholar] [CrossRef]
- Alexander, F.S.; Liu, X.M.; Trevor, L.W.; Fu, T.D.; Todd, E.; Juan, M.J.; Derek, R.L.; Yao, J. Bioelectronic protein nanowire sensors for ammonia detection. Nano Res. 2020, 13, 1479–1484. [Google Scholar] [CrossRef]
- Wu, T.Y.; Lv, D.W.; Shen, W.F.; Song, W.J.; Tan, R.Q. Trace-level ammonia detection at room temperature based on porous flexible polyaniline/polyvinylidene fluoride sensing film with carbon nanotube additives. Sens. Actuator B Chem. 2020, 316, 128198. [Google Scholar] [CrossRef]
- Cao, W.Q.; Duan, Y.X. Optical fiber-based evanescent ammonia sensor. Sens. Actuator B Chem. 2005, 110, 252–259. [Google Scholar] [CrossRef]
- Mishra, S.K.; Kumari, D.; Gupta, B.D. Surface plasmon resonance based fiber optic ammonia gas sensor using ITO and polyaniline. Sens. Actuator B Chem. 2005, 171, 976–983. [Google Scholar] [CrossRef]
- Zhang, A.Q.; Wu, Y.; Yao, B.C.; Gong, Y. Optimization study on graphene-coated microfiber Bragg grating structures for ammonia gas sensing. Photonic. Sens. 2015, 5, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Fu, H.W.; Zhang, J.L.; Ding, J.J.; Wang, Q.Q.; Li, H.D.; Shao, M.Y.; Liu, G.Q.; Liu, P.; Zhang, M.; Zhu, Y.; et al. Ultra sensitive NH3 gas detection using microfiber Bragg grating. Opt. Commun. 2018, 427, 331–334. [Google Scholar] [CrossRef]
- Zhou, Q.; Kritz, D.; Bonnell, L.; Sigel, G.H.J. Porous plastic optical fiber sensor for ammonia measurement. Appl. Opt. 1989, 28, 2022–2025. [Google Scholar] [CrossRef]
- Huang, X.Y.; Li, X.M.; Yang, J.C.; Tao, C.Y.; Guo, X.G.; Bao, H.B.Y.; Yin, J.; Chen, H.F.; Zhu, Y.H. An in-line Mach-Zehnder interferometer using thin-core fiber for ammonia gas sensing with high sensitivity. Sci. Rep. 2017, 7, 44994. [Google Scholar] [CrossRef] [Green Version]
- Zheng, S.J.; Ghandehari, M.; Ou, J.P. Photonic crystal fiber long-period grating absorption gas sensor based on a tunable erbium-doped fiber ring laser. Sens. Actuator B Chem. 2016, 223, 324–332. [Google Scholar] [CrossRef]
- Khalaf, A.L.; Mohamad, F.S.; Rahman, N.A.; Lim, H.N.; Paiman, S.; Yusof, N.A.; Mahdi, M.A.; Yaacob, M.H. Room temperature ammonia sensor using side-polished optical fiber coated with graphene/polyaniline nanocomposite. Opt. Mater. Express 2017, 7, 1858–1870. [Google Scholar] [CrossRef]
- Raj, D.R.; Prasanth, S.T.; Vineeshkumar, V.; Sudarsanakumar, C. Ammonia sensing properties of tapered plastic optical fiber coated with silver nanoparticles/PVP/PVA hybrid. Opt. Commun. 2015, 340, 86–92. [Google Scholar] [CrossRef]
- Pathak, A.; Mishra, S.K.; Gupta, B.D. Fiber-optic ammonia sensor using Ag/SnO2 thin films: Optimization of thickness of SnO2 film using electric field distribution and reaction factor. Appl. Optics 2017, 54, 8712–8721. [Google Scholar] [CrossRef]
- Guo, H.Q.; Tao, S.Q. Silver nanoparticles doped silica nanocomposites coated on an optical fiber for ammonia sensing. Sens. Actuator B Chem. 2007, 123, 578–582. [Google Scholar] [CrossRef]
- Sun, L.; Semenova, Y.; Wu, Q.D.; Liu, J.; Yuan, J.H.; Ma, T.; Sang, X.Z.; Yan, B.B.; Wang, K.R.; Yu, C.X.; et al. High sensitivity ammonia gas sensor based on a silica-gel-coated microfiber coupler. J. Lightwave Technol. 2017, 35, 2864–2870. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Fu, H.W.; Ding, J.J.; Li, H.D.; Zhang, M.; Zhang, J.L.; Liu, Y.G. Fabrication of three-dimensional zinc oxide nanoflowers for high-sensitivity fiber-optic ammonia gas sensors. Appl. Opt. 2018, 57, 7924–7930. [Google Scholar] [CrossRef]
