Modern Displacement Measuring Systems Used in Geotechnical Laboratories: Advantages and Disadvantages
Abstract
:1. Introduction
2. Modern Measuring Systems
2.1. Small Displacement Zone—Local Measurement
2.2. Necessity of Strain Measuring—Modules G, E, K and Poisson’s Ratio
3. Localisation and Development of Deformations in the Sample
3.1. Nature of Deformation
3.2. Overview of the Available Noninvasive Measurement Methods
- pictures:
- observation of the reference points (so-called markers) and the deformation of the grid with equal meshes,
- photogrammetry/stereophotogrammetry,
- Digital image correlation (DIC).
- mesh method/Moiré effect analysis,
- interferometry:
- Moiré interferometry,
- Electronic (Digital) speckle pattern interferometry (ESPI) or (DSPI),
- holographic interferometry or optical holography.
- DIC—digital image correlation,
- V-DIC or DVC—volume digital image correlation or digital volume correlation,
- PIV or PTV—particle image velocimetry or particle tracking velocimetry.
3.3. Stereophotogrammetry—2D Optical Methods to Study Strain Localisation in Soil
- False image—the photographs taken from a fixed viewpoint at different times during the loading process (false relief stereophotogrammetry (FRS)),
- Real image—the photographs taken from different points in space at the same time.
4. RTX-Based Methods
4.1. Use X-rays in the Triaxial Tests—Tomotriax Apparatus
4.2. Use X-rays in Triaxial Tests—A Synchrotron
4.2.1. Characteristics of the Synchrotron
4.2.2. European Synchrotron Radiation Facility—Extremely Brilliant Source (ESRF-EBS) in Grenoble
- Microtomotriax 1:
- UU type test (unconsolidated and undrained shearing), max. confinning pressure in the cell σ3 = 1 MPa, sample dimensions: diameter φ = 20 mm, height H = 40 mm;
- Microtomotriax 2:
- CD or CU type test (consolidated and drained shearing or consolidated and undrained shearing)), σ3 = 1 MPa, sample dimensions: φ = 20 mm, H = 40 mm;
- Microtomotriax 3:
- UU type test (unconsolidated and undrained shearing), σ3 = 10 MPa, sample dimensions: φ = 10 mm, H = 10 mm.
4.2.3. Analysis of the Results—Combined X-ray Tomography and 3D DIC (V-DIC)
5. Laser Methods
- an image recording by the glass or plexiglass cell wall (inhomogeneity of the material) and by a liquid in the cell,
- an influence of the test cell curvature,
- an influence of the correct selection of sample lighting.
6. Interesting Solutions
6.1. Odometer Test—An Odometer Capable of Measuring Lateral Stresses
6.2. Odometer Test—A Miniaturized Odometer with an Optical Microscope Function
6.3. Bender Elements—Non-Standard Installation in an Odometer and a Direct Shear Apparatus
6.4. Triaxial Apparatus “In Situ”
7. Practical Guidelines Related to the Selection of Modern Displacement Measuring Systems
8. Final Remarks
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clayton, C.R.I.; Khatrush, S.A. A new device for measuring local axial strains on triaxial specimens. Geotechnique 1987, 37, 413–417. [Google Scholar] [CrossRef]
- Jastrzębska, M. Investigations of the Behaviour of Cohesive Soils Subject to Cyclic Loads in the Area of Small Deformations; Silesian University of Technology: Gliwice, Poland, 2010. (In Polish) [Google Scholar]
- Scholey, G.K.; Frost, J.D.; Lo Presti, D.C.F.; Jamiolkowski, M. A review of instrumentation for measuring small strains during triaxial testing of soil specimens. Geotech. Test. J. 1995, 18, 137–156. [Google Scholar] [CrossRef]
- Roscoe, K.H.; Arthur, J.R.F.; James, R.G. The determination of strains in soils by an X-ray method. Civ. Engng Publ. Wks. Rev. 1963, 58, 58, 873–876, 1009–1012. [Google Scholar]
- Arthur, J.R.F. New techniques to measure new parameters. In Proceedings of the Roscoe Memorial Symposium: Stress-strain Behaviour of Soils, Cambridge, UK, 29–31 March 1971; Parry, R.H.G., Roscoe, K.H., Eds.; pp. 340–346. [Google Scholar]
- Bourdeau, P.L. Radiographic visualization in experimental soil mechanics. In Proceedings of the Conference on Digital Image Processing: Techniques and Applications in Civil Engineering, Kona, HI, USA, 28 February–5 March 1993; Frost, J.D., Wright, J.R., Eds.; American Society of Civil Engineers: New York, NY, USA, 1993; pp. 125–134. Available online: http://worldcat.org/isbn/0872629791 (accessed on 22 August 2007).
- Hall, S.A.; Bornert, M.; Desrues, J.; Pannier, Y.; Lenoir, N.; Viggiani, G.; Bésuelle, P. Discrete and continuum analysis of localized deformation in sand using X-ray micro CT and Volumetric Digital Image Correlation. Géotechnique 2010, 60, 315–322. [Google Scholar] [CrossRef]
- Tengattini, A.; Lenoir, N.; Andò, E.; Giroud, B.; Atkins, D.; Beaucour, J.; Viggiani, G. NeXT-Grenoble, the Neutron and X-ray tomograph in Grenoble. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2020, 968, 163939. [Google Scholar] [CrossRef]
- Butterfield, R.; Harkness, R.M.; Andrawes, K.Z. A stereo-photogrammetric technique for measuring displacement fields. Geotechnique 1970, 20, 308–314. [Google Scholar] [CrossRef]
- Desrues, J. Tracking strain localization in geomaterials using computerized tomography. In Proceedings of the International Workshop on Xray CT for Geomaterials, GEOX2003, Kumamoto, Japan, 6–7 November 2003; Otani, J., Obara, Y., Eds.; Balkema: Lisse, The Netherlands, 2004; pp. 15–41. [Google Scholar]
- Zhao, C.; Koseki, J. An image-based method for evaluating local deformations of saturated sand in undrained torsional shear tests. Soils Found. 2020, 60, 608–620. [Google Scholar] [CrossRef]
- Messerklinger, S.; Bleiker, E.; Zweidler, A.; Springman, S.M. Displacement measurement with laser scaninig in triaxial testing apparatuses. In Proceedings of the 16th European Young Geotechnical Engineers Conference, EYGEC, Vienna, Austria, 7–10 July 2004; Brandl, H., Ed.; Österr. Ingenieur- und Architekten-Verein: Vienna, Austria, 2004; pp. 251–260. [Google Scholar]
- Srokosz, P.; Bujko, M.; Bocheńska, M.; Ossowski, R. Optical Flow Method for Measuring Deformation of Soil Specimen Subjected to Torsional Shearing. Measurement 2021, 174, 109064. [Google Scholar] [CrossRef]
- Tatsuoka, F. State-of-the-Art Paper: Some Recent Developments in Triaxial Testing Systems for Cohesionless Soils. In Advanced Triaxial Testing of Soil and Rock; Donaghe, R.T., Chaney, R.C., Silver, M.L., Eds.; ASTM: Phiadelphia, PA, USA, 1988; pp. 7–67. [Google Scholar] [CrossRef]
- Goto, S.; Tatsuoka, F.; Shibuya, S.; Kim, Y.S.; Sato, T. A simple gauge for local small strain measurements in the laboratory. Soils Found. 1991, 31, 169–180. [Google Scholar] [CrossRef] [Green Version]
- Yimsiri, S.; Soga, K.; Chandler, S.G. Cantilever-type local deformation transducer for local axial strain measurement in triaxial test. Geotech. Test. J. 2005, 28, 445–451. [Google Scholar] [CrossRef]
- Enomoto, T.; Koseki, J.; Tatsuoka, F.; Sato, T. Rate-dependent behaviour of undisturbed gravelly soil. Soils Found. 2016, 56, 547–558. [Google Scholar] [CrossRef]
- Burland, J.B.; Symes, M. A simple axial displacement gauge for use in the triaxial apparatus. Geotechnique 1982, 32, 62–65. [Google Scholar] [CrossRef]
- Jardine, R.J.; Symes, M.J.; Bourland, J.B. The measurement of soil stiffness in the triaxial apparatus. Géotechnique 1984, 34, 323–340. [Google Scholar] [CrossRef]
- Ackerly, S.K.; Hellings, J.E.; Jardine, R.J. Discussion. A new device for measuring local axial strains on triaxial specimens. Geotechnique 1987, 3, 414–415. [Google Scholar] [CrossRef]
- Holubec, I.; Finn, P.J. A lateral deformation transducer for triaxial testing: Research note. Can. Geotech. J. 1969, 6, 353–356. [Google Scholar] [CrossRef]
- Kolymbas, D.; Wu, W. Device for lateral strain measurement in triaxial tests with unsaturated specimens. Geotech. Test. J. 1989, 12, 227–229. [Google Scholar] [CrossRef]
- Lawrence, F.V. Ultrasonic Shear Wave Velocity in Sand and Clay; Research report R65-05, Soil Publication No. 175; Massachusetts Institute of Technology: Cambridge, MA, USA, 1965. [Google Scholar]
