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Abstract: Infrared images of power equipment play an important role in power equipment status
monitoring and fault identification. Aiming to resolve the problems of low resolution and insufficient
clarity in the application of infrared images, we propose a blind super-resolution algorithm based on
the theory of compressed sensing. It includes an improved blur kernel estimation method combined
with compressed sensing theory and an improved infrared image super-resolution reconstruction
algorithm based on block compressed sensing theory. In the blur kernel estimation method, we
propose a blur kernel estimation algorithm under the compressed sensing framework to realize the
estimation of the blur kernel from low-resolution images. In the estimation process, we define a new
Lw norm to constrain the gradient image in the iterative process by analyzing the significant edge
intensity changes before and after the image is blurred. With the Lw norm, the salient edges can be
selected and enhanced, the intermediate latent image generated by the iteration can move closer
to the clear image, and the accuracy of the blur kernel estimation can be improved. For the super-
resolution reconstruction algorithm, we introduce a blur matrix and a regular total variation term
into the traditional compressed sensing model and design a two-step total variation sparse iteration
(TwTVSI) algorithm. Therefore, while ensuring the computational efficiency, the boundary effect
caused by the block processing inside the image is removed. In addition, the design of the TwTVSI
algorithm can effectively process the super-resolution model of compressed sensing with a sparse
dictionary, thereby breaking through the reconstruction performance limitation of the traditional
regularized super-resolution method of compressed sensing due to the lack of sparseness in the
signal transform domain. The final experimental results also verify the effectiveness of our blind
super-resolution algorithm.

Keywords: power equipment; infrared image; compressed sensing; blind super-resolution

1. Introduction

Infrared thermal imaging technology is an important technical means to ensure the
safe and reliable operation of power equipment [1,2]. With the advent of the Internet of
Things era and the application of big data, 5G communications, cloud computing and
other technologies, online monitoring of equipment through infrared sensors has become
an inevitable trend for the future development of power grids. The infrared image of the
equipment collected by the sensor is transmitted to the control center and database, and
various intelligent algorithms are based on this to accurately evaluate the operating status
of the equipment. Large-scale installation of infrared sensors will bring many problems,
such as data storage, installation costs, and so on. This makes it difficult to generally install
high-precision infrared sensors in the power grid. However, the temperature change speed
of power equipment is much slower than the change speed of its electrical parameters,
so its infrared image collection frequency does not need to be too high, and its collection
period can reach several minutes. A sufficiently long acquisition period provides an
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opportunity for real-time processing of infrared images through background algorithms.
We can use background algorithms to improve the quality of infrared images within a
collection interval of several minutes, where the reconstructed result image is used for
display and analysis, and the original image is used for storage. This mode of collecting
low-quality images on-site and reconstructing high-quality images in the background can
greatly reduce the cost of sensor installation and reduce the pressure of data storage. The
super-resolution technology that has emerged in recent years has provided us with new
ideas for establishing the above-mentioned model.

Super-resolution (SR) aims to reconstruct a high-quality image x from its degraded
measurement y [3]. SR is a typical ill-posed inverse problem and it can be generally
modelled as

y = (h⊗ x) ↓ +η (1)

where h is a blur kernel, ⊗ denotes the convolution operator, and ↓ the down-sampling
operator. According to the number of input images, SR technology is divided into single
image super-resolution (SISR) technology and multiframe image super-resolution (MISR)
technology. SISR technology is relatively difficult to implement due to the limited original
information. However, an excessively high image acquisition frequency will put great
pressure on the data transmission channel and storage space. Therefore, the infrared image
acquisition cycle of power equipment is generally longer, thus making it impossible to
continuously obtain multiple infrared images of the same power equipment in a very short
time. As the conditions for adopting MISR technology are not available, the focus of this
paper is on SISR technology. The problem is inherently ill-posed as a single low-resolution
image can map to several high-resolution images. In the existing technology to solve this
problem, interpolation is the most classic reconstruction method, including bilinear, bicubic,
and spline interpolation methods. The principle of the interpolation method is simple and
the amount of calculation is small, but the reconstructed image will have problems such as
loss of detail and blurred texture. In order to resolve the above problems, many improved
interpolation methods have been proposed, such as displacement field interpolation,
wavelet theory interpolation, and regression model interpolation [4–6]. In addition to
interpolation methods, with the development of artificial intelligence technology in recent
years, image super-resolution methods based on sample learning have become a research
hotspot. In 2002, Freeman [7] proposed obtaining the mapping relationship between
LR images and HR images through machine learning so as to maximize the posterior
probability of HR images when the LR image sequence is known. In 2010, Yang et al. [8]
proposed the acquisition of a sparse isomorphic high/low-resolution dictionary through
joint training of LR images and HR images. Therefore, the corresponding high-resolution
image block can be obtained by inputting the low-resolution image block. Since then, a large
number of super-resolution algorithms based on sample learning have emerged [9,10]. The
learning-based super-resolution method has a strong ability to restore image information,
but a large number of high-definition images and high-performance hardware equipment
support are required in the early model training. In addition, the reconstructed HR
image may have false textures. This defect will adversely affect operations such as image
segmentation, target recognition, and fault location in the process of infrared monitoring
and diagnosis. Therefore, researchers still need to overcome certain difficulties in applying
learning-based super-resolution technology to infrared images of power equipment. In
addition to interpolation methods and learning methods, reconstruction-based methods are
also a common type of SR method. Pejman et al. [11] proposed an iterative back-projection
method, which calculates and compensates for the difference between a low-resolution
image and an observed image to obtain a high-resolution reconstructed image. X. Zhang
et al. [12] proposed a method to establish a nonlocal total variation model based on
the nonlocal self-similarity of the image to achieve super-resolution. In order to better
process the local information of an image, Li et al. [13] used the self-similarity of the
local structure in natural images and proposed the concept of turning to kernel regression
total variation. Then, the nonlocal regular total variation term is used as a supplement to
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form its super-resolution reconstruction model. Although this type of SR method based
on internal self-similarity of images can often achieve better application effects when
processing images with repeated information, it has poor performance when applied to
images without self-similar structures. In [14], the authors proposed a SR method based on
Tikhonov regularization. However, because the contour of the reconstruction result was
too smooth, the researchers further improved it. For example, Huo et al. [15] introduced the
TV regularization term into the Tikhonov regularization model, and achieved better results
by adjusting the intensity of different regularization terms through adaptive control. In
addition, the method based on maximum a posteriori probability (MAP) has also achieved
good application effects in the field of super-resolution by introducing different prior
information to the model. For example, Liu et al. [16] improved both the fidelity and
regularization terms of the model based on the MAP theory. They used semiquadratic
estimation to adaptively select the error norm for the fidelity term, and proposed a new
regularization method based on adaptive bilateral total variation for the prior information.
This method has achieved good results in denoising and edge protection. In addition to the
above methods, because compressed sensing (CS) can accurately reconstruct signals at a
sampling frequency much lower than that for Nyquist’s sampling law, it has been initially
applied in the field of SR. However, as its theoretical application is restricted by sampling
conditions, there are few regularized compressed sensing SR methods. At present, SR
research based on compressed sensing focuses on the construction of isomorphic sparse
dictionaries. Through the establishment of a high- and low-resolution image symbiosis
model, detailed information is “added” to the LR image to be reconstructed. Although this
method has a better visual effect, it also requires a lot of HR images for pretraining, and
the problem of false texture is unavoidable.