- Shrivastav, A.M.; Sharma, G.; Rathore, A.S.; Jha, R. Hypersensitive and selective interferometric nose for ultratrace ammonia detection with fast response utilizing PANI@SnO2 Nanocomposite. ACS Photonics 2018, 5, 4402–4412. [Google Scholar] [CrossRef]
- Yao, B.; Wu, Y.; Cheng, Y.; Zhang, A.; Gong, Y.; Rao, Y.J.; Wang, Z.; Chen, Y. All-optical Mach-Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide. Sens. Actuator B Chem. 2014, 194, 142–148. [Google Scholar] [CrossRef]
- Wu, Y.; Yao, B.C.; Zhang, A.Q.; Rao, Y.J.; Wang, Z.G.; Cheng, Y.; Gong, Y.; Zhang, W.L.; Chen, Y.F.; Chiang, K.S. Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing. Opt. Lett. 2014, 39, 1235–1237. [Google Scholar] [CrossRef]
- Yu, C.B.; Wu, Y.; Liu, X.L.; Fu, F.; Gong, Y.; Rao, Y.J.; Chen, Y.F. Miniature fiber-optic NH3 gas sensor based on Pt nanoparticle-incorporated graphene oxide. Sens. Actuator B Chem. 2017, 244, 107–113. [Google Scholar] [CrossRef]
- Fu, H.W.; Jiang, Y.H.; Ding, J.J.; Zhang, J.L.; Zhang, M.; Zhu, Y.; Li, H.D. Zinc oxide nanoparticle incorporated graphene oxide as sensing coating for interferometric optical microfiber for ammonia gas detection. Sens. Actuator B Chem. 2018, 254, 239–247. [Google Scholar] [CrossRef]
- Deng, S.Y.; Meng, H.Y.; Wang, X.J.; Fan, X.F.; Wang, Q.Z.; Zhou, M.Q.; Guo, X.; Wei, Z.C.; Wang, F.Q.; Tan, C.H.; et al. Graphene oxide-film-coated splitting ratio-adjustable Mach-Zehnder interferometer for relative humidity sensing. Opt. Express 2019, 27, 9232–9240. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Shen, C.Y.; Lou, W.M.; Shentu, F.Y. Polarization-dependent humidity sensor based on an in-fiber Mach-Zehnder interferometer coated with graphene oxide. Sens. Actuator B Chem. 2016, 234, 503–509. [Google Scholar] [CrossRef]
- Lu, P.; Men, L.Q.; Sooley, K.; Chen, Q.Y. Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature. Appl. Phys. Lett. 2009, 94, 131110. [Google Scholar] [CrossRef] [Green Version]
- Tian, Z.B.; Yam, S.S.H.; Barnes, J.; Bock, W.; Greig, P.; Fraser, J.M.; Loock, H.P.; Oleschuk, R.D. Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers. IEEE Photonic. Tech. Lett. 2008, 20, 626–628. [Google Scholar] [CrossRef]
- Hao, T.; Chiang, K.S. Graphene-based ammonia-gas sensor using in-fiber Mach-Zehnder interferometer. IEEE Photonic. Tech. Lett. 2017, 29, 2035–2038. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Bolotin, K.I.; Sikes, K.J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H.L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351–355. [Google Scholar] [CrossRef] [Green Version]
- Leenaerts, O.; Partoens, B.; Peeters, F.M. Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first principles study. Phys. Rev. B 2008, 77, 125416. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.W.; Murali, S.; Cai, W.W.; Li, X.S.; Suk, J.W.; Potts, J.R.; Ruoff, S.R. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 2010, 22, 3906–3924. [Google Scholar] [CrossRef]
- Cerveny, S.; Barroso, B.F.; Alegria, A.; Colmenero, J. Dynamics of water intercalated in graphite oxide. J. Phys. Chem. C 2010, 114, 2604–2612. [Google Scholar] [CrossRef]
- Morales-Narvaez, E.; Merkoci, A. Graphene oxide as an optical biosensing platform. Adv. Mater. 2012, 24, 3298–3308. [Google Scholar] [CrossRef]
- Stankovich, S.; Dikin, D.A.; Dommett, G.H.B.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Graphene-based composite materials. Nature 2006, 442, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228–240. [Google Scholar] [CrossRef]
- Peng, Y.; Li, J.H. Ammonia adsorption on graphene and graphene oxide: A first-principles study. Front. Environ. Sci. Eng. 2013, 7, 403–411. [Google Scholar] [CrossRef]
- Girei, S.H.; Alkhabet, M.M.; Kamil, Y.M.; Lim, H.N.; Mahdi, M.A.; Yaacob, M.H. Wavelength dependent graphene oxide-based optical microfiber sensor for ammonia gas. Sensors 2021, 21, 556. [Google Scholar] [CrossRef]
- Tang, S.; Cao, Z. Adsorption and dissociation of ammonia on graphene oxides: A first-principles study. J. Phys. Chem. C 2012, 116, 8778–8791. [Google Scholar] [CrossRef]
- Schedin, F.; Geim, A.K.; Morozov, S.V.; Hill, E.W.; Blake, P.; Katsnelson, M.I.; Novoselov, K.S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655. [Google Scholar] [CrossRef]
- Wu, Y.; Yao, B.C.; Cheng, Y.; Rao, Y.J.; Gong, Y.; Zhang, W.L.; Wang, Z.G.; Chen, Y.F. Hybrid graphene-microfiber waveguide for chemical gas sensing. IEEE J. Sel. Top. Quantum Electron. 2013, 20, 49–54. [Google Scholar] [CrossRef]
- Wang, H.H.; Meng, H.Y.; Xiong, R.; Wang, Q.H.; Huang, B.; Zhang, X.; Yu, W.; Tan, C.H.; Huang, X.G. Simultaneous measurement of refractive index and temperature based on asymmetric structures modal interference. Opt. Commun. 2016, 364, 191–194. [Google Scholar] [CrossRef]
- Nguyen, L.V.; Hwang, D.; Moon, S.; Moon, D.S.; Chung, Y.J. High temperature fiber sensor with high sensitivity based on core diameter mismatch. Opt. Express 2008, 16, 11369–11375. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.Y.; Kim, M.J.; Lee, B.H. All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber. Opt. Express 2007, 15, 5711–5720. [Google Scholar] [CrossRef] [PubMed]
Fiber Structure | Material | Sensitivity | Response Time | Recovery Time | Range | Reference |
---|---|---|---|---|---|---|
microfiber hybrid waveguide | graphene | ~6 pm/ppm | ~0.5 s | none | 40–360 ppm | [20] |
microfiber Bragg grating | graphene | 4 pm/ppm | ~10 min | ~15 min | 0–100 ppm | [21] |
MZI with a long-period fiber gratings | graphene | ~3 pm/ppm | 270 s | none | 10–180 ppm | [28] |
MZI | zinc oxide nanoflowers | 5.75 pm/(μg/L) | ~50 s | ~80 s | 0–5500 μg/L | [18] |
MZI based PCF | PANI@SnO2 | none | 7 s | 2 s | 0–8 ppb | [19] |
MZI | GO | 4.97 pm/ppm | 5 min | 7.5 min | 0–151 ppm | This paper |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, X.; Deng, S.; Wei, Z.; Wang, F.; Tan, C.; Meng, H. Ammonia Gas Sensor Based on Graphene Oxide-Coated Mach-Zehnder Interferometer with Hybrid Fiber Structure. Sensors 2021, 21, 3886. https://doi.org/10.3390/s21113886
Fan X, Deng S, Wei Z, Wang F, Tan C, Meng H. Ammonia Gas Sensor Based on Graphene Oxide-Coated Mach-Zehnder Interferometer with Hybrid Fiber Structure. Sensors. 2021; 21(11):3886. https://doi.org/10.3390/s21113886
Chicago/Turabian StyleFan, Xiaofeng, Shuying Deng, Zhongchao Wei, Faqiang Wang, Chunhua Tan, and Hongyun Meng. 2021. "Ammonia Gas Sensor Based on Graphene Oxide-Coated Mach-Zehnder Interferometer with Hybrid Fiber Structure" Sensors 21, no. 11: 3886. https://doi.org/10.3390/s21113886
APA StyleFan, X., Deng, S., Wei, Z., Wang, F., Tan, C., & Meng, H. (2021). Ammonia Gas Sensor Based on Graphene Oxide-Coated Mach-Zehnder Interferometer with Hybrid Fiber Structure. Sensors, 21(11), 3886. https://doi.org/10.3390/s21113886