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Abstract: Recently, it has been a feasible approach to build an antenna, in view of the potential
advantages they offer. One of the recent trends in dielectric resonator antenna research is the use of
compound and hybrid structures. Several considerable investigations have been already underway
showing quite interesting and significant features in bandwidth, gain, and generation of circular
polarization. A critical review on a journey of circularly polarized hybrid dielectric resonator antennas
is presented in this article. A general discussion of circular polarization and DR antennas are provided
at the forefront. Evolution, significant challenges, and future aspects with new ideas in designing
hybrid dielectric resonator antennas are indicated at the end of the review. State-of-the-art advances
and associated design challenges of circularly polarized hybrid DR antennas and related empirical
formulas used to find resonance frequency of different hybrid modes produced are discussed in
this paper.

Keywords: CP radiation; microstrip antenna; dielectric-resonator antenna; hybrid dielectric resonator
antenna; wide-band antennas; multi-functional antennas

1. Introduction

The radiation mechanism of various types of antennas and their radiation funda-
mentals, focusing on the concepts of circular polarization, are comprehensively discussed
in [1,2]. Circularly polarized (CP) antennas can offer a consistent or reliable system connec-
tion between the transmitter and receiver, since the polarization of the antennas is always
associated. In and around the intended resonant frequency, two modes orthogonal to
each other with a phase-shift of 90◦ are desired for circular polarization. Sometimes, the
horizontal and vertical field components of a communications link are highly uncorrelated.
Therefore, using receiver antennas with the same phase center and orthogonal polarizations
can avoid location-induced phase variation.

Generally, a circularly polarized antenna should have the following essential characteristics,

• Nearly equal magnitudes for two orthogonal modes or polarizations and equal radia-
tion pattern shapes.

• Nearly ±90◦ difference in phase over a wide-bandwidth and wide-beam width.
• Small axial ratio (close to 0 dB i.e., <3 dB or numerical 1) over a wide-AR bandwidth

and wide-beam width.

The polarization of a wave is expressed in terms of the figure traced as a function of
time by the extremity of the E-field vector at a fixed location in space, the sense in which it
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is traced, and observed along the direction of propagation. The instantaneous electric field
of a uniform plane wave pointed in the negative z-axis is expressed by Equation (1):

Ei(z, t) = Eix(z, t)ax + Eiy(z, t)ay (1)

The instantaneous E-field components of x and y are correlated to their complex
quantities by the following Equations (2) and (3):

Eix(z, t) = Eix Cos(wt + βz + Φix)ax (2)

and
Eiy(z, t) = Eiy Cos

(
wt + βz + Φiy

)
ay (3)

The Eix and Eiy are amplitudes, and Φix and Φiy are the corresponding phases in x
and y directions respectively, w is the angular frequency and β is the propagation constant.

• For linearly polarized (LP) plane wave, the difference of phase angle between the x
and y components must be:

δΦ = Φiy −Φix = mπ, where m = 0, 1, 2, . . . . . . (4)

• For the circularly polarized wave, the magnitudes of the x and y components are
equal (i.e., Eix = Eiy), and difference in phase angle is odd multiples of 90◦, and it is
mathematically expressed as:

δΦ = Φiy −Φix =

〈 +
(
2mπ + π

2
)

f or Right Hand CP
or

−
(
2mπ + π

2
)

f or Le f t Hand CP
(5)

• If δΦ does not satisfy Equation (1) or Eix 6= Eiy then the wave is elliptically polarized.

In this review article, conditions for CP radiation, different methods of generating
circular polarization in dielectric resonator antennas are studied and analyzed by consid-
ering a few standard articles in the open literature. Historical study of microstrip and
dielectric resonator-based antennas; the important milestones and significant features of
dielectric resonator antennas are discussed and reviewed respectively in Section 2. Various
aspects and techniques involved in generating circularly polarized radiation for DR-based
antennas are studied, in order to recognize the associated challenges. Consequently, the
evolution of dielectric resonator-based hybrid antennas with CP radiation techniques is
reviewed comprehensively in Section 3. This article’s intention and primary focus are
on various design perspectives and the progress of circularly polarized hybrid dielectric
resonator antennas.

2. Historical Review of DR Antennas and CP Methods

Even though Deschamps was the first to introduce the concept of low-profile mi-
crostrip radiators in 1953 [3], it was after 20 years that the original patch antenna was
practically developed by Munson [4,5] i.e., in the year 1974. The numerous benefits of
microstrip antenna, such as less weight, low volume, easy to integrate with the printed
circuit board (PCB) technology, are explored to design different patch configurations and
feed mechanisms for numerous applications [6–10]. In today’s modern world, the essential
need and demand for low-profile and compact antennas to integrate with mobile and
personal communication devices has drawn the patch antennas to the forefront.