- Brignoli, E.G.; Gotti, M.; Stokoe, K.H.I. Measurement of shear waves in laboratory specimens by means of piezoelectric transducers. Geotech. Test. J. 1996, 19, 384–397. [Google Scholar] [CrossRef]
- Dyvik, R.; Madshus, C. Laboratory measurements of gmax using bender elements. in advances in the art of testing soils under cyclic conditions. In Proceedings of the ASCE Convention, Detroit, MI, USA, 24 October 1985; Khosla, V., Ed.; ASCE Geotechnical Engineering Division: New York, NY, USA, 1985; pp. 186–196. [Google Scholar]
- Suwal, L.; Kuwano, R. Disk shaped piezo-ceramic transducer for P and S wave measurement in a laboratory soil specimen. Soils Found. 2013, 53, 510–524. [Google Scholar] [CrossRef] [Green Version]
- Heymann, G.; Clayton, C.R.I.; Reed, G.T. Triaxial ultra-small strain measurements using laser interferometry. Geotech. Test. J. 2005, 28, 544–552. [Google Scholar] [CrossRef]
- Xu, D.S.; Borana, L.; Yin, J.H. Measurement of small strain behavior of a local soil by fiber Bragg grating-based local displacement transducers. Acta Geotech. 2014, 9, 935–943. [Google Scholar] [CrossRef]
- Chen, W.B.; Feng, W.Q.; Yin, J.H.; Qin, J.Q. New FBG-based device for measuring small and large radial strains in triaxial apparatus. Can. Geotech. J. Rev. Can. Geotech. 2020, 1–16. [Google Scholar] [CrossRef]
- Brown, S.F.; Snaith, M.S. The measurement of recoverable and irrecoverable deformations in the repeated load triaxial test. Geotechnique 1974, 24, 255–259. [Google Scholar] [CrossRef]
- Menzies, B.K. Design, manufacture and performance of a lateral strain device. Geotechnique 1976, 26, 542–544. [Google Scholar] [CrossRef]
- Cuccovillo, T.; Coop, M.R. The measurement of local axial strains in triaxial tests using LVDTs. Géotechnique 1997, 47, 167–171. [Google Scholar] [CrossRef]
- Chen, W.B.; Feng, W.Q.; Yin, J.H.; Borana, L. LVDTs-based radial strain measurement system for static and cyclic behavior of geomaterials. Measurement 2020, 155, 1–10. [Google Scholar] [CrossRef]
- Witowski, M. Local displacement transducer with miniature position encoder. Geotech. Test. J. 2018, 41, 1147–1154. [Google Scholar] [CrossRef]
- Witowski, M. Local measurements of axial and radial strains using magnetic encoders in triaxial apparatus. In E3S Web of Conferences. In Proceedings of the 7th International Symposium on Deformation Characteristics of Geomaterials, IS-Glasgow 2019, Glasgow, Scotland, UK, 26–28 June 2019; Tarantino, A., Ibraim, E., Jardine, R., Eds.; EDP Sciences: Les Ulis, France, 2019; Volume 29. [Google Scholar] [CrossRef]
- Cole, D.M. A technique for measuring radial deformation during repeated load triaxial testing. Can. Geotech. J. 1978, 15, 426–429. [Google Scholar] [CrossRef]
- Hird, C.; Yung, P. The use of proximity transducers for local strain measurements in triaxial tests. Geotech. Test. J. 1989, 12, 292–296. [Google Scholar] [CrossRef]
- Brown, S.F.; Austin, G.; Overy, R.F. An instrumented triaxial cell for cyclic loading of clays. Geotech. Test. J. 1980, 3, 145–152. [Google Scholar] [CrossRef]
- O’Kelly, B.C.; Naughton, P.J. Use of proximity transducers for local radial strain measurements in a hollow cylinder apparatus. In Proceedings of the 4th International Symposium on Deformation Characteristics of Geomaterials; IS Atlanta 2008, Atlanta, GA, USA, 22–24 September 2008; Burns, S.E., Mayne, P.W., Santamarina, J.C., Eds.; IOS Press: Amstertdam, The Netherlands, 2008. Available online: http://hdl.handle.net/2262/67131 (accessed on 19 August 2013).
- Mishu, L.P. A Study of Stresses and Strains in Soil Specimens in the Triaxial Test. Ph.D. Thesis, Purdue University, West Lafayette, IN, USA, 1966. [Google Scholar]
- Jastrzębska, M.; Kowalska, M. Triaxial tests on weak cohesive soils—some practical remarks (part 2). Arch. Civ. Eng. Environ. 2016, 9, 81–94. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, C. The Use of Seismic Wave Velocities in the Measurement of Stiffness of a Residual Soil. Ph.D. Thesis, University of Porto, Porto, Portugal, 2008. [Google Scholar]
- Isah, B.W.; Mohamad, H.; Harahap, I.S.H. Measurement of small-strain stiffness of soil in a triaxial setup: Review of local instrumentation. Int. J. Adv. Appl. 2018, 5, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.S.X. A new measurement approach for small deformations of soil specimens using fiber bragg grating sensors. Sensors 2017, 17, 1016. [Google Scholar] [CrossRef] [Green Version]
- Witowski, M. Wireless Measurement of Soil Sample Deformation in a Triaxial Cell; Report No. P.416928, Protection No. PAT.227464; Patent Office of the Republic of Poland: Warsaw, Poland, 2018. [Google Scholar]
- Hanzawa, H.; Itoh, Y.; Suzuki, K. Shear characteristics of a quick sand in the Arabian Gulf. Soils Found. 1979, 19, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Georgiannou, V.N.; Rampello, S.; Silvestri, F. Static and dynamic measurements of undrained stiffness on natural over consolidated clays. In Proceedings of the 10th European Conference on Soil Mechanics and Foundation Engineering, Florence, Italy, 26–30 May 1991; Balkema: Rotterdam, The Netherlands, 1991; Volume 1, pp. 91–95. [Google Scholar]
- Jastrzębska, M.; Kalinowska-Pasieka, M. Selected Research Methods in Modern Geotechnical Laboratory—From the Subsoil to the Soil Parameters; Silesian University of Technology: Gliwice, Poland, 2015; Volume 313. (In Polish) [Google Scholar]
- Atkinson, J.H.; Sällfors, G. Experimental determination of stress-strain-time characteristics in laboratory and in situ tests. In Proceedings of the 10th European Conference on Soil Mechanics and Foundation Engineering, Florence, Italy, 26–30 May 1991; Balkema: Rotterdam, The Netherlands, 1991; Volume 3, pp. 915–956. [Google Scholar]
- Mair, R.J. Developments in geotechnical engineering research: Applications to tunnels and deep excavations. Proc. Inst. Civ. Eng. Civ. Eng. 1993, 97, 27–41. [Google Scholar] [CrossRef]
- Tani, K. General report: Measurement of shear deformation of geomaterials—Field tests. In Proceedings of the 1st International Conference on Pre-Failure Deformation Characteristics of Geomaterials, Sapporo, Japan, 12–14 September 1994; Shibuya, S., Mitachi, T., Miura, S., Eds.; Balkema: Rotterdam, The Netherlands, 1994; Volume 2, pp. 1115–1132. [Google Scholar]
- Reiffsteck, P. Nouvelles Technologies D’essai en Mécanique des Sols. État de l’art. In Paramètres de Calcul Géotechnique; Magnan, J.P., Ed.; Presses de l’ENPC/LCPC: Paris, France, 2002. [Google Scholar]
- Jastrzębska, M.; Łupieżowiec, M. The influence of the choice of strain modulus value on foundation settlement. