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Abstract: Photographic reproduction and enhancement is challenging because it requires the preser-
vation of all the visual information during the compression of the dynamic range of the input image.
This paper presents a cascaded-architecture-type reproduction method that can simultaneously
enhance local details and retain the naturalness of original global contrast. In the pre-processing
stage, in addition to using a multiscale detail injection scheme to enhance the local details, the Stevens
effect is considered for adapting different luminance levels and normally compressing the global
feature. We propose a modified histogram equalization method in the reproduction stage, where
individual histogram bin widths are first adjusted according to the property of overall image content.
In addition, the human visual system (HVS) is considered so that a luminance-aware threshold can
be used to control the maximum permissible width of each bin. Then, the global tone is modified
by performing histogram equalization on the output modified histogram. Experimental results
indicate that the proposed method can outperform the five state-of-the-art methods in terms of visual
comparisons and several objective image quality evaluations.

Keywords: intelligent vision sensing; photographic reproduction; human visual system; image
enhancement; histogram equalization

1. Introduction

The human visual system (HVS) is a delicate and complex system. To perceive real-
world scenes, human eyes function as visual sensors to receive lights reflected from the
surface of objects. Light enters the cornea and refracts; the amount of light entering is
regulated by the iris by adjusting the size of the pupil. Then, the ciliary muscle changes
the shape of the lens to make the light focus on the retina, where photoreceptors convert
the light into electrical signals. Finally, these signals are transmitted to the brain and
interpreted as visual images.

Modern people only need to take out their mobile phones from their pockets to
capture memorable moments. However, before the camera was invented, people could
only record the scenes they saw through words and paintings. As early as the middle of
the sixteenth century, inventors began studying imaging technology to lay the foundation
for the development of cameras. At the end of the nineteenth century, the Eastman Kodak
Company produced film negatives and gradually popularized cameras, and in 1975, they
designed the first digital camera that captured a real-world scene by using electronic
photodetectors and stored it as a digitized file.

Since the invention of digital cameras, digital photography has evolved rapidly, and
people’s requirements for image quality are getting higher and higher. Currently, some
people choose to use high-dynamic-range (HDR) sensors to record brightness information
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transmitted in the real world. HDR images use a 32-bit floating-point format to record
details and natural tones in a scene. However, although HDR camera technology is mature,
it is limited by the technology of traditional displays. Although screen manufacturers
have introduced HDR displays, their prices are too high for them to find widespread use;
therefore, low-dynamic-range (LDR) or standard-dynamic-range (SDR) screens that can
only display 256 brightness levels are still popular. Therefore, many studies are being
conducted to develop photographic tone reproduction methods or tone mapping methods
to address this problem. In addition, some interesting works on histogram and image
enhancement are recently proposed [1–6]. In this paper, we present a novel reproduction
method for the conversion of HDR to LDR images that can enhance local details and
maintain global naturalness.

2. Related Works and Research Motivation

Currently, most photographic reproduction methods can be classified into three cate-
gories: global-based, local-based, and hybrid-based methods. Global-based photographic
reproduction methods employ the typical mapping strategies, such as linear mapping,
exponential mapping, and logarithmic mapping. To upgrade the quality of the subjective
viewing experience, Lenzen and Christmann [7] focused on improving the contrast rather
than improving the brightness because they thought the most essential part of reproduc-
tion is to increase global contrast. Jung and Xu [8] enhanced the overall contrast of the
image by using a transfer function called perceptual quantization, which is based on the
human contrast sensitivity that represents the human visual perception of luminance. Khan
et al. [9] used an HVS-based optimization step to identify pixels in the histogram bins
that are indistinguishable to the human eye and then combined the original histogram
and the reconstructed histogram to create a new one for designing the mapping curve.
Because the shape of the retinal response curve is asymmetric, Lee et al. [10] used the zone
system (a classic photography technique) to obtain a new type of asymmetric sigmoid
curve (ASC). By using ASC, the curvature of mapping curves can be determined, and the
global contrasts of LDR images can be expanded.

Local-based photographic reproduction methods yield suitable transfer functions
for individual pixels. Gu et al. [11] proposed three assumptions and designed a local
edge-preserving filter that avoids gradient reversal to perform multiscale decomposition
of images. Barai et al. [12] integrated a saliency map with the edge-preserving guided
filter and also enhanced the detail layer that is rich in edge information. Then, they used
HVS-based parameters to adjust both the saturation and the exposure. Mezeni et al. [13]
focused on maximizing the available dynamic range. They performed tone compression
in the logarithm domain to reduce drastic changes in the dynamic range. Then, in order
to modify the appearances of the tone-mapped results, tone compression in the linear
domain was also performed. Reproduction methods based on the gradient domain have
also been developed. Fattal et al. [14] presented a reproduction method in which the degree
of compression is increased as the gradient becomes larger. Their assumption was that
by considering the gradient, the fine details could be preserved as the dynamic range
is compressed drastically. Mantiuk et al. [15] also proposed a gradient-based method
to enhance the contrast and maintain the polarity of the local contrast (i.e., avoid the
artificial artifacts caused by gradient reversal) by imposing additional constraints during
the gradient process. Unlike global-based methods, local-based methods tend to focus
on adjusting the local contrast by considering adjacent pixels. Although details are thus
preserved effectively, there is a high probability of generating artificial artifacts, especially
for those pixels at salient edges.

In light of the disadvantages of using global- or local-based reproduction methods
alone, studies are increasingly combining the properties of these two in hybrid frameworks.
Most hybrid-based reproduction methods can be divided into two different types: cascaded
architecture and parallel architecture.
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In cascaded-architecture-type hybrid reproduction methods, global and local pro-
cesses are connected in series. Reinhard et al. [16] applied traditional photography schemes
to digital images. To overcome the dynamic issue, they proposed a dodging-and-burning
technique; however, it tends to generate artifacts such as halos. Ferradans et al. [17] pro-
posed a reproduction method that considers the characteristic of cones (i.e., photoreceptor
cells) in the first global stage; in the subsequent stage, the loss of visual contrast was com-
pensated locally. Although they tried to manipulate the saturation perceived by human
eyes, the tones of resultant images were not sufficiently vivid. Benzi et al. [18] presented a
hybrid reproduction method that reproduces the adaptation mechanism in the retina. They
proposed a virtual retina model that takes pupil adaptation into account; unfortunately,
some images tended to have a gray-like appearance.

In parallel-architecture-type hybrid reproduction methods, the modular technique
is usually used to subdivide the framework into many small units that can be applied
independently. Input images are substituted into different modules so that their char-
acteristics can be considered from different aspects through a weighted fusion. Raffin
et al. [19] presented a parallel-based method that uses a tone reproduction curve and a local
contrast expansion scheme for detail-rich areas. Artusi et al. [20] applied local mapping
at regions with high frequencies and a global mapping at the remaining regions. How-
ever, the rendered image may be unsatisfactory in some cases, especially in the boundary
between locally and globally tone-mapped regions. Yang et al. [21] applied adaptively
generated gamma curves to regions with different brightness levels and then performed
adaptive weight fusion. The tone-mapped results successfully render a balanced tone
between lightness and darkness but tended to lose details. Miao et al. [22] presented a
hybrid framework containing two parallel models, where the macro-model manipulates
contrasts and the micro-model adjusts details. Although the global information is obtained
adaptively, the tones of the resultant images are somehow blurred because of the final
fusion process.

• Motivation for this study: Recently, the hybrid-based approach seems to be a promising
solution to the photographic reproduction problem. However, as mentioned in the
above two paragraphs, there is still room for improvement. As shown in Figure 1,
the algorithm of [23] presents a typical parallel-architecture-type hybrid reproduction
framework, in which the image information content is used to separately enhance
each pixel in global contrast and in local details to different extents, following which
a weighted fusion is performed. However, if the tone reproduction process involves
this type of parallel architecture and fusion, the resultant images might bias to one
of the global and local characteristics. Consequently, the parallel-architecture-based
method sacrifices either the global tone naturalness or the local details more or less.

• Contribution of this study: In view of the shortcoming of the parallel-architecture-based
method, this work presents a cascaded-architecture-type reproduction method. De-
spite having the advantage of computational efficiency, photographic reproduction
methods using a monotonic transfer function are typically vulnerable to detail loss
(i.e., loss of the local features), especially in the bright and dark areas. In this study,
we demonstrate a practical reproduction method and demonstrate that even though
it applies the monotonic transfer function (i.e., the proposed HVS-based modified
histogram equalization), it is able to preserve the global contrast and even enhance the
local details in bright and dark areas simultaneously. To adopt the histogram equaliza-
tion scheme in photographic reproduction, the histogram configuration is reallocated
according to two HVS characteristics: the just noticeable difference and the threshold
versus intensity curve. The experimental results demonstrate the effectiveness of the
proposed method in terms of different evaluations.
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Figure 1. Preliminary comparison between parallel-based (top) and cascade-based (bottom) photographic reproduction
methods, which illustrates the motivation of this study. In the proposed method, we utilized the HVS-based modified
histogram equalization (HE) to avoid the fusion loss from blending two images, which was the main reason why we
adopted the cascaded-architecture-type hybrid reproduction strategy. Detailed comparisons are provided in Section 4.

3. Proposed Approach

Figure 2 shows the overall framework of the proposed reproduction method. Unlike
in the case of the parallel-architecture-based reproduction method, we prioritized regional
features to preserve as much detail as possible in the first stage. This strategy may cause
concerns over sacrificing the global tone; however, because the human eye is only sensitive
to the regional contrast (i.e., distinguishing between relative bright and dark) and not to
the absolute value of the luminance difference [14], we believed that retaining the regional
characteristics of the image was more important than rendering a natural global tone.
Therefore, in the first stage of the proposed method, we expand the local contrast of the
input image by enhancing the local features. In the second stage, the dynamic range is
allocated according to the composition of the entire image and the properties of the HVS to
recover the natural tone adaptively. As a result, the re-rendered image is closer to the real
scene, and the high contrast and regional details are maintained. We believe that the two
stages of the proposed method can complement each other so that the advantages of both
the local and the global operators can be achieved.

3.1. Luminance Extraction and Initial Log Compression

For the photographic reproduction methods, it is a typical process to grasp the im-
portant information of the image by extracting the luminance channel from the image. To
obtain the luminance channel of the image, we convert the input image from the RGB color
space to the XYZ color space: Xin

Yin
Zin

 =

 0.4124 0.3576 0.1805
0.2126 0.7152 0.0722
0.0193 0.1192 0.9505

 HDRR
HDRG
HDRB

 (1)

where HDRR, HDRG, and HDRB represent the three RGB channels of the input HDR
image. After the matrix transformation in Equation (1), Xin, Yin, and Zin represent the input
XYZ channels, where Yin contains the luminance information of the input image. Since
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human perception of brightness involves a non-linear logarithmic relationship, we then
apply log compression to Yin and define the logarithmic luminance

(
Ylog

)
as:

Ylog(i, j) = log(LY(i, j) + ε1) (2)

where i and j are the coordinates of the pixels in the image. A minimum value ε1 (set at
10−6 empirically in this study) is added in Equation (2) to avoid the singular value during
the compression process.
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where WGIF indicates the weighted guided image filtering technique [24]. In this paper, two stages
were designed to complement each other to achieve the advantages of both the local and the global
operators.

3.2. Pre-Processing for Detail Enhancement

Normally, the local contrast in bright and dark areas tends to be compressed and
damaged severely during the reproduction process from HDR to LDR images. To address
this problem, this study adopted a detail injection technique that contained two phases.
In the first phase, three spatial filters with different radii are used to obtain multiscale
feature information. In the second phase, a model of Stevens effects [25] is integrated
into our system to fully consider the correlation between each brightness level and its
corresponding perceived contrast.

As shown in Figure 3a, the detail layer extracted using single-scale decomposition
tends to lose multiscale characteristics and is vulnerable to high-frequency noises. To
cope with this problem, we adopted a weighted guided image filter (WGIF) [24], an edge-
preserving smoothing technique that is robust against halo artifacts, to obtain multiscale
features. Two WGIFs with different radii were used: the one with a smaller radius (r1) is
used for extracting micro-detail features and the one with a larger radius (r2) is used for
extracting macro-detail features. The procedure of micro- and macro-detail extraction is
given by:

B(i, j) = WGIF
(

Ylog(i, j), r1, ε2

)
(3)

Dmicro(i, j) = Ylog(i, j)− B(i, j) (4)
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Dmacro(i, j) = B(i, j)−WGIF(B(i, j), r2, ε2) (5)

where B is the base plane, and ε2 is a regularization parameter for penalization. In this
work, r1, r2, and ε2 were empirically set as 15, 30 (double of r1), and 0.01.