However, most of the above-mentioned super-resolution methods assume that there
is no blur in the imaging process or that the blur kernel is known. According to the actual
imaging model, it is known that the above two assumptions are not reasonable. In actual
situations, blur often exists, and the blur kernel is generally unknown, or only partial prior
information is known [17,18]. Therefore, in the SR reconstruction process, it is necessary to
estimate the blur kernel through the existing LR image so that the performance loss of the
SR method can be reduced. This type of method is known as blind super-resolution, and
the research on this is relatively limited. Shao et al. [19] proposed an adaptive heavy-tail
image prior, which is a normalized sparseness measure and a generalized integral of the
relative total variation. Finally, the high-resolution image and blur kernel are estimated
through alternate iterations. Qian et al. [20] first deblurred a low-resolution image and then
used the weighted cost function for SR to obtain a high-resolution image. Kim et al. [21]
proposed a low-complexity adaptive SISR method. Based on the relationship between
the input image and its low-resolution version, this method adaptively determines the
intensity of the high-frequency components to be added, thereby estimating the missing
high-frequency details in the upsampled image to improve the quality. Michaeli et al. [17]
used the recursion of similar structures in an image to realize the estimation of the blur
kernel. Most blind super-resolution methods are based on accurate estimation of the blur
kernel. According to the existing research, accurate estimation of the blur kernel largely
depends on the selection of the significant edges of the image, which is reflected in many
blind deblurring methods [22–24]. However, although the extraction of salient edges has
attracted the attention of researchers, the existing methods have not paid attention to the
changes in the distribution of salient edges before and after the image is blurred and used.

Based on the above discussion, we propose a maximum a posterior (MAP)-based blind
super-resolution algorithm by using the CS theory. First, the basic CS super-resolution
model is combined with the blind image deblurring theory, and a blur kernel estimation
algorithm under the CS framework is proposed, thereby realizing the estimation of the
blur kernel from the low-resolution image. In the estimation process, through the analysis
of the significant edge intensity changes before and after the image is blurred, a new Lw
norm is defined to constrain the gradient image in the iterative process. In this way, the
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salient edges can be selected and enhanced, the intermediate latent image generated by the
iteration can move closer to the clear image, and the accuracy of the blur kernel estimation
can be improved. After completing the blur kernel estimation, a corresponding blur matrix
is generated, and the blur matrix is added to the CS original model to construct a CS super-
resolution model based on the principle of image degradation. The sparse representation of
the infrared image in the model is realized by a specific sparse dictionary about the infrared
image of the power equipment obtained using the high-dimensional dictionary training
method. Finally, in the SR reconstruction process, in order to improve the computational
efficiency, the block compressed sensing (BCS) method is used to reconstruct the LR infrared
image by blocks. Aiming to resolve the “blocking effect” problem in the BCS method, a two-
step total variation sparse iteration (TwTVSI) algorithm is designed. While ensuring the
computational efficiency, the boundary effect caused by the block in the image is removed
and the design of the TwTVSI algorithm can effectively process the CS super-resolution
model with a sparse dictionary, thus breaking through the reconstruction performance
limitation of the traditional regularized CS super-resolution method due to the lack of
sparsity in the signal transform domain. The final experimental results also verify the
effectiveness of our blind super-resolution algorithm.

2. CS Blind SR Model Based on the Principle of Image Degradation

As a brand-new signal sampling theory, CS enables signal reconstruction to break
through the Nyquist sampling law and greatly reduces the number of sampling points
required for accurate signal recovery [25]. The basic model is as follows:

y = Φx (2)

where x ∈ Rn is a high-dimensional signal; Φ is a sampling matrix; and y ∈ Rm. is a
low-dimensional sampling signal, n � m. If the signal x is a sparse signal, its sparsity k
satisfies k > 2m, and the sampling matrix Φ satisfies the restricted isometry property (RIP)
criterion [26], the signal can be accurately reconstructed.

The image is recorded as a two-dimensional signal X, which can also be converted
into a one-dimensional signal x after expanding its pixel points by column. Although the
image signal x is not sparse in the spatial domain, the sparse transformation matrix Ψ can
be added to perform sparse transformation on x when the CS theory is used to reconstruct
the signal; therefore, the model can be as follows:

y = ΦΨx̃ = Ax̃ (3)

where x̃ is a sparse signal, x = Ψx̃. The matrix Ψ can be an artificially constructed
over-complete dictionary or a sparse basis such as Fourier basis, cosine basis, wavelet basis,
etc. A = ΦΨ is the sensing matrix; if A satisfies the RIP criterion, the sparse signal x̃ can
be reconstructed by y, and x can be obtained by calculating Ψx̃.

Considering the cost of sensors and the pressure of data transmission, it is difficult
to directly obtain clear, HR infrared images for condition monitoring and fault diagnosis
of power equipment. Therefore, it is necessary to use SR technology on the LR images
collected by low-precision sensors. Then, the input signal y will be a low-resolution
image signal, not a random sampling signal, so the sampling matrix Φ cannot use random
sampling matrices such as random Gaussian matrices and random Bernoulli matrices
that have been proven to be universal. Φ needs to be constructed according to the image
degradation process, and the image degradation model is as follows:

Y = (h⊗ X) ↓ +η (4)

where Y is the LR image; X is the HR image; h is the blur kernel; ⊗ denotes the convolution
operation; ↓ is the downsampling process, and its corresponding sampling matrix Φ is
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mostly a cubic interpolation downsampling matrix or point sampling matrix; and η is
the noise.

It can be seen from the image degradation model that Φ is a nonrandom sampling
matrix, and its corresponding sensing matrix A = ΦΨ has a low degree of satisfaction
with the RIP criterion. When directly using the Formula (4) model for super-resolution
reconstruction, the visual quality of the reconstructed image is poor. In order to improve
the quality of image reconstruction, we introduce the principle of image degradation into
the compressed sensing model to bring the model closer to the actual image acquisition
process and thus obtain the following:

y = CHDx̃ (5)

where C is the sampling matrix; H is the blur matrix constructed according to the blur
kernel, h; and D is the sparse dictionary. The construction method of H is introduced in
Section 3. At this time, the sensing matrix A = CHD. After experimental verification, the
blur matrix is added to the model, which enables deconvolution and deblurring during SR
reconstruction of the image, thus achieving the effect of sharpening high-resolution images
and enhancing their detailed edges and contours. This is proven in Section 5.

3. Blur Kernel Estimation and Construction of Blur Matrix
3.1. Blur Kernel Estimation

Since the blurring process is common during image acquisition and is generally
unknown [17,18], it is necessary to estimate the blur kernel h according to the collected
LR infrared images so as to construct an accurate blur matrix H. Therefore, we designed
a blur kernel estimation method based on the principle of compressed sensing and prior
knowledge of image gradient to obtain an accurate h.