The radiation mechanism of DRAs is quite different from microstrip radiators with
similar excitation methods. The electromagnetic energy fed to the DR is confined to the
dielectric material, and the radiating mode of that material is excited, to act as a resonator.
In another way, the confined EM energy is controlled through the design of DR, and
the energy leaks from the resonator. A wide range of dielectric constants, starting from
8 to over 100 are used. The potential of DRAs was its high-frequency operation and
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wide impedance bandwidth with sufficient gain, compared to the metallic patch antennas.
Several modes are excited in DRA, similar to the short magnetic or electric dipole antenna
radiation patterns. The cause for radiation in the microstrip antenna is the two narrow
radiating edges, while the DRA radiates through the entire DR external surface, excluding
the grounded area. The reduction of surface-waves is an important advantage of the DRA
in conjunction with a patch antenna. However, excitation schemes of the DRA and patch
antennas are quite similar, and the behavior of both is similar to that of resonant cavities.
The dielectric wavelength is lesser than the free-space wavelength by an element of 1/

√
(εr),

so increasing εr both of them can be made smaller.
Additionally, all the feeding methods used for the patch antenna can also be applied

for the DRA. The dimensions of a DRA are of the order λ0⁄(
√

(εr) or less, where λ0 is the
free space wavelength, and εr is the material dielectric-constant. The radiation Q-factor
and frequency of resonance can be altered by the aspect ratio of the DRA for a fixed value
of εr. With the absence of surface waves, the conductor losses are minimum in DRA and
high radiation efficiency can be achieved [11]. Generally, DR is mostly used in traditional
applications such as microwave circuits, oscillators and filters [12]. The DR was typically
considered as an energy storage element instead of an antenna or radiator [13,14]. Even
though Richtmyer first proposed the radiation concept of Dielectric Resonators in 1939, the
systematic study and experimentation were carried out by Professor S. A. Long in 1983.
Many communication systems’ frequency range of interest had increasingly advanced to
the near-millimeter and millimeter frequency range (100–300 GHz). The conductor loss
at this frequency range for microstrip antennas becomes high, and it yields a reduction
in the efficiency of the radiators. After the cylindrical DRA, Long and his colleagues
subsequently investigated the rectangular [15], cylindrical [16], and hemispherical [17]
DRAs. Other shapes are also investigated, comprising the triangular [18], spherical-cap [19],
cylindrical-ring [20], and mushroom-shaped [21] DRAs. Consequently, few review papers
are reported in the open literature focusing on various aspects, such as general design
equations of DRAs for bandwidth, frequency, and equivalent mode theory [22], study
of broadband DRAs [23], design advances in dielectric resonator-based ultra-wideband
monopole antennas [24], a historic study of DRAs and its state-of-the-art based on the
radiation parameters [25–27], circularly polarized DRAs [28], modeling DRAs using nu-
merical methods [29], application-oriented DRAs [30], various CP methods in DRAs [31],
improvement of impedance bandwidth in DRAs [32], and design advances in various types
of CP antennas [33].

A few glimpses of circularly polarized DR antennas are studied to acknowledge
the design aspects responsible for CP radiation. A pair of orthogonal HE11δ modes of
a cylindrical ring DRA in phase-quadrature is presented for CP radiation. Mongia et al.
reported a DRA with a 3 dB AR (Axial Ratio) beamwidth of 1000 and a minimum AR value
of 0.5 dB [34]. A single point probe-fed elliptic DRA is presented for CP radiation with
wideband properties and it provides 3.5% of CP bandwidth and 14% of RL bandwidth [35].
A parasitic strip is placed on the adjacent wall of the dielectric resonator to stimulate
degenerated modes using finite difference time domain (FDTD) analysis to address the
linear and circular polarized modes [36]. A new comb-shaped CP-DRA [37] is proposed,
and it offers about 4% AR bandwidth with a gain of 3.5 dBi. A quadruple strip-fed
cylindrical DRA using two orthogonal hybrid couplers reported for wideband circular
polarization applications [38]. The circularly polarized C-shaped DRA [39] has 19% of AR
bandwidth and is enhanced to 50% using a short-circuit microstrip. A compact wideband
rectangular DRA based on perforations and edge grounding is investigated in [40]. To
reduce the Q-factor (i.e., inversely proportional to bandwidth), square slots (perforations)
are bored equivalently all across the DRA. The overall occupancy of DRA is reduced by
cutting slots and an edge grounding technique in rectangular DRA. A wideband dual
segmented DRA is proposed for X-band applications. An S-shaped slot is used to couple
the DR elements, and it offers 37.5% (7.66 to 11.2 GHz) fractional bandwidth with a
peak gain of 6 dBi [41]. A wideband CP pixelated DRA is analyzed using a real-coded
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genetic algorithm (GA), and it is coupled through a narrow slot on the ground plane [42].
A combination of an L-shaped microstrip line and a conformal strip is used as feed to
excite two orthogonal modes in two cubical DR elements for CP radiation and wideband
applications [43]. A combination of two L-shaped slots is used for two configurations to
obtain dual-sense polarized triband and quadband DR antennas [44] for multi-functional
applications. Two wideband cylindrical DR antennas loaded on two configurations of
phase delay lines (PDL) are presented [45] for CP radiation at 2.4 GHz applications. The
CP radiation with two orthogonal modes is possible due to stub-loaded 90◦ and 180◦ PDLs.
The wide impedance bandwidth and low spurious feed radiation with minimized surface
wave losses are advantages of DRA compared to patch antennas. The requirement of DRAs
with wide AR bandwidth and wide impedance bandwidth is increasing day-to-day.