Sensors 2021, 21, x FOR PEER REVIEW 6 of 21 
 

 

As shown in Figure 3a, the detail layer extracted using single-scale decomposition 
tends to lose multiscale characteristics and is vulnerable to high-frequency noises. To cope 
with this problem, we adopted a weighted guided image filter (𝑊𝐺𝐼𝐹) [24], an edge-pre-
serving smoothing technique that is robust against halo artifacts, to obtain multiscale fea-
tures. Two 𝑊𝐺𝐼𝐹𝑠 with different radii were used: the one with a smaller radius (𝑟ଵ) is 
used for extracting micro-detail features and the one with a larger radius (𝑟ଶ) is used for 
extracting macro-detail features. The procedure of micro- and macro-detail extraction is 
given by: 𝐵(𝑖, 𝑗) =  𝑊𝐺𝐼𝐹(𝑌(𝑖, 𝑗), 𝑟ଵ, 𝜀ଶ) (3)𝐷(𝑖, 𝑗) =  𝑌(𝑖, 𝑗) − 𝐵(𝑖, 𝑗) (4)𝐷(𝑖, 𝑗) = 𝐵(𝑖, 𝑗) − 𝑊𝐺𝐼𝐹(𝐵(𝑖, 𝑗), 𝑟ଶ, 𝜀ଶ) (5)

where 𝐵 is the base plane, and 𝜀ଶ is a regularization parameter for penalization. In this 
work, 𝑟ଵ, 𝑟ଶ, and 𝜀ଶ were empirically set as 15, 30 (double of 𝑟ଵ), and 0.01. 

In Equations (4) and (5), 𝐷 and 𝐷, respectively, indicate the micro-detail 
plane and the macro-detail plane. The former contains delicate textures such as hair infor-
mation, and the latter contains structural edges such as outline information of objects. 
Figure 3b shows the result of merging the micro- and the macro-detail planes. Compared 
with the single-scale detail extraction (Figure 3a), multiscale micro-and macro-detail ex-
traction (Figure 3b) apparently amplifies more local details and, therefore, relatively 
avoids the unrealistic visual perception of viewers due to excessive high-frequency noises. 

  
(a) (b) 

 
(c) 

Figure 3. Comparison of the effect between single-scale and multiscale detail extraction using the test image Cadik_Desk02 
shown in Section 4.2 (a) Result of single-scale-based detail extraction (performed in [24]). (b) Result of multiscale-based 
extraction (performed in the proposed method). (c) The pixel value of the detail plane along the horizontal white line 
segments on (a) and (b). In (a) and (b), the right-side images are the enlarged version of the white rectangles, which are 
suggested to be closely examined by the reader. 

Subsequently, we further apply the concept of the Stevens effect to modify the de-
tailed information. First, the merged detail plane (𝐷) is defined as: 

Figure 3. Comparison of the effect between single-scale and multiscale detail extraction using the test image Cadik_Desk02
shown in Section 4.2 (a) Result of single-scale-based detail extraction (performed in [24]). (b) Result of multiscale-based
extraction (performed in the proposed method). (c) The pixel value of the detail plane along the horizontal white line
segments on (a) and (b). In (a) and (b), the right-side images are the enlarged version of the white rectangles, which are
suggested to be closely examined by the reader.

In Equations (4) and (5), Dmicro and Dmacro, respectively, indicate the micro-detail plane
and the macro-detail plane. The former contains delicate textures such as hair information,
and the latter contains structural edges such as outline information of objects. Figure 3b
shows the result of merging the micro- and the macro-detail planes. Compared with the
single-scale detail extraction (Figure 3a), multiscale micro-and macro-detail extraction
(Figure 3b) apparently amplifies more local details and, therefore, relatively avoids the
unrealistic visual perception of viewers due to excessive high-frequency noises.

Subsequently, we further apply the concept of the Stevens effect to modify the detailed
information. First, the merged detail plane (Dmerge) is defined as:

Dmerge(i, j) = 2× (Dmicro(i, j) + Dmacro(i, j))−WGIF(Dmicro(i, j) + Dmacro(i, j), r3, ε2) (6)

Instead of simply adding Dmicro to Dmacro, the third WGIF with the smallest radius r3
(set as approximately half of r1) is used to enhance the tiny textures and to improve the
detail visibility of the merged detail plane. The color appearance phenomenon explains
how lighting conditions affect human perception and the corresponding psychological state.
From psychophysical experiments, despite having the same tristimulus values, human
eyes may perceive them as different colors due to the inconsistent lighting conditions.
For example, a black-and-white image shows relatively low contrast under low-lighting
conditions. By contrast, when the same image is moved to a bright area, the white regions
become perceivably (cognitively) brighter, and the black regions become perceivably darker.
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Therefore, the perceived contrast level substantially increases under a bright-lighting
condition.

To consider the color appearance phenomenon, the Stevens effect is applied to obtain
the injection detail plane (Dinj) as:

Dinj(i, j) = 10τ(i,j) (7)

τ(i, j) = Dmerge(i, j)× (0.8 + FL(i, j))0.25 (8)

In Equation (7), to emphasize the fineness of intensity variation in detail, the processed
detail plane is converted back to a linear domain by a power function. In Equation (8), τ
involves the merged detail plane and the luminance-dependent factor (FL), which is used
to adaptively model the Stevens effect at different luminance levels. The FL value is directly
adopted from the previous work [26], and it can be expressed as:

FL(i, j) = 0.1× (LA(i, j))0.33 ×
[

1−
(

1
LA(i, j) + 1

)4
]2

+ 0.2× LA(i, j)× (LA(i, j) + 1)−4 (9)

where LA is the luminance of the adapted field. Finally, we combine the injection detail
plane and the logarithmic luminance plane as:

Iinj(i, j) = Ylog(i, j) + Dinj(i, j) (10)

The intensity of Iinj is further normalized through the following nor function:

Iinj_n(i, j) = nor
(

Iinj(i, j)
)
=

Iinj(i, j)−min
(

Iinj
)

max
(

Iinj
)
−min

(
Iinj
) (11)

Figure 4 shows the pixel intensity distribution in each step; it illustrates the underlying
concept of the detail enhancement performed in Section 3.2. As indicated by the green line
in Figure 4b, if the luminance channel is directly adjusted by a linear compression, most of
the limited dynamic range is preferentially assigned to the regions where local contrasts
are relatively high; by contrast, the remaining regions are compressed (to almost zero)
severely and thus drastically lose details. Therefore, in view of the nonlinearity between
the actual brightness and the brightness perceived by human eyes, we first converted the
luminance channel into the logarithmic domain (blue dashed curve in Figure 4a). However,
although the major coarse details (i.e., large-scale variations) in the image were maintained,
the small-scale details tended to be lost after normalized compression.
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Figure 4. Comparison of the intensity distribution with (and without) the pre-processed detail enhancement along the line
segment shown in the bottom right of Figure 1. (a) Before normalization. (b) After normalization. As shown in the red
curve of (b), the goal of Section 3.2 was to preserve the local features as much as possible while normally compressing the
global features.
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To address the above problem, we proposed injecting the micro- and macro-detail
planes into the logarithmic luminance plane (red dashed curve in Figure 4a). Moreover, the
Stevens effect was applied to consider the color appearance phenomenon in which the per-
ceived image contrast varies as the lighting condition changes. Through the detail injection
procedure, the local details are strengthened and are thus still visible after normalization
as we desired. Nevertheless, the global contrast of nor

(
Iinj
)

was sacrificed, as shown in
Figure 4b. In the next step, we deal with this problem by using the HVS-based modified
histogram equalization.

3.3. HVS-Based Modified Histogram Equalization

In the first stage, the proposed method prioritizes preserving local features. However,
the dynamic ranges of images are decreased, and thus, the global contrast is low. To solve
this problem, in the second stage, we proposed using the property of image histograms
and the HVS characteristics to adjust the configuration of the dynamic range by stretching
pixel intensities. Therefore, after reallocation, the overall tone appears in a high-contrast
state without sacrificing detailed information.

A histogram is a discrete function that counts the total number of pixels at different
intensity levels. Therefore, we can use it to read the information contained in the image. For
example, a dark image tends to have the most low-intensity pixels, and so the peak of its
histogram will appear at a left-side (i.e., lower intensity) level. In another case, pixels in a
low-contrast image tend to distribute over close intensity levels, and so a concentrated and
narrow histogram will be generated. In addition, traditional histograms usually accumulate
m equispaced bin widths to construct the bin edge Edgek with the same spacing:

Edgek =

{
min

(
Iinj_n

)
, i f k = 0

Edgek−1 + ∆ω, i f k = 1, 2, . . . , m
(12)

where Iinj_n indicates the luminance channel after detail injection, Imax and Imin, respec-
tively indicate the maximum and minimum of Iinj_n, and ∆ω = (Imax − Imin)/m is the
equispaced bin width. The parameter m is used for adjusting the total number of quantifi-
cation levels in the histogram. A larger m value indicates the use of more intensity levels
for rendering a high-quality image. By contrast, a smaller m value indicates that lower
computation time is required. Under the trade-off between time and quality, the value of m
was empirically set as 60. Moreover, assuming an input image is an unknown signal, the
probability P(bk) assigned to each bin can be expressed by:

P(bk) =
N(bk)

Q
(13)

Iinj_n(i, j) ∈ bk, i f Edgek−1 ≤ Iinj_n(i, j) < Edgek (14)

where bk is the κ-th bin and is defined as the interval between Edgek−1 and Edgek, that is,
bk = [Edgek−1, Edgek) . The bin count N(bk) is defined as the number of pixels within bk,
and Q is the total number of pixels in the image.

Traditional histogram equalization uses a uniform bin width to construct a histogram
and subsequently perform histogram-based mapping techniques to adjust the dynamic
range. However, for those histograms made from a uniform bin width, the bin counts may
vary significantly: For the pixels which belong to the bins with large bin counts, there is
insufficient space for stretching the pixel intensities to depict the image details. In contrast,
for the pixels which belong to the bins with small (sometimes, even equal to zero) bin
counts, they occupy too much dynamic range and thus limit the arrangement of the entire
contrast scale. Based on this observation, we found that instead of stretching intensities
with the fixed equal-spacing bin width, it was better to arrange each bin width according
to the image characteristics dynamically.

In this study, two factors were considered to adjust the dynamic range through the
reallocation of the histogram configuration. First, the limited dynamic range is assigned
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to the bins where sufficient pixels actually exist. Second, a psychophysical metric, the
just noticeable difference (JND), is used to balance regional contrast and global contrast.
Therefore, the bin width is initialized in proportion to (bk), which can be expressed as:

ωk = N(bk)
f (15)

where ωk represents the initial width of the κ-th bin, and f equals one minus the standard
deviation of P(bk). When the probability of pixels appearing at each intensity level is more
dispersed (i.e., the standard deviation is large), the difference between bin counts is larger.
Moreover, if the gaps between individual bin widths are wide, the dynamic range is mostly
occupied by the intensity levels corresponding to great numbers of bin counts; however, if
the gaps are small, the differences among individual intensity levels are indistinguishable
from each other, leading to the loss of important information about images. Therefore,
we set Equation (15) as a power function and determine the degree of compression based
on the degree of probability dispersion. That is, the more obvious the dispersion of the
histogram, the smaller is the f value used.

Cutting down the bin widths where bin counts are small and reallocating wider bin
widths to the bins where bin counts are large can prevent the situation in which most
pixels are at certain narrow intervals of the entire dynamic range. Nevertheless, this is not
sufficient. Once an image has big patches that consist of similar colors, a large number
of pixels with close intensities are assigned to certain bins, and the pixels of these bins
also dominate the dynamic range of the output image, thereby limiting the stretch range
of other pixels. Therefore, from the aspect of perceived brightness, we further use the
characteristics of HVS to establish a mechanism for correcting ωk.

The background luminance affects the perception of human eyes. The JND metric rep-
resents such characteristic of the HVS, which describes the minimum luminance difference
between the target and background to be noticeable by human eyes: At the beginning of
the experiment, the observers fixate on a screen until they are adapted to the background
luminance level (hereafter called the adaptation level, La). Then, the screen starts flashing a
disc-shaped light spot, and the observers are asked to report whether the target disc can be
recognized from the background. The experiment defines JNDs under different adaptation
levels by adjusting the luminance, and as a result, the threshold versus intensity (TVI)
curve can be obtained by combining the relationship between the detection threshold and
the background luminance in the logarithmic domain. In this study, we directly adopted
the JND/TVI model from [27], which can be expressed as:

log(∆L) =



−3.81, i f log(La) < −3.94
(0.405× log(La) + 1.6)2.8 − 3.81,

i f − 3.94 ≤ log(La) < −1.44
log(La)− 1.345,

i f − 1.44 ≤ log(La) < −0.0184
(0.249× log(La) + 0.65)2.7 − 1.67,

i f − 0.0184 ≤ log(La) < 1.9
log(La)− 2.205, i f log(La) ≥ 1.9

(16)

where ∆L is the threshold value perceived by human eyes at each adaptation level and the
units of both ∆L and La are cd/m2 .

As depicted in Equation (16), the JND/TVI model is defined on a log-log domain.
Although human eyes can capture a wide range of luminance intensities, actually two types
of retinal cells are used in cooperation—the rod cells function in the dim-light condition,
and the cone cells function in the well-lit condition. Therefore, the JND value increases
as the adaptation level increases, implying that the bins regarding different luminance
intensities inherently require different bin widths; that is, the bins at higher intensity levels
need more space for stretching. Considering the abovementioned property, this study
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proposes the model of a JND-based threshold (T JND
k ) to ensure that the limited dynamic

range reaches the most effective arrangement:

T JND
k = ∑ ωk ×

∆Lk

∑ Lk
(17)

where T JND
k represents the maximum permissible bin width of the κ-th bin, and ∆Lk repre-

sents the threshold value of the κ-th bin from Equation (16). Because JND is proportional
to the background luminance, the maximum intensity in the κ-th bin is set as La for the
calculation of the corresponding ∆Lk so that all pixels in the bin are guaranteed to have
sufficient stretched space. Moreover, for those bins whose initial bin widths exceed T JND

k ,
pixel distortion may occur in the output image because they initially obtain too much
stretched space. Therefore, each initial bin width is corrected by:

ω′k =

{
ωk, i f ωk ≤ T JND

k
T JND

k , otherwise
(18)

In summary, Figure 5a indicates the variations in bin width ratio arrangement in
different stages, where the cyan bars indicate the equispaced bin widths used in the
traditional methods, yellow bars indicate the initial bin widths from Equation (15), and
magenta bars indicate the corrected bin widths from Equation (18). Considering that if
dominant bins (bins with significantly wide bin widths) exist, unnatural colors will occur
due to overemphasis of certain pixels, this work utilizes the JND model to define the
maximum permissible bin width, i.e., the green curve. As shown in Figure 5a, the bins
in which the bin width ratio exceeded their corresponding JND threshold were corrected
(i.e., extra bin width is deleted), and the other bins keep their initially allotted bin widths
to maintain the relationship of assigning dynamic range to bins that really contain pixels.
Figure 5b shows two output histograms. The cyan one was generated using the traditional
approach, and the magenta one was generated using the proposed bin width adjustment
approach that automatically allocated bin widths and appropriately utilized the dynamic
range. Furthermore, the histogram generated using the proposed method not only covers
wide intensity levels, which means that the global contrast has been visually expanded,
but also helps generate natural tones that are close to the real scene.
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3.4. Luminance Adaptation and Color Recovery

After bin width adjustment, all bin widths are different from each other, and more-
over, all possess a suitable range because both the properties of the HVS and the image
content are considered. The limited dynamic range is preferentially assigned to places
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with abundant details by imposing restrictions on the bins where the probability of pixels
appearing is low. Next, the modified bin edges (Edge′k) can be calculated as:

Edge′k =

{
0, i f k = 0

Edge′k−1 +
ω′k

∑ ω′k
, i f k = 1, 2, . . . , m

(19)

From the information of the modified bin edges, a look-up table (LUT) is constructed
by using the standard histogram equalization method and the linear interpolation scheme.
The LUT is used to form the output luminance plane (Yout). Because the LUT is a global
monotonic mapping function, when rearranging the pixel intensity, artificial artifacts such
as blocking and halo effects are guaranteed to be avoided. Finally, the tone-mapped image
is obtained as:

LDRc(i, j) =
(

HDRc(i, j)
Yin(i, j)

)s
·Yout(i, j) (20)

where the subscript c ∈ {R, G, B} represents the three RGB channels, and s is set as 0.65 to
control the saturation.

4. Experimental Results and Discussions
4.1. Self-Evaluation

To verify the effectiveness of our proposed algorithm, we compared it with five
state-of-the-art photographic reproduction algorithms, including a global-based method
from [9] (published in 2018), two local-based methods from [11] (published in 2013),
and [28] (published in 2020), and two parallel-architecture-type hybrid methods from [21]
(published in 2019) and [23] (published in 2017). The test images were obtained from
public online resources [29–31]. For the comparison of computational performance, taking
the image memorial_o876 (with a size of 768 × 512) as an example, the processing time
required to generate a reproduced image was 0.6069s (in [9]), 0.9511s (in [11]), 3.8284s
(in [21])), 1.3471s (in [23]), 1.0971s (in [28]), and 0.9325s (in the proposed method). All the
experiments were performed in MATLAB R2019b with an i7–4790 processor running at
3.60 GHz. In addition to self-evaluation (Section 4.1) of the proposed method, the results of
subjective and objective comparison with other methods were also provided in Sections 4.2
and 4.3, respectively.

First, we evaluated the most important property in this study, namely, the HVS-
based modified histogram equalization approach. Unlike other methods that simply
perform global compression, we proposed the use of a bin width adjustment scheme
(and the corresponding histogram equalization) to reallocate the overall tone into a fixed
dynamic range. Figure 6a,b show the histograms and the results before and after bin width
correction, respectively, where the largest bin widths of each histogram are marked in
yellow. In Figure 6a, a large number of pixels have similar luminance intensity; therefore,
the yellow bin initially possesses a large proportion of the dynamic range. However, if too
much dynamic range is allocated to the pixels with close intensities, the image contrast will
be over-stretched and will thus over-amplify some noises, as shown in the sky in Figure 6a.
To address this problem, we refer to the characteristic of the HVS and use the JND-based
threshold to automatically correct the bin widths that will take up too much dynamic range.
As shown in Figure 6b, after bin width correction, the global contrast was maintained, and
the output result has a more natural appearance.
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In Figure 7, we refer to images with different exposure levels (LDR images down-
loaded from [32]) to evaluate our proposed method from a different aspect. Generally, for
comparison among images captured by a common camera, the overall tones of middle-
exposed images were visually pleasing and close to the real scenes, whereas under- and
over-exposed images clearly show the details of bright and dark areas, respectively. Al-
though high-end HDR cameras can record a wider dynamic range of luminance intensities,
considerable detailed information tends to be lost when an HDR image is directly displayed
on an LDR monitor (second column from the right). As shown in the rightmost column,
the results of our method not only maintain natural tones but also preserve the details of
the bright and dark areas.
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4.2. Subjective Analysis

In Figures 8–11, we selected images under different conditions to verify whether the
proposed method outperforms other methods in having natural tones and rich details.
Figure 8 shows the tone-mapped results using the test image Spheron_NapaValley. For
Figure 8a,e, although the natural tone of the scene was retained, the details of dark areas
can hardly be seen. In Figure 8d, the detail clarity problem was slightly improved; however,
the weighted fusion process causes unnatural seams in the sky. In Figure 8b, the details
are clearly visible; however, the global tone was faded. In Figure 8c, although the method
of [28] improved the problem of detail clarity with contrast; however, the global tone was
over-saturated, resulting in a halo effect in the sunset part. The result of our method is
presented in Figure 8f, where the trade-off between local and global contrasts was balanced
so that it simultaneously retains clear details and the overall color information.
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Figure 8. Results of the test image Spheron_NapaValley by (a) Khan et al. [9], (b) Gu et al. [11], (c) Gao et al. [28], (d) Ok
et al. [23], (e) Yang et al. [21], and (f) the proposed method. The white rectangles indicate the areas which should be closely
examined by the reader.
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Figure 9 shows the tone-mapped results using the test image Cadik_Desk02. In
Figure 9a,d, the global contrast was maintained; however, the detailed information such as
the text in the book was lost. In Figure 9b, the details are well preserved; however, artificial
artifacts appearing around the lamp were caused by gradient reversal. In Figure 9c, the
overall tone is clearly bright, and the details of the text in the book are slightly visible;
however, the details in the bottom-left dark area are low. In Figure 9e, an adaptive gamma
correction method was used to correct the tones of bright and dark areas separately;
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however, for a dim indoor scene like this example, an unnatural overall tone tends to be
produced. In Figure 9f, the preservation of the natural tone results in a visually pleasing
appearance; further, the details are clear, and no artifacts are present because of the use of
the proposed multiscale detail injection scheme. Clearly, the proposed method provided
the best performance in terms of the coordination of global and local characteristics.

Unlike the indoor scene in Figure 9, Figure 10 shows the reproduced results of an
outdoor scene with sufficient lighting: Tree_oAC1. In Figure 10a, the detailed textures of
the trunk and the rear trees were not preserved and were thus obscured. In Figure 10b, the
sky region and fallen leaves are clear; however, the color is not sufficiently vivid and lacks
contrast. In Figure 10c, the details are clear, but the colors are oversaturated, leading to edge
distortion, reducing the pleasing visual experience. In Figure 10e, the global chrominance
was somehow distorted, and thus, the visual quality was degraded in terms of rendering
global tone and local details. Moreover, in Figure 10b,c,e, the noise in the centered tree
hole region was amplified. In Figure 10d, although the overall contrast was preserved, the
global chrominance was faded (especially in the background). In Figure 10f, in addition to
the preservation of naturalness and details, our method prevented high-frequency noise in
the tree hole from being amplified and thus provides a visually pleasing appearance.

Figure 11 presents three more examples, with magnified images of the dark and
bright areas provided at the right-hand side of each image. An outstanding photographic
reproduction method not only maintains the structural information of the input image
but also produces natural and attractive results. In terms of structure, the proposed
method could effectively preserve the details of bright and dark areas and avoid artificial
artifacts that are usually produced by the gradient reversal of local-based photographic
reproduction methods. In terms of visual attraction, image components were used to
allocate a limited dynamic range dynamically, and furthermore, the characteristics of the
HVS were considered. Our resultant images not only conformed to the human visual
perception but also provided a good viewing experience for observers.

4.3. Objective Analysis

In addition to the subjective comparisons, objective evaluation results were obtained
using all the images of the dataset in [29], where the dynamic range varied from 2.0 to 8.9, as
shown in Table 1. As shown in Figure 12, the images of the dataset from [29] were obtained
from various scenes, e.g., outdoor/indoor scenes, day/night scenes, country/urban scenes,
and so on. The first objective quality metric is called the tone mapping quality index
(TMQI) [33]. It measures the image quality in terms of the structural fidelity (TMQI-S),
statistical naturalness (TMQI-N) between the input HDR image and the output LDR result,
and overall quality (TMQI-Q) obtained by integrating TMQI-S and TMQI-N by weighted
power functions.

Table 1. List of 33 test images from the dataset from [29] and their dynamic ranges (D).

No. Name D No. Name D No. Name D

1 Apartment_float_o15C 4.7 12 StillLife_o7C1 6.1 23 rend04 4.5
2 AtriumNight_oA9D 4.1 13 Tree_oAC1 4.4 24 rend05_o87A 3.3
3 Desk_oBA2 5.2 14 bigFogMap_oDAA 3.6 25 rend06_oB1D 3.6
4 Display1000_float_o446 3.4 15 dani_belgium_oC65 4.1 26 rend07 8.9
5 Montreal_float_o935 3.1 16 dani_cathedral_oBBC 4.1 27 rend08_o0AF 3.7
6 MtTamWest_o281 3.4 17 dani_synagogue_o367 2.0 28 rend09_o2F3 3.9
7 Spheron3 5.8 18 memorial_o876 4.8 29 rend10_oF1C 5.0
8 SpheronNice 4.7 19 nave 6.0 30 rend11_o972 4.1
9 SpheronPriceWestern 2.8 20 rend01_oBA3 3.0 31 rend12 8.9
10 SpheronNapaValley_oC5D 3.2 21 rend02_oC95 4.1 32 rend13_o7B0 4.1
11 SpheronSiggraph2001_oF1E 4.5 22 rend03_oB12 3.2 33 rosette_oC92 4.4
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Tables 2–4 present the TMQI data in terms of TMQI-S, TMQI-N, and TMQI-Q, where
the highest and second-highest scores of each row are marked in green and yellow, respec-
tively. The scores of these three evaluation standards are all between 0 and 1. The higher
the TMOI score is, the better the image quality of a reproduced image has. Moreover, the
total number of the highest scores of each method is counted in the last row, and the one
with the highest total number is marked in bold. As shown in Tables 2–4, our method
has, respectively, 16, 9, and 12 first-ranked images in the three quality indicators, thereby
surpassing the other five algorithms in each table. The results listed in Tables 2–4 indicate
the superiority of the proposed method in terms of different TMQI metrics.

Table 2. TMQI-S score of images from the dataset from [29] and the total number of highest scores for each method.

Image Khan et al. [9] Gu et al. [11] Gao et al. [28] Ok et al. [23] Yang et al. [21] Our Method
Apartment_float_o15C 0.8631 0.8132 0.7151 0.8543 0.6364 0.8850

AtriumNight_oA9D 0.9058 0.8809 0.8726 0.8982 0.8928 0.8972
Desk_oBA2 0.8727 0.8526 0.8677 0.8700 0.8146 0.8885

Display1000_float_o446 0.8676 0.8643 0.8325 0.8626 0.8375 0.8925
Montreal_float_o935 0.8344 0.7532 0.7163 0.8416 0.5951 0.8297

MtTamWest_o281 0.9275 0.8758 0.8228 0.8900 0.7278 0.9231
Spheron3 0.8707 0.7543 0.7658 0.8160 0.6619 0.8144

SpheronNice 0.7029 0.6892 0.7090 0.7380 0.5530 0.8004
SpheronPriceWestern 0.8226 0.7663 0.9204 0.8088 0.6084 0.8321

SpheronNapaValley_oC5D 0.9228 0.8802 0.6868 0.9185 0.9226 0.9437
SpheronSiggraph2001_oF1E 0.8086 0.7950 0.6970 0.8329 0.6764 0.8251

StillLife_o7C1 0.7907 0.6368 0.7063 0.7636 0.6164 0.8093
Tree_oAC1 0.8760 0.7691 0.7115 0.8604 0.8512 0.9044

bigFogMap_oDAA 0.9391 0.8468 0.9290 0.9354 0.9058 0.9117
dani_belgium_oC65 0.8974 0.8571 0.8381 0.8763 0.8065 0.8931

dani_cathedral_oBBC 0.8786 0.8775 0.8105 0.8963 0.9014 0.9098
dani_synagogue_o367 0.9735 0.8617 0.7212 0.9677 0.4546 0.9263

memorial_o876 0.8742 0.8575 0.8565 0.8709 0.9061 0.8949
nave 0.8678 0.8276 0.7522 0.8498 0.8632 0.8554

rend01_oBA3 0.8030 0.7738 0.7610 0.7966 0.7197 0.7880
rend02_oC95 0.8930 0.8569 0.8621 0.8772 0.8021 0.8961
rend03_oB12 0.8624 0.8275 0.7643 0.8561 0.8165 0.8443

rend04 0.8763 0.8177 0.8461 0.8619 0.8489 0.8782
rend05_o87A 0.8709 0.7872 0.7453 0.8666 0.7833 0.8730
rend06_oB1D 0.9303 0.9097 0.7550 0.9405 0.9158 0.9210

rend07 0.7663 0.7567 0.6885 0.7513 0.7883 0.7725
rend08_o0AF 0.9016 0.8580 0.8294 0.8799 0.7656 0.9032
rend09_o2F3 0.9246 0.8594 0.7642 0.9138 0.7668 0.8830
rend10_oF1C 0.7600 0.7147 0.6884 0.7459 0.6070 0.7914
rend11_o972 0.8577 0.8156 0.7164 0.8594 0.7961 0.8814

rend12 0.5836 0.6174 0.5058 0.6174 0.5517 0.6533
rend13_o7B0 0.8426 0.7045 0.5385 0.7790 0.5367 0.7138
rosette_oC92 0.8710 0.8782 0.7525 0.8754 0.8743 0.8898

Total number of highest scores 11 0 1 3 2 16

Green (and Yellow) numbers indicate the best (and the second-best) performing methods for each row, respectively.
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Table 3. TMQI-N score of images from the dataset in [29] and total number of highest scores for each method.

Image Khan et al. [9] Gu et al. [11] Gao et al. [28] Ok et al. [23] Yang et al. [21] Our Method
Apartment_float_o15C 0.1924 0.5574 0.3266 0.2325 0.0057 0.5819

AtriumNight_oA9D 0.9231 0.7408 0.9952 0.7588 0.4333 0.8941
Desk_oBA2 0.9384 0.2219 0.3414 0.9309 0.4161 0.8246

Display1000_float_o446 0.9716 0.4511 0.5147 0.8960 0.6954 0.6767
Montreal_float_o935 0.6796 0.5863 0.4827 0.8802 0.0239 0.7591

MtTamWest_o281 0.4447 0.6260 0.7823 0.8542 0.3297 0.9689
Spheron3 0.3273 0.3470 0.2161 0.4647 0.0439 0.6419

SpheronNice 0.2154 0.1818 0.3802 0.3833 0.0275 0.7614
SpheronPriceWestern 0.2384 0.2410 0.6440 0.3327 0.0479 0.8732

SpheronNapaValley_oC5D 0.9703 0.3161 0.2192 0.8007 0.9722 0.3494
SpheronSiggraph2001_oF1E 0.2263 0.7610 0.3065 0.3685 0.0315 0.3866

StillLife_o7C1 0.6606 0.5661 0.2309 0.7384 0.9072 0.5474
Tree_oAC1 0.9983 0.3090 0.7160 0.9311 0.6864 0.8580

bigFogMap_oDAA 0.5713 0.5591 0.5973 0.8172 0.0593 0.1685
dani_belgium_oC65 0.9092 0.8164 0.4998 0.8853 0.3094 0.9810

dani_cathedral_oBBC 0.8907 0.4703 0.2326 0.9974 0.7204 0.6609
dani_synagogue_o367 0.6486 0.3386 0.7619 0.7761 0.1128 0.5031

memorial_o876 0.8038 0.2666 0.1767 0.5786 0.2629 0.4157
nave 0.8101 0.9358 0.1432 0.8677 0.2235 0.9027

rend01_oBA3 0.9663 0.0343 0.3516 0.8414 0.1096 0.6820
rend02_oC95 0.8984 0.7131 0.2555 0.9860 0.2098 0.7876
rend03_oB12 0.9457 0.7657 0.5551 0.9428 0.1120 0.4781

rend04 0.9364 0.7112 0.4196 0.8794 0.1153 0.2038
rend05_o87A 0.5791 0.9096 0.4179 0.6624 0.3368 0.7149
rend06_oB1D 0.3676 0.8107 0.0208 0.5004 0.0254 0.8606

rend07 0.9799 0.8005 0.1296 0.8766 0.3345 0.9331
rend08_o0AF 0.8867 0.9878 0.8208 0.9087 0.4212 0.9290
rend09_o2F3 0.7016 0.2394 0.2692 0.7260 0.0892 0.8307
rend10_oF1C 0.9318 0.9896 0.4474 0.9447 0.1939 0.9357
rend11_o972 0.8177 0.7983 0.6267 0.7643 0.4156 0.8490

rend12 0.0845 0.6519 0.0758 0.1048 0.0364 0.4317
rend13_o7B0 0.1980 0.2979 0.1393 0.2174 0.0635 0.2142
rosette_oC92 0.8591 0.8581 0.1490 0.9440 0.7351 0.5430

Total number of highest scores 8 7 1 6 2 9

Green (and Yellow) numbers indicate the best (and the second-best) performing methods for each row, respectively.

Table 4. TMQI-Q score of images from the dataset in [29] and total number of highest scores for each method.

Image Khan et al. [9] Gu et al. [11] Gao et al. [28] Ok et al. [23] Yang et al. [21] Our Method
Apartment_float_o15C 0.8279 0.8837 0.8133 0.8344 0.7033 0.9074

AtriumNight_oA9D 0.9653 0.9316 0.9667 0.9389 0.8839 0.9588
Desk_oBA2 0.9587 0.8316 0.8601 0.9569 0.8595 0.9463

Display1000_float_o446 0.9621 0.8795 0.8818 0.9499 0.9127 0.9246
Montreal_float_o935 0.9094 0.8711 0.8424 0.9418 0.6981 0.9204

MtTamWest_o281 0.8950 0.9121 0.9220 0.9511 0.8178 0.9763
Spheron3 0.8582 0.8292 0.8058 0.8685 0.7283 0.8978

SpheronNice 0.8269 0.8113 0.8217 0.8422 0.7117 0.9125
SpheronPriceWestern 0.9764 0.8585 0.9267 0.9505 0.9766 0.9382

SpheronNapaValley_oC5D 0.7866 0.7747 0.7824 0.8311 0.6845 0.8815
SpheronSiggraph2001_oF1E 0.8203 0.9109 0.8038 0.8558 0.7284 0.8570

StillLife_o7C1 0.8941 0.8311 0.7260 0.8984 0.8770 0.8809
Tree_oAC1 0.9681 0.8261 0.8792 0.9543 0.9151 0.9554

bigFogMap_oDAA 0.9197 0.8933 0.9214 0.9574 0.8042 0.8352
dani_belgium_oC65 0.9610 0.9366 0.8808 0.9520 0.8370 0.9702

dani_cathedral_oBBC 0.9534 0.8864 0.8222 0.9733 0.9338 0.9267
dani_synagogue_o367 0.9409 0.8580 0.8892 0.9593 0.6725 0.9049

memorial_o876 0.9393 0.8424 0.8225 0.9031 0.8546 0.8813
nave 0.9386 0.9460 0.7848 0.9422 0.8348 0.9489

rend01_oBA3 0.9434 0.7592 0.8320 0.9235 0.7663 0.8967
rend02_oC95 0.9583 0.9208 0.8414 0.9667 0.8149 0.9427
rend03_oB12 0.9570 0.9208 0.8692 0.9548 0.7954 0.8788

rend04 0.9594 0.9097 0.8689 0.9472 0.8052 0.8345
rend05_o87A 0.9032 0.9308 0.8397 0.9155 0.8357 0.9254
rend06_oB1D 0.8816 0.9498 0.7482 0.9081 0.7947 0.9601

rend07 0.9348 0.9058 0.7617 0.9154 0.8367 0.9299
rend08_o0AF 0.9589 0.9618 0.9297 0.9563 0.8463 0.9654
rend09_o2F3 0.9370 0.8372 0.8166 0.9379 0.7748 0.9457
rend10_oF1C 0.9261 0.9206 0.8275 0.9237 0.7503 0.9357
rend11_o972 0.9370 0.9224 0.8665 0.9294 0.8541 0.9480

rend12 0.7145 0.8385 0.6829 0.7319 0.6874 0.8134
rend13_o7B0 0.8236 0.8044 0.7127 0.8099 0.6910 0.7897
rosette_oC92 0.9467 0.9485 0.7863 0.9602 0.9289 0.9022

Total number of highest scores 9 3 1 7 1 12

Green (and Yellow) numbers indicate the best (and the second-best) performing methods for each row, respectively.
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The second objective quality metric is called the feature similarity index for tone-
mapped images (FSITM_TMQI) [34]. It claims to be an improved version of TMQI because
it further considers the phase-derived features. As in TMQI, the score of FSITM_TMQI was
between 0 and 1, and a higher one indicates better quality. Figure 13 presents the results of
FSITMr_TMQI, FSITMg_TMQI, and FSITMb_TMQI obtained by each method, where the
subscript indicates one of the RGB channels. Again, the proposed method exhibited better
overall performance than other methods; specifically, it had the top-three scores for most of
the 33 images.
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The abovementioned indicators are full-reference image quality assessment (FRIQA)
techniques that were formulated by referring to the undistorted images. Next, we provide
a comparison of two no-reference image quality assessment (NRIQA) techniques: the
blind/referenceless image spatial quality evaluator (BRISQUE) [35] and the blind tone-
mapped quality index (BTMQI) [36]. BRISQUE refers to the pixel distribution of an image
and uses the relationship between normalized luminance coefficients and adjacent pixels
to obtain features. BTMQI refers to the analyses of information, statistical naturalness, and
structural gradient, which represent different types of features in an image. Both these
NRIQA indicators measure the image quality through the features of a tone-mapped image;
the lower the score, the better the quality. Regarding the research topic of this paper, as
far as we know, the TMQI metrics could be considered the most representative metrics.
For example, the TMQI metrics were used in the studies of [9,10,13,18,21–23,28,33,34,36].
For the remaining selected metrics, they are commonly used to evaluate the performance
of photographic reproduction methods, and they also have been used in many studies.
For example, the FSITM metrics were used in the studies of [9,13,33], and the no-reference
image quality assessment techniques (BRISQUE or BTMQI) metrics were used in the
references of [13,23,28,35,36].

Table 5 presents the results of the averaged score obtained using the abovementioned
FRIQA and NRIQA techniques, where the first and second places are marked in green and
yellow, respectively. Among the eight objective quality indicators, our method achieved six
first-ranked scores and one second-ranked score. Notably, the proposed method ranked
only third in TMQI-N. Due to the pre-processing stage of our method, we utilized a detail
injection scheme to enhance the local details. The details, especially in the highlight and
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dark regions, were indeed enhanced and provide visually pleasing results, as shown in
Figures 8–11; however, the naturalness of the image was affected. Overall, the performance
of our work remains remarkable, as shown in Table 5, thereby validating the effectiveness
of the proposed method.

Table 5. Average score of different objective evaluations for the dataset in [29].

Metric Khan et al.
[9]

Gu et al.
[11]

Gao et al.
[28]

Ok et al.
[23]

Yang et al.
[21]

Our
Method

TMQI-Q 0.912 0.880 0.834 0.916 0.807 0.912
TMQI-S 0.856 0.807 0.762 0.848 0.752 0.858
TMQI-N 0.684 0.572 0.401 0.721 0.288 0.671
BRISQUE 25.230 25.420 24.283 26.200 26.050 24.100

BTMQI 3.646 3.656 5.010 4.249 4.978 3.202
FSITMr_TMQI 0.860 0.840 0.820 0.860 0.806 0.864
FSITMg_TMQI 0.872 0.848 0.813 0.867 0.816 0.873
FSITMb_TMQI 0.863 0.847 0.819 0.861 0.807 0.865

Green (and Yellow) numbers indicate the best (and the second-best) performing methods for each row, respectively.

5. Conclusions

This study proposes a cascaded-architecture-type photographic reproduction method
that prioritizes enhancing multiscale local features and then utilizes an HVS-based mod-
ified histogram equalization scheme to formulate a global tone adaption curve. Unlike
traditional methods that use single-scale decomposition, we used a multiscale micro- and
macro-detail injection technique to improve the visibility of local features. Moreover, in
parallel-architecture-type hybrid reproduction methods, the final weighted fusion is nor-
mally similar to a balance process; to prevent abrupt fusion results, either the clarity of
details (advantage of local-based reproduction methods) or the naturalness (advantage
of global-based reproduction methods) of tones is sacrificed. As a result, the resulting
images from parallel-architecture-type hybrid reproduction methods tend to be vulnerable
to dullness. To address this problem, we propose combining the advantages of global-
based/local-based approaches in a cascaded architecture to ensure consistency among the
dark and the bright regions throughout the image and provide a natural appearance. The
experimental results of subjective visual comparisons (Figures 8–11) and objective compar-
isons (Tables 2–5) validate the effectiveness and superiority of our proposed method.
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