3.1.1. Blur Kernel Estimation Model Based on Image Gradient Prior

The extraction effect of the significant edges of an image is directly related to the
accuracy of the blur kernel estimation. The current common methods mostly use the L0
norm to constrain the image gradient to obtain the significant edge that is conducive to
the blur kernel estimation [24,27–29]. However, these methods all aim to remove the small
edges that hinder the estimation of the blur kernel and do not consider the changing law of
the edge distribution before and after the image is blurred. Based on prior knowledge of
the gradient change rule before and after the image is blurred, we designed corresponding
constraints to promote the intermediate latent image in the iterative process to move closer
to the clear image, thereby improving the accuracy of the blur kernel estimation.

The gradient distribution of an infrared image has strong sparsity both before and
after blurring. However, we noticed that the gradient value of the image generally shows a
decreasing trend in the process of blurring, which is especially obvious in the part of the
large gradient value. Through the gradient operators [−1, 1] and [−1, 1]T convolving 500
infrared images of power equipment before and after blurring, we obtained the distribution
of the absolute values of the gradient of the clear and blurred images in the row direction
and column direction, respectively, as shown in Figure 1a,b.

In simple terms, this phenomenon is caused by the weighted summation of pixel
values that occur in the blurring process. From Figure 2a,c, it is also obvious that for a
certain device image, after the infrared image is blurred, the edge contour is no longer clear,
which is reflected in the gradient value—i.e., its distribution is closer to zero. According
to the statistics of the absolute value of the gradient in the row direction of the grayscale
image, there are many large gradient values exceeding 100, as shown in Figure 2b, and
after blurring, the overall gradient value is distributed below 100, as shown in Figure 2d.
This also causes the significant edges corresponding to the large gradient to be significantly
weakened, which adversely affects the estimation of the blur kernel.
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In order to eliminate the small gradients while enhancing the significant edges of the
blurred infrared image so that the intermediate latent image in the reconstruction process
can move closer to the clear infrared image, and to improve the accuracy of the blur kernel
estimation, a new calculation method was defined as follows:

X̂ = arg min
X

α1‖X− B‖2
2 + α2‖X‖w (6)
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‖X‖w =
M

∑
m = 1

N

∑
n = 1

W(Xm,n) (7)

W(Xm,n) =

{
−|Xm,n|, |Bm,n| > α2

2α1

|Xm,n|, otherwise
(8)

where m and n are the row and column coordinates of the matrix, respectively; M and N
represent the number of rows and columns of the matrix, respectively; σ1 and σ2 are
weight coefficients; ‖·‖w is called the Lw norm, and its operation method is shown in
Formulas (6)–(8). We use the Lw norm instead of the L0 norm to constrain the image
gradient to extract and enhance the significant edges of the image in the process of blur
kernel estimation.

According to the MAP theory, the blur kernel estimation objective function can be
expressed as:

x̂, ĥ = arg min
x,h
‖y− Ax‖2

2 + υxgx(x) + υhgh(h) (9)

where ‖y− Ax‖2
2 is the data fidelity item; gx(x) is the regular term introduced based on

the prior information of the image, gh(h) is the regular term introduced based on the prior
information of the blur kernel. The specific model of blur kernel estimation can be obtained:

(X̂, ĥ) = arg min
X,h
‖Y− Sl(h⊗ X)Sr‖2

2 + λ‖∇X‖w + γ‖h‖2
2 + µ‖D(X)‖0 + δ‖ΨTX‖1 (10)

where λ, µ, δ, and γ are weighting coefficients. The first term of the equation is the data
fidelity term, which is used to ensure that there is a correspondence between the inter-
mediate latent image X generated by the iteration and the LR blurred image Y. The data
difference of this item can be constrained by the L2 or L1 norm [30]; here, we use the L2
norm as the data fidelity function. The second term is the constraint term for significant
gradient extraction and enhancement. The third term is the constraint adopted for the
sparseness of the blur kernel. The fourth item is a dark channel prior (DCP) constraint

item, where D(X)(p) = min
q∈N(p)

(
min

c∈{r,g,b}
Xc(q)

)
, and Xc is a color channel of c. If the

image is a single channel such as grayscale or brightness, then min
c∈{r,g,b}

Xc(q) = X(q),

from which we observe that DCP is used to represent the minimum value in the image
block. It can be seen from Formula (4) that the blurring process can be regarded as the
local weighted linear summation of the clear image. Therefore, the weighted sum of pixel
values in a local neighborhood is larger than the minimum pixel value in the neighborhood,
i.e., blur increases the values of the dark pixels. As such, the dark channel of blurred
images is less sparse than that of the clear images. The change in the sparsity of the dark
channel is an inherent characteristic of the blurring process. Based on this, by minimizing
‖D(X)‖0, our model will tend toward clear images rather than blurred images during
iteration. This constraint can also effectively improve the estimation accuracy of the blur
kernel [28]. The last item is used to ensure that the sparse coefficients obtained after the
sparse transformation of the image are sparse enough and is combined with the first item
to achieve high-resolution intermediate latent images.

In addition, in order to ensure the calculation efficiency of the blur kernel estimation,
we did not stretch the image into a column vector in the original compressed sensing
before the calculation. The reason is that if the image is not divided into blocks but directly
stretched as a column vector for calculation, the downsampling matrix will be too large
and the calculation speed will be greatly reduced. If it is divided into blocks, corresponding
boundary problems will be introduced. Therefore, we modified the original model slightly,
constructing a row sampling matrix Sl and a column sampling matrix Sr according to the
principle of cubic interpolation so that the downsampling operation is performed twice.
The size of the downsampling matrix and the position of nonzero elements are determined
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according to the downsampling rate, and the element values are determined according to
the cubic interpolation downsampling function.

3.1.2. Solving Subproblem X

In order to solve Equation (10) quickly, our strategy was to adopt the half quadratic
splitting algorithm [31] and the alternate minimization method for calculation. Firstly, the
variable G is introduced through the half quadratic splitting method. Then, (10) can be
transformed into (11):

(X′, h′) = arg min
X,h
‖Y− SlGSr‖2

2 + λ‖∇X‖w + γ‖h‖2
2 + µ‖D(X)‖0

+δ‖ΨTX‖1 + ε‖h⊗X− G‖2
2

(11)

The solution of X can then be obtained by solving(
X′, h′

)
= arg min

X,h
λ‖∇X‖w + µ‖D(X)‖0 + δ‖ΨTX‖1 + ε‖h

⊗
X− G‖2

2 (12)

Since the model (12) contains the L0 norm and the L1 norm, it is difficult to directly
solve the variables by means of fast Fourier transform. We introduce auxiliary variables
g, d and X̃, corresponding to ∇X, D(X) and ΨTX respectively, where g = {gh, gv},
∇X = {∇hX,∇vX}. ∇hX and ∇vX are row difference images and column difference im-
ages, respectively, and the difference operators are defined as∇h = [−1, 1],∇v = [−1, 1]T .
Then, (12) can be transformed into (13):(

X′, h′, g′, d′, X̃′
)

= arg min
X,h,g,d,X̃

λ′‖g−∇X‖2
2 + µ′‖d− D(X)‖2

2 ++δ′‖X̃−ΨTX‖2
2

+λ‖g‖w + µ‖d‖0 + δ‖X̃‖1 + ε‖h⊗X− G‖2
2

(13)

where λ′, µ′, and δ′ are the regularization parameters. The above optimization
problem can be solved by minimizing X, h, g, and d and X̃, respectively. When a variable is
minimized, the other variables are regarded as fixed. Fixing h, g, and d and X̃, the solution
of X can be obtained by solving the following:

X′ = arg min
X

λ′‖g−∇X‖2
2 + µ′‖d−D(X)‖2

2 ++δ′‖X̃−ΨTX‖2
2 + ε‖h

⊗
X− G‖2

2 (14)

where ‖g−∇X‖2
2 = ‖gh −∇hX‖2

2 + ‖gv −∇vX‖2
2. The solution of (14) can be obtained

by using the fast Fourier transform:

X = F−1

λ′Fg + µ′F
(

MTd
)
+ δ′F

(
ΨX̃
)
+ εF(h) ◦ F(G)

λ′F∇ + µ′ + δ′ + εF(h) ◦ F(h)

 (15)

where Fg is F(∇h) ◦ F(gh)+ F(∇v) ◦ F(gv); F∇ is F(∇h) ◦ F(∇h)+ F(∇v) ◦ F(∇v); F(·) and
F−1(·) denote the fast Fourier transform and inverse fast Fourier transform, respectively;
F(·) is the complex conjugate operator; ◦ denotes component multiplication, and the
division in Formula (15) is component division; M is the matrix that maps the image to its
dark channel; and MT is the transpose of M, which specifies that it plays the role of the
reverse mapping replacement [28]. The mapping method of the M matrix is determined by
the index between the image and its dark channel:

M(p, q) =

1, q = arg min
q∈N(p)

X(q)

0, otherwise
(16)



Sensors 2021, 21, 4109 9 of 23

After the calculation of X, fixing h, g, X̃, and X, the solutions of d can be obtained by
solving the following:

d′ = arg min
d

µ′‖d− D(X)‖2
2 + µ‖d‖0 (17)

Shrinking by hard threshold, the solutions of d can be obtained based on (18):

d =

{
D(X), (D(X))2 ≥ µ

µ′

0, otherwise
(18)

Fixing h, g, d, and X, the solutions of X̃ can be obtained by solving the following:

X̃′ = arg min
X̃

δ′‖X̃−ΨTX‖2
2 + δ‖X̃‖1 (19)

Shrinking by soft threshold, the solutions of X̃ can be obtained based on (20):

X̃ = max
{∣∣∣ΨTX

∣∣∣− δ

2δ′
, 0
}
◦ sign

(
ΨTX

)
(20)

where sign(·) is a sign function. The subproblem with g can be solved by the following:

g′ = arg min
g

λ′‖g−∇X‖2
2 + λ‖g‖w (21)

According to the definition of the Lw norm, the solution of Equation (21) is easily
obtained:

g =


∇X + λ

2λ′ , ∇X > λ
2λ′

0, otherwise
∇X− λ

2λ′ , ∇X < − λ
2λ′

(22)

The solution result shows that by using the Lw norm to constrain the gradient image,
it is possible to filter out smaller gradients and enhance significant gradients. In addition
to the above variables, the variable G is also solved in the X subproblem; that is, in the
h subproblem, the variable G is fixed. The solution of G can be obtained by solving the
following:

G′ = arg min
G
‖Y− SlGSr‖2

2 + ε‖h⊗ X− G‖2
2 (23)

which is a least squares minimization problem; we compute the solution using the gradient
descent method. The iteration step size in the solution process is determined by the
non-monotonic linear search method introduced in [32].

3.1.3. Solving Subproblem h

For the subproblem h, directly using the intermediate latent image to estimate the blur
kernel is not accurate [30]; therefore, the gradient image is used to estimate the blur kernel.
Then, the solution of h can be obtained by solving the following:

h′ = arg min
h

ε‖h⊗∇X−∇G‖2
2 + γ‖h‖2

2 (24)

which is a least squares minimization problem. Similar to the existing approaches [29,30,33],
we compute the solution using FFT:

h = F−1

(
F(∇X)F(∇G)

F(∇X)F(∇X) + γ

)
(25)
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Since the blur kernel h ≥ 0 and ‖h‖1 = 1, after each iteration of the h subproblem,
we set the negative elements of h to zero and normalize h at the end. Algorithm 1 shows
the main steps for the kernel estimation algorithm. As suggested by [24,30], we decrease
λ and µ gradually to make more information available for kernel estimation.

Algorithm 1: Blur Kernel Estimation Algorithm.

Input: Blurred image Y
generate the initial value of each variable
for i = 1 : 5 do
ε← 2ε0

repeat
solve for G using the gradient descent method, µ′ ← 2µ .

repeat
solve for d using (18), δ′ ← 2δ .
repeat
solve for X̃ using (20), λ′ ← 2λ .
repeat
solve for g using (22), solve for X using (15), λ′ ← 2λ′ .
until λ′ > λ′max
δ′ ← 2δ′ .
until δ′ > δ′max
µ′ ← 2µ′ .
until µ′ > µ′max
ε← 2ε .

until ε > εmax
solve for h using (25).
λ← 0.9λ, µ← 0.9µ .

end for
Output: blur kernel h.

3.2. Blur Matrix Construction

In order to facilitate the operation of the BCS algorithm, we generated a circular
Toeplitz matrix to convert the convolution operation between the blur kernel h and the
two-dimensional image signal X into a matrix multiplication operation between the blur
matrix H and the one-dimensional image signal x; that is, convert h⊗ X to Hx.

Suppose G is a degraded image of X, i.e., G = h⊗ X. The size of G is the same as
that of X, and both are M× N. Since the blur kernel h is mostly square and the number of
columns is odd, its size is recorded as L× L, and l = (L− 1)/2 is the radius of h. Then,
the discretized degradation model is described as follows:

G(i, j) =
M−1

∑
m = 0

N−1

∑
n = 0

X(m, n)h(i−m + l, j− n + l) (26)

where h(i, j) needs to be zero-filled and extended as follows:

h(i, j) =

{
h(i, j) 0 ≤ i ≤ L− 1 and 0 ≤ j ≤ L− 1

0 L ≤ i ≤ M− 1 or L ≤ j ≤ N − 1
; we extend the period of X(i, j)

and h(i, j) so that they have a period of M in the row direction and a period of N in the
column direction.

After the matrices G(i, j) and X(i, j) are arranged from left to right and top to bottom,
one-dimensional signals g and x of length MN are obtained. In order to further convert the
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discretization degradation model of G = h⊗ X into Hx, the H with the size of MN×MN
can be defined as follows:

H =


Hl HM+l−1 HM+l−2 · · · Hl+1

Hl+1 Hl HM+l−1 · · · Hl+2
Hl+2 Hl+1 Hl · · · Hl+3

...
...

...
. . .

...
HM+l−1 HM+l−2 HM+l−3 · · · Hl

 (27)

where

Ha =


h(a, l) h(a, N + l − 1) h(a, N + l − 2) · · · h(a, l + 1)

h(a, l + 1) h(a, l) h(a, N + l − 1) · · · h(a, l + 2)
h(a, l + 2) h(a, l + 1) h(a, l) · · · h(a, l + 3)

...
...

...
. . .

...
h(a, N + l − 1) h(a, N + l − 2) h(a, N + l − 3) · · · h(a, l)


It should be noted that the extension of X and h in the above conversion method is

to complement the pixels outside the edge in a cyclic manner. However, this method will
introduce large errors to the edge pixels when reconstructing the infrared image of the
power equipment by blocks. Therefore, before extending X and h, we must first add zeros
to X:

X(i, j) =

{
X(i− l, j− l) l ≤ j ≤ N + l − 1

0 otherwise
(28)

where 0 ≤ i ≤ M + 2l − 1 and 0 ≤ j ≤ N + 2l − 1. After completing the SR reconstruction
of the infrared image according to (5), the reconstructed image can be obtained by deleting
the reconstructed pixels at the zero-padded position of the image.

4. Image SR Reconstruction Algorithm

In this paper, the relationship between HR images and LR images proposed by com-
bining CS theory and the image degradation model is shown in (5). In this section, we
will establish an SR image reconstruction model based on this relationship and propose an
optimized solution algorithm, named two-step total variation sparse iteration (TwTVSI).
We introduce the total variation (TV) regular term into the objective function of L1 norm
reconstruction because the TV regular term can use the limited variation characteristics of
the image to eliminate the boundary noise of the BCS reconstructed image. It also prevents
the single minimum total variation model from only reflecting the sparse characteristics
of the image gradient domain and not making full use of the sparse characteristics of
the image change domain, causing problems such as long reconstruction time and poor
visual effects.

4.1. Objective Function Construction

The original objective function of CS super-resolution based on the principle of image
degradation is as follows:

arg min
x̃
‖x̃‖1

s.t. y = CHDx̃
(29)

As the compressed sensing SR reconstruction of the entire image not only takes up
too much storage space but also has a very high computational complexity, we adopted
the BCS method to divide the image into several small image blocks and performed
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SR reconstruction for each small image block separately. We divided the image in the
following way:

Y =


Yb(1,1) Yb(1,2) · · · Yb(1,J)
Yb(2,1) Yb(2,2) · · · Yb(2,J)

...
...

. . .
...

Yb(I,1) Yb(I,2) · · · Yb(I,J)

 (30)

where Y is an LR image. Yb(i,j) is an LR image block; Y is divided into I blocks in the
row direction and J blocks in the column direction. Xb(i,j) is the HR image block at the
corresponding position of Yb(i,j), and the size of Xb(i,j) is S× S.

However, the reconstruction method of BCS will introduce a “blocking effect” to the
SR image. Therefore, in addition to the sparse prior, we further introduce prior information
into Equation (29) to constrain the solution and improve the quality of the reconstructed
image based on the MAP theory. Since the image is also sparse in the gradient domain,
we introduced the TV regular term in the objective function to perform the minimum
variational constraint on the whole image so as to achieve the purpose of eliminating the
blocking effect of the reconstructed image. The calculation method of image total variation
is as follows:

‖X‖TV = ∑
i,j

√
(X(i, j)− X(i− 1, j))2 + (X(i, j)− X(i, j− 1))2 (31)

where X(i, j) denotes the value contained in the i-th row and j-th column of the image
matrix X.

We blocked the image and introduced the TV regular term. The objective function can
be rewritten as follows:

arg min λ
X̃
‖X‖TV +

I
∑

i = 1

J
∑

j = 1
‖X̃(i,j)‖1

s.t. y(i,j) = CHDX̃(i,j), i = 1, 2, . . . I, j = 1, 2, . . . , J
(32)

where X̃(i,j) is the sparse representation of the column vector obtained by expanding Xb(i,j),
and y(i,j) is the row-expanded column vector corresponding to Yb(i,j).

In the process of optimizing Equation (32), X is updated under the constraint of
‖X‖TV . When the sparsity constraint is applied to X, it is difficult to obtain X̃(i,j) from X.
This is because D is an over-complete dictionary, so the dimensionality of the image signal
is much smaller than the sparse coefficient dimensionality represented by D. In order to
facilitate the optimization of the objective function, we used the sparse coefficient matrix X̃
to represent the image matrix X. The representation method is X = Ar

(
DX̃

)
, and the

objective function is improved as follows:

arg min λ
X̃
‖Ar

(
DX̃

)
‖

TV
+

I
∑

i = 1

J
∑

j = 1
‖X̃(i,j)‖1

s.t. y(i,j) = CHDX̃(i,j), i = 1, 2, . . . I, j = 1, 2, . . . , J
(33)

where X̃ =
(

X̃(1,1), X̃(1,2), · · · , X̃(1,J), X̃(2,1), · · · X̃(I,J)

)
is the sparse coefficient matrix. The

function Ar(z) denotes that the column vectors in z are spliced into corresponding images
in order.

4.2. Optimization of Objective Function

Using the Lagrangian multiplier method, (33) can be transformed into (34):

arg min λ
X̃
‖Ar

(
DX̃

)
‖

TV
+

I

∑
i = 1

J

∑
j = 1

β(i,j)

2
‖y(i,j) − CHDX̃(i,j)‖2

2 + ‖X̃(i,j)‖1 (34)
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where β(i,j) is the Lagrangian multiplier. For the optimization problem in (34), we propose
the TwTVSI optimization algorithm. The iteration format is as follows:

X̃(K+1) = X̃(K) − µ(K)

{
λ

∂‖Ar(DX̃)‖TV
∂X̃(K) + 1

2
∂ ∑I

i = 1 ∑J
j = 1

β(i,j)
2 ‖y(i,j)−CHDX̃(i,j)‖2

2+2‖X̃(i,j)‖1

∂X̃(K)

}
= X̃(K) − µ(K)

{
λg1

(
X̃(K)

)
+ 1

2 g2

(
X̃(K)

)} (35)

where µ(K) is the iteration step size; and g1

(
X̃(K)

)
is the gradient derivative of ‖Ar

(
DX̃

)
‖

TV
to the sparse coefficient matrix X̃(K), which can be solved by the gradient descent method di-
rectly.

g1

(
X̃(K)

)
=

∂‖Ar
(

DX̃
)
‖

TV

∂X̃(K)
=

∂‖Ar
(

DX̃
)
‖

TV

∂X̃(K)
(1,1)

, . . . ,
∂‖Ar

(
DX̃

)
‖

TV

∂X̃(K)
(i,j)

, . . . ,
∂‖Ar

(
DX̃

)
‖

TV

∂X̃(K)
(I,J)

 (36)

∂‖Ar(DX̃)‖TV

∂X̃(K)
(i,j)

=
S
∑

m = 1

S
∑

n = 1
Pd
(

m, n, X̃(K)
(i,j), X̃(K)

(i,j)

)
+

S
∑

m = 1

1
∑

n = 1
Pd
(

m, n, X̃(K)
(i,j+1), X̃(K)

(i,j)

)
+

1
∑

m = 1

S
∑

n = 1
Pd
(

m, n, X̃(K)
(i+1,j), X̃(K)

(i,j)

) (37)

Pd
(

m, n, X̃a, X̃b

)
=

∂Dr(m,n,X̃a)
∂X̃b

×Dr
(

m, n, X̃a

)
+

∂Dc(m,n,X̃a)
∂X̃b

×Dc
(

m, n, X̃a

)
√{

Dr
(

m, n, X̃a

)}2
+
{

Dr
(

m, n, X̃a

)}2
+ 10−6

(38)

where Dr
(

m, n, X̃(K)
(i,j)

)
and Dc

(
m, n, X̃(K)

(i,j)

)
are, respectively, image row and column differ-

ence operation functions.
Since we adopt the SR reconstruction method of BCS, when performing row–column

direction difference operation, it will involve the cross-operation of the edge elements
between adjacent image blocks. Through derivation, the difference operation between
adjacent image blocks can be represented by a periodic sparse dictionary matrix, which
greatly speeds up the operation speed while ensuring the accuracy. Let θ be a cyclic matrix
with a period of S, i.e., θ(m, n) = θ(m + S, n) = θ(m, n + S), and its matrix structure is
as follows:

θ =


1 2 · · · S

S + 1 S + 2 · · · 2S
...

...
. . .

...
S2 − S + 1 S2 − S + 2 · · · S2

 (39)

where k is the value corresponding to the m-th row and n-th column in the matrix θ,
denoted as θ(m, n); and Dθ(m,n) represents the row vector corresponding to the k-th row
of the sparse dictionary D. Then, each HR image block Xb(i,j) can be represented by its
corresponding sparse coefficient as follows:

Xb(i,j) =


Dθ(1,1)X̃(i,j) Dθ(1,2)X̃(i,j) · · · Dθ(1,S)X̃(i,j)
Dθ(2,1)X̃(i,j) Dθ(2,2)X̃(i,j) · · · Dθ(2,S)X̃(i,j)

...
...

. . .
...

Dθ(S,1)X̃(i,j) Dθ(S,2)X̃(i,j) · · · Dθ(S,S)X̃(i,j)


Then, the calculation methods of Dr

(
m, n, X̃(K)

(i,j)

)
and Dr

(
m, n, X̃(K)

(i,j)

)
are as follows: Dr

(
m, n, X̃(K)

(i,j)

)
= Dθ(m,n)X̃

(K)
(i,j) − Dθ(m−1,n)X̃

(K)
(i−¬(m−1),j)

Dc
(

m, n, X̃(K)
(i,j)

)
= Dθ(m,n)X̃

(K)
(i,j) − Dθ(m,n−1)X̃

(K)
(i,j−¬(n−1))
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where ¬ is the negation operator, and the operation method is ¬(z) =

{
0 z 6= 0
1 z = 0

.

As for g2

(
X̃(K)

)
, ‖X̃(K)

(i,j)‖1 is a nondifferentiable convex function about X̃(K)
(i,j), and

‖y(i,j) − CHDX̃(K)
(i,j)‖

2
2 is a differentiable convex function about X̃(K)

(i,j). Therefore, g2

(
X̃(K)

)
cannot be directly calculated by the gradient descent method, so it is solved by the proximal
gradient (PG) method: Z(K)

(i,j) = X̃(K)
(i,j) − β

(K)
(i,j)D

T HTCT
(

y(i,j) − CHDX̃(K)
(i,j)

)
X̃(K+1)
(i,j) = Shrink

(
Z(K)
(i,j), β

(K)
(i,j)

)
= max

{∣∣∣Z(K)
(i,j)

∣∣∣− β
(K)
(i,j), 0

}
◦ sign

(
Z(K)
(i,j)

) (40)

where Shrink(·) is the soft threshold shrinkage function; β
(K)
(i,j) essentially acts as a step

factor, and its size can be determined by the backtracking line search method [32].
In summary, the two-step total variation sparse iteration algorithm flow is shown in

Figure 3.
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The specific calculation method of each step is as follows:

1. Initialize K and X̃ separately
2. Perform the first iteration of the TV constraint: solve for X̃(k,1) using Gradient

descent, X̃(k,1) = X̃(K,0) − λµ(K)g1

(
X̃(K,0)

)
.

3. Perform the second iteration of the Sparse constraint; according to (40), obtain X̃(K+1,0)

by the proximal gradient method through X̃(k,1).

4. Determination: stop iteration if ‖Ar
(

DX̃(K+1,0)
)
− Ar

(
DX̃(K,0)

)
‖

2

2
is less than the

error constraint ε, or K is greater than the maximum number of iterations Kmax.
Otherwise, let K = K + 1 and return to step 2.

5. Output: reconstructed HR image Ar
(

DX̃(K+1,0)
)

.

Our proposed algorithm introduces the TV regular term into the L1 norm recon-
struction objective function and then uses the gradient descent method and the proximal
gradient method in the optimization process to minimize the total variation of the im-
age and solve the image sparse coding; therefore, the algorithm is named two-step total
variation sparse iteration (TwTVSI).

5. Experiment and Result Analysis
5.1. Experimental Data and Evaluation Parameters

Our test environment parameters were as follows: Intel(R) Core(TM)i5-9300H CPU
@2.40GHz; memory: 16.00GB; operating system: Windows 10; MATLAB R2019a. We
obtained the following fixed parameters through repeated experiments and adjustments:
λ = µ = 0.004; ε0 = 0.008; γ = δ = 2; θ = 0.8; τ = 0.95; ν = 0.1. The image block
size used for the dark channel search was 35 × 35. The sparse base Ψ used the Daubechies
8 wavelet base. The HR image block size was 32 × 32. The sparse dictionary was trained
using the high-dimensional dictionary training method introduced in [34], and its size was
1024 × 3096, i.e., the dictionary contained 3096 atoms with a length of 1024.
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In order to make the experimental results more convincing, we separately recon-
structed artificially synthesized infrared images of power equipment and actual infrared
images of power equipment. We compared our method with the methods proposed by
Keys [35], Shao [19], Michaeli [17], and Kim [21]. Since the artificially synthesized infrared
image of the power equipment had the original clear, HR image, the PSNR and SSIM
evaluation indicators could be used to evaluate the reconstruction results. The actual
infrared image of the power equipment did not have the original clear, HR image, so we
adopted two other objective evaluation indicators: average gradient (AG) and information
entropy (IE). The calculation method of AG is as follows:

AG =
1

MN ∑
i

∑
j

√
f 2
x (i, j) + f 2

y (i, j) (41)

where fx(i, j) and fy(i, j) are the image convolution results of the difference operator in the
row and column directions, respectively. The larger the AG value is, the more drastically
the grayscale changes in the image and the more the image levels; that is, the clearer the
image is.

Entropy represents the uniformity of a system in physics. The more uniformly a system
is distributed, the greater its information entropy is. The concept of image information
entropy is derived from this, which can be defined as follows:

IE = −
n

∑
i = 0

p(i) log2 p(i) (42)

where p(i) represents the frequency of the pixel point with the gray value of i in the image.
The larger the IE value is, the richer the information contained in the image is.

To verify the effectiveness of our proposed Lw norm in improving the accuracy of the
blur kernel estimation, we compared the blur kernels estimated by our method and the
algorithms proposed in [19,21]. We used the sum of the squared differences error (SSDE) to
evaluate the accuracy of the estimated blur kernel:

SSDE = ∑
i

∑
j

(
kest(i, j)− kgt(i, j)

)2 (43)

where kest represents the estimated blur kernel and kgt represents the true blur kernel of
the image.

In addition, we did not directly process the infrared image in RGB mode, but rather
converted it to YCbCr mode, where Y is the brightness component, Cb is the blue chroma
component, and Cr is the red chroma component. Since the human eye is more sensitive to
the Y component, the visual difference caused by the subtle changes in the other two com-
ponents is extremely small; thus, all operations of our proposed method and comparison
method were performed on the Y component. Using the blur kernel estimated by the Y
component, the Cb and Cr components were reconstructed by nonblind deblurring [36]
and cubic interpolation.

5.2. Synthetic Infrared Image Reconstruction Experiment

We selected 11 different infrared images of power equipment and artificially synthe-
sized them into LR blurred images. Below, we show the HR images reconstructed using
different methods for one of the LR blurred images. For the remaining 10 images, we give
the reconstruction results of different methods in the form of evaluation parameters.

A Gaussian blur kernel with a size of 5× 5 and a standard deviation σ of 1.3 was
used to blur the 128× 128 HR infrared image, and then, it was downsampled to 64× 64
through the cubic interpolation method. The original clear image, the reconstruction result
of the contrast method, and the reconstruction result of our proposed method are shown in
Figure 4.
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Figure 4. Reconstruction results of different methods when using 5 × 5 Gaussian blur kernel:
(a) synthetic infrared image; (b) reconstruction results using the method in [35] (PSNR = 24.646 dB;
SSIM = 0.903; AG = 21.612; IE = 5.881); (c) reconstruction results using the method in [19]
(PSNR = 25.747 dB; SSIM = 0.963; AG = 27.710; IE = 5.903); (d) reconstruction results using the
method in [17] (PSNR = 26.238 dB; SSIM = 0.958; AG = 30.281; IE = 5.928); (e) reconstruction results
using the method in [21] (PSNR = 25.321 dB; SSIM = 0.955; AG = 29.591; IE = 6.014); (f) reconstruction
results using our method (PSNR = 28.803dB; SSIM = 0.968; AG = 32.030; IE = 6.082).

As shown in Figure 4, the method proposed by Keys et al. has the worst visual effect
due to the inherent smoothness benefits of interpolation algorithms, and the texture of the
electrical equipment in the reconstructed image is almost invisible. Compared with the
method of Shao et al., the infrared image reconstructed by the method proposed by Kim
et al. has clearer edges and better visual effects, but its artifacts are relatively more obvious.
It is obvious that the quality of the reconstructed image texture of the above methods
is not as clear as the reconstruction result obtained by our method. The reconstructed
image using Michaeli et al.’s method has a higher contrast and is too sharp. Although the
edge texture is clearer than that from our method, the method introduces obvious artifacts
according to the area in the red box. In addition, the color distortion of the equipment is
more serious, which will have a very negative influence on the infrared diagnosis, and it
can cause the operation and maintenance personnel to misjudge the equipment operating
temperature.

The remaining 10 infrared images were also artificially synthesized using the 5× 5
blur kernel. The PSNR, SSIM, AG and IE values of the images reconstructed using different
methods are given in Figure 5. It can be seen that the method proposed by Keys has the
lowest value of various indicators, which is caused by the inherent smoothing benefits of
interpolation algorithms; The evaluation parameter values of the methods proposed by
Shao and Kim are often close, which is consistent with the visual quality of the reconstructed
image with their method. The image color reconstructed by the Michaeli method has a
certain degree of distortion, but the detailed texture and overall outline structure in the
image are clearer than other comparison methods, so its method has achieved better
evaluation indicators. However, our proposed method has obvious advantages compared
with the contrast method in the evaluation index of most reconstructed images, which also
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confirms the subjective visual effect of the reconstructed by our method, and demonstrates
the superiority of our proposed method.
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5.3. Actual Infrared Image Reconstruction Experiment

Section 5.2 preliminarily verifies the performance of our proposed blind SR method
through synthesized infrared images. In this section, we reconstruct an actual LR infrared
image to verify the effectiveness of the method in practical applications. For the experi-
ment, we used nine infrared images taken on site with a resolution of 128 × 128 for SR
reconstruction. Figure 6 shows the images reconstructed using different methods for the
ninth LR infrared image.

It can be seen from Figure 6 that the images reconstructed using the methods of Keys
and Shao are blurry, and their details and textures are not clear. The method proposed by
Michaeli et al. is not accurate enough to estimate the blur kernel, which leads to the obvious
ringing effect in the reconstruction result. The obvious ringing effect is not conducive to the
application of infrared diagnostic technology and will easily lead to incorrect segmentation
of the equipment area, thereby affecting the accuracy of fault location and identification of
fault types. The method proposed by Kim et al. has a better reconstruction effect with a
clearer texture and no ringing artifacts. However, the reconstructed image is still not as
clear as the result obtained by our method, which can clearly be seen from the comparison
of Figure 6e,f. In summary, our method has certain advantages compared with current
methods when dealing with real blurred LR images. In addition, by observing the blur
kernel estimated in the reconstruction process of our method, we found that the blurring
of the image is very complicated during actual shooting. Using the standard Gaussian
blur kernel to represent the image blurring process is not accurate. This also reflects the
necessity of studying blind SR algorithms. The SR reconstruction results of the other eight



Sensors 2021, 21, 4109 18 of 23

infrared images with different methods are given in Tables 1 and 2 in the form of AG and
IE indicators. It can be seen from the data in the tables that the HR image reconstructed by
our method has certain advantages over the comparison method in these two indicators.
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Figure 6. Different methods to reconstruct the real infrared image of No. 9: (a) real infrared image;
(b) reconstruction results using the method in [35] (AG = 20.866; IE = 6.020); (c) reconstruction results
using the method in [19] (AG = 29.275; IE = 6.212); (d) reconstruction results using the method in [17]
(AG = 33.083; IE = 6.157); (e) reconstruction results using the method in [21] (AG = 30.449; IE = 6.188);
(f) reconstruction results using our method (AG = 33.697; IE = 6.244).

Table 1. Comparison of AG indexes of images reconstructed using different methods.

Image Number Keys Shao Michaeli Kim Ours

1 19.875 27.031 30.784 29.339 32.364
2 22.098 29.508 34.180 32.142 35.882
3 21.671 29.874 34.954 35.377 37.047
4 18.124 20.616 23.167 25.423 24.267
5 18.664 26.541 29.313 28.800 30.954
6 17.381 25.453 26.271 26.299 28.534
7 24.336 34.171 35.325 37.638 42.721
8 20.385 26.413 34.928 27.116 32.957

Table 2. Comparison of IE indexes of images reconstructed using different methods.