3. Classification and Progress of Dielectric Antennas

In defining the radiation properties of various types of dielectric antennas, shape and
relative permittivity of dielectric material are the significant parameters [46–50], which
add up a degree of freedom compared to microstrip radiators. A Venn diagram based on
technological advancements in the field of dielectric antennas is presented in Figure 1.
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The past review studies of the dielectric resonator antennas have been summarized in
Table 1 to highlight the various significant radiation and design aspects. The stored energy
inside the dielectric is exceptionally high and it is difficult for external objects to detune the
device [51–53]. DR can radiate from all surfaces, rendering high radiation efficiency and
low Q-factor. Since its birth in the early 1980s, there has been a steady research progress
in this area over the years. The bandwidth of a resonant device is a function of its loaded
Q, which is controlled by the way of energy, is coupled in and out of the resonant device
is under the designer’s control. The unloaded Q is a measure of the internal losses in the
device. A device with a high unloaded Q may be used to create an antenna structure with
low loaded Q and wide impedance bandwidth. Broadband dielectric antennas can be
obtained by suitably configuring the feed structure [54–56].
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Table 1. Past review highlights of dielectric antennas.

Year Past Review Highlights Reference

1994

• A detailed review of modes and various radiation parameters of DRAs of different shapes
are discussed.

• A precise closed-form equation is presented to obtain fundamental resonant frequencies and
bandwidth of a cylindrical DR.

[22]

2005 • A brief review of broadband DRAs and design techniques for obtaining multi-resonant
frequencies and how these can be combined to form broadband are discussed. [23]

2006 • Advancements and challenges in designing composite and hybrid dielectric resonator
antennas are addressed. [41]

2010 • A detailed review of various types of monopole-based DR antennas and design
methodologies are addressed for ultra-wideband applications. [24]

2010 • A comprehensive study of history and state-of-the-art design techniques in dielectric
resonator antennas over the last 30 years are discussed. [25]

2012 • A study of recent developments of DR antennas for different radiation parameters and the
use of decorative glass blocks as DR elements are presented. [26]

2014 • Latest developments in the design of dielectric resonator antennas in wideband, multi-band,
and ultra-wideband categories have been addressed comprehensively. [27]

2015 • Various design and developments in methods of CP DRAs are addressed [28]

2016 • A review of numerical methods used to model the DR elements considering all the effective
parameters and characteristics of dielectric antennas [29]

2017 • An application-oriented detailed survey of DR antennas in the last three and half decades is
addressed. [30]

2017 • A survey of various CP radiation methods for DR antennas is comprehensively discussed. [31]

2019 • A review of bandwidth improvement methods is highlighted and discussed in detail. [32]

2020 • Design advances and trends in various types of CP antennas are studied comprehensively [33]

The primary radiating component of the Dielectric Loaded Antennas is a conducting
element and the dielectric modifies the medium, imparting significant performance ad-
vantages [57–61]. Dielectric antennas can be used to excite parasitic copper antennas or
vice versa. In this class of antennas, often the conductor forms the major radiating part of
the antenna. There are bandwidth advantages in this dielectric–copper hybrid approach
of the Dielectric Excited Antennas [62–65]. Dielectric resonator-based loaded antennas and
excited antennas come under the category of Hybrid Dielectric Resonator Antennas. Mongia
et al. introduced a combination of the grounded metallic post at the center of cylindrical
DR elements to produce the lowest order mode for which the overall size of the DRA has
been significantly reduced [66].

Similarly, the frequency shift is also possible with the circular metallic disk on the top
of the DR element, either isolated or grounded using metallic posts reported by Li et al. [67].
A combination of monopole and ring-shaped DRA forming hybrid structures [68] is devel-
oped for ultra-wideband applications with omnidirectional patterns. Further, a microstrip
loaded with small cylindrical DRA combination with a wide impedance bandwidth of
10% is reported [69], compared to microstrip alone. Ittipiboon et al. reported a linearly
polarized dielectric-loaded antenna with a suspended microstrip in the air to achieve wide
impedance bandwidth [70,71]. Various configurations of hybrid dielectric antennas have
been illustrated in Figure 2. Several designs of linearly polarized wideband [72–90] and
multi-functional [91–105] hybrid dielectric resonator antennas are reported in the open
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literature. Dielectric resonator-based hybrid antenna structures are the recent research
trend and focused area, as they can have the combined advantages of microstrip and
dielectric resonator (DR) antennas. In the following discussion, existing DR-based hybrid
structures explicitly with CP-radiation techniques are reviewed comprehensively.
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4. Circularly Polarized DR Based Hybrid Antennas
4.1. Wideband Hybrid Antennas with CP Radiation

Several CP radiation techniques and respective design methods have been imple-
mented independently for microstrip and dielectric resonator antennas. However, CP
radiation techniques for hybrid dielectric resonator antennas over a wide-bandwidth
are challenging [106]. A compact dielectric-loaded aperture-coupled microstrip antenna
is reported for L-band mobile satellite applications with CP radiation. Two dielectric-
inserts [107] along the edges of the square patch are positioned for the required reduced fre-
quency shift of 30% to the lower-side, and the cross-slot aperture creates the two-orthogonal
modes desired for CP radiation with 2.5% of 3 dB AR bandwidth compared to traditional
CP square patch. Similarly, four dielectric inserts [108] are used under the square patch
positioned at the edges with a cross-slot feed to obtain the CP radiation. A considerable
reduction of antenna size is possible by inserting dielectric blocks beneath the patch, while
the desired bandwidth and the axial ratio are also achieved for L-band applications [109].
A strip-line fed compact rectangular DR-based antenna with a top-loaded rectangular
patch of various aspect ratios is reported for circularly polarized radiation [110]. A suitable
selection of aspect ratio for the top-loaded rectangular patch, a fundamental resonant mode
of TE111 of the rectangular DR antenna, can be divided into two orthogonal degenerated
modes (TEx

111 and TEy
111), which leads to circular polarization. A novel Hybrid DRA

consisting of four rectangular slots on the ground-plane acts as an aperture for the DR
element [111]. The wide bandwidth of 500 MHz (1130–1630 MHz) with CP radiation is
achieved at boresight with a wide AR beam-width of 100 degrees. A compact Hybrid DRA
composed of cylindrical DR elements and four arc-shaped slots arranged sequentially on
the ground plane, which acts as an aperture to the DR is proposed [112] for GPS and GNSS
applications. In this case, the CP radiation is responsible due to the geometrical arrange-
ment of slots and the feed network with four strip-lines. A high-gain single element hybrid
DRA consisting of the microstrip and the elliptic-shaped dielectric ring is proposed [113]
for millimeter-wave frequency applications. The combination of microstrip and elliptical
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dielectric ring is responsible for high gain and an inverted T-shaped slot is responsible
for CP. The fine-tuning of the AR bandwidth and gain is possible, and can be achieved by
ring-shaped DR. The maximum impedance bandwidth of 12% and an AR bandwidth of
10% with a measured gain of over 9dBi is obtained over the entire frequency band.

A modified cross-slot is concurrently acting as a radiator as well as the feeding element
to the DR antenna. The resonances of modified cross-slot and DR elements are combined
to form a wideband CP radiated hybrid DRA [114] with a 3 dB AR bandwidth of 24.6%
(2.25–2.88 GHz) and 10 dB return-loss bandwidth of 28.6% (2.19–2.92 GHz). A hybrid
structure is formed, combining a stair-shaped DR element with an open-ended slot [115]
on the ground plane, which is reported for wideband CP radiation. The open-ended slot
on the ground plane is responsible for a lower frequency of resonance (at 4.5 GHz) and,
in turn, a wide axial-ratio bandwidth is obtained. By varying different parameters of
the hybrid structure, a wide impedance bandwidth of 71.7% (3.844–8.146 GHz) and an
AR band-width of 46% (4.15–6.63 GHz) is obtained. A simple feed network along with
two vertical strip-lines are arranged [116] as shown in Figure 3 to produce orthogonal
fields of hybrid HEx

11$ and HEy
11$ modes (presented in Figure 4) in the cylindrical DR

element for wide CP radiation with AR bandwidth of 24.6% (2750–3520 MHz). The length
of the vertical strip-lines along the cylindrical surface of the DRA controls the LHCP and
RHCP radiation. A circularly polarized multiple inputs multiple output (MIMO) hybrid
antenna [117] is formed by a parasitic patch, and the conformal strips along the sidewalls
of two identical rectangular DR elements are shown in Figure 5. The single element of
the proposed structure produces linear polarization at the desired frequency, and if both
the elements are arranged diagonally, CP fields are created with two orthogonal modes.
The AR bandwidth offered by the MIMO structure is 20.82% in the frequency band of
3.58–4.40 GHz. An electromagnetically coupled hybrid antenna comprises a hexagonal
split-ring slotted hexagonal patch loaded, with a parasitic rectangular dielectric block at the
radiating edge of the patch for wide-band CP radiation applications [118]. The performance
analysis and features of wide-band DR-based hybrid antennas are summarized in Table 2.
By considering the relative permittivity (εr) of the dielectric resonator in the range 9 to 80,
the effective height (Heff) of hybrid DR antenna can be in the range 0.0118λ < h < 0.034λ,
while sustaining 10 dB RL and 3 dB AR bandwidths to the higher values. The ground
plane dimensions determine the overall volume hybrid DR antenna. The size of the ground
plane was chosen appropriately and not to reduce the whole volume of the antenna. The
dimensions of the ground plane are kept as low as 0.37λ in the reported literature, and
it can be minimized, if the antenna designer is ready to compromise bandwidth and
gain performance.

Sensors 2021, 10, x FOR PEER REVIEW 8 of 18 
 

 

Four sequentially 
rotated arc-shaped slots 

etched in the ground plane 
to feed the DRA [112] 

Due to the arc-shaped slots 0.8λ × 0.8λ × 0.118λ 1.22- 1.71 490 380 3 

Aperture coupled microstrip 
loaded with an elliptical ring 

dielectric resonator [113] 

A reversed 
T-shaped coupling slot 

6λ × 4λ × 0.252λ 55.6–65 9400 2000 9 

Rectangular DRA with mod-
ified slot and microstrip line 

[114] 
Modified cross-slot 0.43λ × 0.43λ × 0.29λ 2.19–2.92 730 630 5 

An open-ended slot with 
Stair-shaped DR loaded on 

the ground [115] 

Combination of Stair-shaped DR 
and Open-ended slot on the 

ground plane with an offset feed 
0.46λ × 0.46λ × 0.07λ 3.844–8.146 4302 2480 3.9 

Cylindrical DR loaded on L 
shaped microstrip line with 
vertical strips-lines attached 

to DR [116] 

Dual vertical microstrip lines with 
L-shaped microstrip-line arranged 
perpendicularly to excite orthogo-

nal modes 

0.59λ × 0.59λ × 0.26λ 2.82–3.83 1010 770 5.5 

A rectangular DRA with 
conformal metal strip [117] 

Employment of parasitic patch at 
an optimized distance beside the 
conformal metal strip of the two 

identical rectangular DRAs to 
generate CP 

0.46λ × 0.46λ × 0.34λ 3.50–4.95 1450 820 6.2 

 
Figure 3. (a) 3D-view and (b) Top-view of hybrid structure (Reference [116]). 

 
(a) 

Figure 3. (a) 3D-view and (b) Top-view of hybrid structure (Reference [116]).



Sensors 2021, 21, 4100 8 of 18

Sensors 2021, 10, x FOR PEER REVIEW 8 of 18 
 

 

Four sequentially 
rotated arc-shaped slots 

etched in the ground plane 
to feed the DRA [112] 

Due to the arc-shaped slots 0.8λ × 0.8λ × 0.118λ 1.22- 1.71 490 380 3 

Aperture coupled microstrip 
loaded with an elliptical ring 

dielectric resonator [113] 

A reversed 
T-shaped coupling slot 

6λ × 4λ × 0.252λ 55.6–65 9400 2000 9 

Rectangular DRA with mod-
ified slot and microstrip line 

[114] 
Modified cross-slot 0.43λ × 0.43λ × 0.29λ 2.19–2.92 730 630 5 

An open-ended slot with 
Stair-shaped DR loaded on 

the ground [115] 

Combination of Stair-shaped DR 
and Open-ended slot on the 

ground plane with an offset feed 
0.46λ × 0.46λ × 0.07λ 3.844–8.146 4302 2480 3.9 

Cylindrical DR loaded on L 
shaped microstrip line with 
vertical strips-lines attached 

to DR [116] 

Dual vertical microstrip lines with 
L-shaped microstrip-line arranged 
perpendicularly to excite orthogo-

nal modes 

0.59λ × 0.59λ × 0.26λ 2.82–3.83 1010 770 5.5 

A rectangular DRA with 
conformal metal strip [117] 

Employment of parasitic patch at 
an optimized distance beside the 
conformal metal strip of the two 

identical rectangular DRAs to 
generate CP 

0.46λ × 0.46λ × 0.34λ 3.50–4.95 1450 820 6.2 

 
Figure 3. (a) 3D-view and (b) Top-view of hybrid structure (Reference [116]). 

 
(a) 

Sensors 2021, 10, x FOR PEER REVIEW 9 of 18 
 

 

 
(b) 

Figure 4. Representation of simulated and measured (a) S11 (b) AR plots, along with orthogonal 
modes. (Reference [116]). 

 
(a) 

 
(b) 

Figure 5. Diagonally arranged two-element multiple inputs multiple output (MIMO) hybrid struc-
ture (a) Side view, (b) Top view (Reference [117]). 

4.2. Multi-Functional Hybrid Antennas with CP Radiation 
A combination of ring-shaped microstrip and cylindrical DR elements has been de-

signed for dual functional applications. In this particular configuration, an independently 
operated microstrip-based annular ring and cylindrical dielectric resonators are used to 
form a hybrid structure [119], to produce dual CP-radiated bands at 4.2 GHz and 6.4 GHz, 
respectively, with the return-loss bandwidth higher than 6% at each band. By short-cir-
cuiting the annular ring to the ground, the perturbation of radiation patterns can be 
avoided after assembling both the resonators significantly. However, the shift in the res-
onant frequency due to the short circuit can be adjusted by modifying the annular ring 
dimensions. A dual CP hybrid DR antenna is formed [120] by introducing a zonal slot cut 
on a conducting-cavity, along with a DR element. The lower and upper bands are 

Figure 4. Representation of simulated and measured (a) S11 (b) AR plots, along with orthogonal
modes. (Reference [116]).

Sensors 2021, 10, x FOR PEER REVIEW 9 of 18 
 

 

 
(b) 

Figure 4. Representation of simulated and measured (a) S11 (b) AR plots, along with orthogonal 
modes. (Reference [116]). 

 
(a) 

 
(b) 

Figure 5. Diagonally arranged two-element multiple inputs multiple output (MIMO) hybrid struc-
ture (a) Side view, (b) Top view (Reference [117]). 

4.2. Multi-Functional Hybrid Antennas with CP Radiation 
A combination of ring-shaped microstrip and cylindrical DR elements has been de-

signed for dual functional applications. In this particular configuration, an independently 
operated microstrip-based annular ring and cylindrical dielectric resonators are used to 
form a hybrid structure [119], to produce dual CP-radiated bands at 4.2 GHz and 6.4 GHz, 
respectively, with the return-loss bandwidth higher than 6% at each band. By short-cir-
cuiting the annular ring to the ground, the perturbation of radiation patterns can be 
avoided after assembling both the resonators significantly. However, the shift in the res-
onant frequency due to the short circuit can be adjusted by modifying the annular ring 
dimensions. A dual CP hybrid DR antenna is formed [120] by introducing a zonal slot cut 
on a conducting-cavity, along with a DR element. The lower and upper bands are 

Figure 5. Diagonally arranged two-element multiple inputs multiple output (MIMO) hybrid structure
(a) Side view, (b) Top view (Reference [117]).



Sensors 2021, 21, 4100 9 of 18

Table 2. Performance analysis of wideband DR-based CP hybrid antennas.

HDRA Description
[Reference] CP is Achieved by

Volume of the HDRA
(in Terms of λ at fr)

(L ×W × Heff)

fr (or) CP
Bands of

Resonance
(GHz)

10 dB RL
Bandwidth
(MHz) or %

3 dB AR
Bandwidth
(MHz) or %

Gain
(dBic)

Four dielectric inserts
under the patch and
coupled with cross

slot [109]

Dielectric inserts and square
patch coupled through

cross-slot
0.67λ × 0.67λ × 0.075λ L-band 7.8 % 2.5% 9.1

A strip-line fed
rectangular DRA with
top-loaded rectangular

patch [110]

Rectangular DR element
loaded with a rectangular

patch with various
aspect ratios

0.37λ × 0.37λ × 0.048λ 2170–2270 100 25 or 1.1% 3.3

Cylindrical DRA and
ground plane having four

slots fed through
microstrip line feed

network [111]

Having a feeding network
consisting of four microstrip
lines; wherein the four slots

are constructed and
geometrically arranged to

ensure CP

0.8λ × 0.8λ × 0.12λ 1.08–1.82 740 600 5

Four sequentially
rotated arc-shaped slots

etched in the ground
plane to feed the

DRA [112]

Due to the arc-shaped slots 0.8λ × 0.8λ × 0.118λ 1.22- 1.71 490 380 3

Aperture coupled
microstrip loaded with an

elliptical ring dielectric
resonator [113]

A reversed
T-shaped coupling slot 6λ × 4λ × 0.252λ 55.6–65 9400 2000 9

Rectangular DRA with
modified slot and

microstrip line [114]
Modified cross-slot 0.43λ × 0.43λ × 0.29λ 2.19–2.92 730 630 5

An open-ended slot with
Stair-shaped DR loaded

on the ground [115]

Combination of
Stair-shaped DR and

Open-ended slot on the
ground plane with an

offset feed

0.46λ × 0.46λ × 0.07λ 3.844–8.146 4302 2480 3.9

Cylindrical DR loaded on
L shaped microstrip line
with vertical strips-lines

attached to DR [116]

Dual vertical microstrip
lines with L-shaped

microstrip-line arranged
perpendicularly to excite

orthogonal modes

0.59λ × 0.59λ × 0.26λ 2.82–3.83 1010 770 5.5

A rectangular DRA with
conformal metal

strip [117]

Employment of parasitic
patch at an optimized

distance beside the
conformal metal strip of the

two identical rectangular
DRAs to generate CP

0.46λ × 0.46λ × 0.34λ 3.50–4.95 1450 820 6.2

4.2. Multi-Functional Hybrid Antennas with CP Radiation

A combination of ring-shaped microstrip and cylindrical DR elements has been de-
signed for dual functional applications. In this particular configuration, an independently
operated microstrip-based annular ring and cylindrical dielectric resonators are used
to form a hybrid structure [119], to produce dual CP-radiated bands at 4.2 GHz and
6.4 GHz, respectively, with the return-loss bandwidth higher than 6% at each band. By
short-circuiting the annular ring to the ground, the perturbation of radiation patterns can
be avoided after assembling both the resonators significantly. However, the shift in the
resonant frequency due to the short circuit can be adjusted by modifying the annular
ring dimensions. A dual CP hybrid DR antenna is formed [120] by introducing a zonal
slot cut on a conducting-cavity, along with a DR element. The lower and upper bands
are achieved by zonal slot and DR elements positioned on the side-wall and top of the
cavity wall. An L-shaped probe is used to feed the zonal slot antenna in the cavity and
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an indirect cross-coupling slot is incorporated to feed the DR element. Two even cuts are
introduced to achieve CP radiation fields, and another cut is introduced in the zonal slot
to obtain the desired AR. Regular unequal lengths of cross-slots under the DR element
introduces another perpendicular degenerated mode for CP fields. A cross-slot is used as
an aperture feed and as a radiator to produce dual-CP-bands [121]. A combination of dual-
C-shaped microstrips and two DR elements are arranged in a Z-shape, forming a hybrid
structure [122] to achieve multi-functional bands with CP radiation. Five bands, including
one CP band, are produced in the 1 to 9 GHz frequency range. The TE01δ mode is produced
due to a dual C-shaped patch and an equipoised top and bottom cylindrical DR elements
responsible for orthogonal fields result in CP radiation. The performance characteristics of
multi-functional DR-based hybrid antennas are presented comprehensively in Table 3. The
feed, a combination of radiating elements in the hybrid structure and placement and orien-
tation of the DR element is responsible for producing multi-functional resonant bands. As
reported in Table 3, the gain in all functional bands depends on the appropriate dimension
of the ground plane and the effective height of the hybrid DR antenna.

Table 3. Performance analysis of multi-functional DR-based CP hybrid antennas.

HDRA Description
[Reference] CP is Achieved by

Volume of the
HDRA (in Terms
of λ at Lower fr)
(L ×W × Heff)

fr or CP Bands of
Resonance

(GHz)

10 dB RL
Bandwidth

(MHz)

3 dB AR
Bandwidth

(MHz)
Gain (dBi)

A zonal-slot antenna cut
onto a conducting cavity

is combined with
rectangular DRA [120]

Zonal and cross slots with
L-Probe feed ensures CP

0.275λ × 0.275λ
× 0.26λ

2.34–2.53, and
4.46–5.34 190, and 880 80, and 180 5.80 and

4.29

A cross-slot acts as both
the feeding structure of

the DRA and an effective
radiator [121]

Cross slot as aperture
coupled feed and radiator

0.475λ × 0.475λ
× 0.098λ

1.80–2.07, and
2.57–2.92 270, and 350 60, and 100 4.7, and 5.6

Consists of a Z-shaped
CDRA along with a dual

C-shaped patch [122]

Offset between upper
and lower

CDRAs is responsible
for CP

0.22λ × 0.22λ ×
0.049λ 7.2–8.5 1300 500 2.5, 3.2, 3.5,

4 and 6

4.3. Dual-Sense Polarized Hybrid Antennas

Earlier, a combination of monopole and ring DR antennas are ensembled to produce
wide bandwidth with Omni-directional patterns [123–125]. Similar designs can also have
multiple bands with orthogonal polarizations with coax-feed and dual-feed techniques,
respectively. Later, a few more hybrid antennas with a combination of microstrip and
DR elements are proposed for multi-functional dual-sense polarizations, which include:
a circular-ring patch with a reversed L-strip [126]; an irregular square-ring patch loaded
DR element [127]; a tapered microstrip line feed; modified unequal sides of hexagonal
DR loaded with the square ring [128] (shown in Figure 6); an L-shaped line stub feed
incorporated in an irregular rectangular slot [129]; and a line feed hybrid DR antenna [130]
with top-loaded inter-digital structure. The performance characteristics of dual-sense
polarized DR-based hybrid antennas are summarized in Table 4. The combination of
feeding mechanism and patch design beneath or on top of the DR element, and the shape
of the DR element are responsible for multi-sense polarized radiations.
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Table 4. Performance analysis of dual-sense polarized DR-based hybrid antennas.

HDRA Description [Reference]
Volume of the HDRA (in

Terms of λ at Lower fr)
(L ×W × Heff)

Dual-Sense
Polarized

Bands

fr (GHz) or
CP Band of
Resonance

10 dB RL
Bandwidth

(MHz)

3 dB AR
Bandwidth

(MHz)

Gain
(dBi)

A ring-shaped patch along with an
inverted L-strip and cylindrical

DRA [126]
0.475λ × 0.475λ × 0.098λ LP and CP 2.9–3.93 1030 250 4

Comprises of an asymmetrical
square ring-shaped printed line

and a rectangular DR. The square
ring is responsible for creating

dual-sense radiation [127]

0.68λ × 0.57λ × 0.11λ LHCP and
RHCP 3.28–5.78 2500 470 and 300 3.1

Modified hexagonal DR is
top-loaded with a square

microstrip ring [128]
0.44λ × 0.51λ × 0.152λ LHCP and

RHCP

1.75–2.03,
2.23–2.96, and

3.65–3.76

280, 730 and
110

70, 150 and
80

5, 5.28
and 2.36

The asymmetric-slot radiator is
fed by an L-shaped stub with the

CPW line combined with
rectangular-DR. Dual sense CP is
obtained using a rectangular-DR
over asymmetric rectangular-slot
radiator with an L-shaped feed

line [129]

0.446λ × 0.446λ × 0.149λ LHCP and
RHCP 1.75–2.73 980 860 5.5

5. Formulation to Find Resonance of Various Modes Associated with Hybrid DRAs

In this section, a summary of empirical formulas used in the literature to find the
fundamental mode of resonant frequency and various hybrid modes for hybrid rectangular
and cylindrical DRAs are given in Equations (6)–(16).
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For hybrid rectangular DRA [131], the analytical solution of fundamental resonance is
given in Equations (6)–(8).

fres =
C

2π
√∈r, RDR

√
kx 2 + ky 2 + kz 2 (6)

kx a
2

= tan−1

√ (
1− 1
∈r, RDR

)(
k0

kx

)2
− 1 (7)

k0 =
2 π

λ0
=

2π fres

C
, ky =

mπ
b

, kz =
nπ

2d
(8)

The “a”, “b”, and “d” are the dimensions of the rectangular DRA designated as length,
width, and height, respectively. Similarly, to find the resonant hybrid (TE01δ and HE11δ)
modes in hybrid cylindrical DRA, the following Equations (9) and (10), respectively, are
used along with the effective permittivity and height Equations (11) and (12).

fr, TE01δ =
2.327c

2πd
√
∈r,e f f +1

1.0 + 0.2123
d

He f f
− 0.00898

(
d

He f f

)2
 (9)

fr, HE11δ =
6.321c

2πd
√
∈r,e f f +2

0.27 + 0.36
d

2He f f
+ 0.02

(
d

2He f f

)2
 (10)

If a multi-segmented antenna is considered, the resonance frequency will be affected
by the layers of the substrate (HS) and dielectric (HD) materials. Accordingly, the effective
height (Heff), and permittivity (∈r,e f f ) [132,133] of the hybrid CDRA are calculated by
Equations (11) and (12):

He f f = HDR + HSub (11)

Similarly, the effective relative permittivity ∈r,e f f in Equation (8) is given by:

∈r,e f f=
He f f

HDR
∈r,CDRA

+ HSub
∈r,sub

(12)

where “d” (D/2) is the radius of the cylindrical DR element.
The mathematical prediction of other hybrid radiating modes has been discussed

qualitatively in [134], and they are calculated by Equations (13)–(16). The higher-order
modes of HEM11δ mode are HEM11δ+1 and HEM13δ. In the case of a cylindrical structure,
the predicted resonant frequencies for these higher-order modes are given by the first-order
Bessel function [135] and given by Equations (13) and (14). Guha et al. proposed [136] a
new hybrid mode of HEM12δ (Equation (15)) and predicted the resonance using HEM11δ
mode and aspect ratio of CDRA. The higher order mode of HEM12δ is HEM14δ, and it is
given in Equation (16).

fr, HEM11δ+1 = 1.25× fr, HEM11δ (13)

fr, HEM13δ = 1.5× fr, HEM11δ+1 +
(

fr, HEM11δ+1 − fr, HEM11δ

)
(14)

fr, HEM12δ = 1.8× fr, HEM11δ (15)

fr, HEM14δ = 1.25× fr, HEM12δ (16)

6. Future Scope and Challenges

Based on the review, several techniques that can be implemented in the future are
listed below to achieve wideband, multi-band, high gain, and circularly polarized hybrid
DR-based antennas.
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• Employing metamaterial concepts and magnetic LC resonators on the metallic patch,
considering dielectric-loaded patch and metallic patch loaded on top of dielectric antennas.

• Various available fractal concepts can be employed on the patch as well as the DR
elements particularly to achieve multifunctional bands of resonance.

• Existing bandwidth and gain enhancement techniques can be applied for the combined
form of hybrid DR-based antennas.

• A combination of a metallic waveguide, microstrip, and DR antennas with a proper
feeding mechanism can be developed for future radar applications.

Implementing multi-functional CP bands is a challenge for hybrid dielectric resonator
antennas with desired gain over all the resonances.

7. Conclusions

A brief study and evolution of circularly polarized DR-based hybrid antennas and
design challenges are discussed in this article. Various methodologies and insights into
obtaining wide bands and multi-functional bands with CP radiation using DR-based hybrid
antennas are addressed and reviewed. A perspective analysis and study of DR antennas
with various CP radiation methods are presented. The empirical formulas that are being
used and correlated in the open literature to identify different resonant modes, including
the fundamental mode of resonance, are addressed in the process of designing various
hybrid DR antennas. Table 1 presents the past review highlights and state-of-the-art in DR
antennas. Tables 2–4 present the various methods of CP radiation in designing wideband,
multi-band, and dual sense polarized DR-based hybrid antennas. Based on this review,
a new line of work is highlighted with important future challenges and possibilities. The
qualitative and quantitative information given in this review article is useful for engineers
who are working on circularly polarized wideband and multiband hybrid DRAs.
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