Image Number Keys Shao Michaeli Kim Ours

1 5.904 6.103 6.111 6.148 6.275
2 6.577 6.413 6.657 6.709 6.748
3 6.218 6.281 6.338 6.342 6.381
4 5.730 5.803 5.862 5.881 5.906
5 6.133 6.141 6.247 6.243 6.298
6 5.605 5.571 5.660 5.691 5.772
7 6.722 6.364 6.765 6.772 6.846
8 5.813 5.852 5.890 5.883 5.916
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5.4. Lw Norm Validity Verification

In order to verify the effectiveness of the Lw norm constraint in improving the accuracy
of the blur kernel estimation, we used the six blur kernels shown in Figure 7 to sequentially
blur 100 infrared images and perform double downsampling. We used our method and
the comparison methods to estimate the blur kernel based on the LR blurred image. For
each blur kernel, the average SSDE parameters of the blur kernel estimated by the different
methods on 100 synthetic blurred infrared images are shown in Table 3. It can be seen from
the data in Table 3 that using the Lw norm constraint improved the effectiveness of the blur
kernel estimation accuracy.
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Figure 7. Six different blur kernels: (a) BK1; (b) BK2; (c) BK3; (d) BK4; (e) BK5; (f) BK6.

Table 3. The mean SSDE of each method for each BK on all 100 synthetic blurred images.

Image Number Shao Michaeli CS-L0 1 Ours

BK1 0.0473 0.0485 0.0481 0.0461
BK2 0.0472 0.0438 0.0453 0.0420
BK3 0.0467 0.0444 0.0461 0.0422
BK4 0.0390 0.0379 0.0368 0.0353
BK5 0.0431 0.0429 0.0435 0.0426
BK6 0.0422 0.0406 0.0412 0.0393

1 “CS-L0” refers to the blur kernel estimation method based on the principle of CS in Section 3.1, but the L0 norm
is used to constrain the gradient image.

5.5. Validity Verification of Blur Matrix

When performing SR modeling based on the CS theory, we introduced a blur matrix to
deconvolute and deblur the reconstructed image. Figure 8 is a comparison diagram of the
reconstruction results with and without the introduction of the blur matrix in our model. It
can be clearly seen from Figure 8 that when no blur matrix is added to the reconstruction
model, the reconstructed image is blurry. When the blur matrix is added, the visual effect
of the reconstructed image is significantly improved, the edge contrast is higher, and the
outline is clearer. It can be concluded that the addition of a blur matrix is beneficial to the
improvement of image reconstruction quality.
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5.6. Analysis of TwTVSI Algorithm Performance

In this section, we analyze the effect and computing time of the TwTVSI algorithm
to verify the effectiveness of the improved model and the designed algorithm. Figure 9
shows the comparison of the reconstruction results of our algorithm, the BCS-L1 algorithm
with only a sparse constraint in the objective function, and the BCS-TV algorithm with
only a TV constraint in the objective function. It can be seen from Figure 9 that the HR
image reconstructed by the BCS-L1 algorithm has an obvious “blocking effect” due to
BCS; that is, the boundary between image blocks is obvious and discontinuous. Although
there is no “blocking effect” in the image reconstructed using the BCS-TV algorithm, the
algorithm only restricts the sparsity of the image gradient domain and cannot make good
use of the sparsity of other change domains of the image. As a result, bright spots appear
in the reconstruction results, and the reconstruction speed is too slow. Table 4 shows
the calculation time required by the TwTVSI algorithm, BCS-L1 algorithm, and BCS-TV
algorithm to reconstruct five LR images under the same experimental conditions. It can be
seen that the reconstruction speed of the TwTVSI algorithm is slightly slower than that of
the BCS-L1 algorithm, but both are of the order of 10 s, while the reconstruction time of the
BCS-TV algorithm is on the order of 1000 s.
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Figure 9. Reconstruction results of different block compressed sensing algorithms: (a) LR image; (b) image reconstructed by
TwTVSI algorithm; (c) image reconstructed by BCS-L1 algorithm; (d) image reconstructed by BCS-TV algorithm.
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Table 4. Reconstruction time of each algorithm.

Image Number TwTVSI
(s)

BCS-L1
(s)

BCS-TV
(s)

1 15.3293 6.5937 1214.3894
2 14.2397 5.4419 1175.4316
3 14.8195 6.2824 1135.6211
4 15.4857 6.6621 1308.4803
5 15.0018 5.7140 1260.2702

6. Discussion on Future Application Scenarios

At present, infrared images are still generally processed in the central place of con-
trol, but now the emergence of 5G communications, cloud computing, cloud platforms,
distributed computing and other technologies provides many new possibilities for the
processing and analysis of infrared images in the future. For example, it is no longer limited
to processing infrared images at a specific location, the raw data can be uploaded to the
cloud platform through 5G communication, and then call the computing power through
cloud computing to complete the image processing. Alternatively, we can use distributed
computing, call on local idle computing power, complete the analysis and processing of
the image, and upload the final evaluation results and original data. The evaluation results
are uploaded to the operation and maintenance platform for operation and maintenance
personnel to read, and the original data is directly stored in the database for future data
analysis, which realizes the further distribution of functions and reduces the platform’s
data processing and interaction pressure. After providing the cloud platform access port
for operation and maintenance personnel, they can accurately grasp the operating status of
the equipment through mobile phones and computers at any time and any place, and then
complete the operation and maintenance work according to the platform’s prompts.

7. Conclusions

Infrared thermal imaging technology is an important technical means to ensure the
safe and reliable operation of power equipment, through which faults in power equipment
can be detected in time. In order to resolve the problem of insufficient resolution and
definition of infrared images, we proposed a blind SR algorithm based on the theory of CS.

In order to complete the blind SR, the image blur kernel needed to be estimated
first. We combined the basic CS SR model with the blind image deblurring theory and
then proposed a blur kernel estimation algorithm under the CS framework to realize the
estimation of the blur kernel from LR images. In the estimation process, we defined a
new Lw norm to constrain the gradient image in the iterative process by analyzing the
changes in the significant edge intensity before and after the image is blurred. The Lw
norm constraint can select and enhance the salient edges, make the intermediate latent
image generated by the iteration move closer to the clear image, and improve the accuracy
of the blur kernel estimation. Experimental results proved that the blur kernel estimation
algorithm we proposed can effectively and accurately estimate the corresponding blur
kernel based on LR infrared images. Our improvement to the edge selection method is also
conducive to improving the accuracy of blur kernel estimation results.

In the SR image reconstruction part, we added a blur matrix to the original CS
model, thereby constructing a CS super-resolution model based on the principle of image
degradation. The sparse base in the model is a specific sparse dictionary about the infrared
image of the power equipment, which was obtained using the high-dimensional dictionary
training method. The sparse dictionary can enhance the sparse representation of the image
and improve the SR reconstruction effect. Finally, according to the theory of BCS, we
designed the TwTVSI algorithm, which can effectively process the CS super-resolution
model with the sparse dictionary. TwTVSI also can eliminate the “blocking effect” so as
to complete high-quality SR reconstruction of infrared images. The SR reconstruction
experiments with blurred LR infrared images verified the effectiveness of the blind SR
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method that we proposed. The experiments proved that our method can better adapt to
the actual application in and demand of the electric power industry. Our method is helpful
in allowing operation and maintenance personnel to accurately grasp the operating status
of power equipment and for improving the reliability of power system operation.
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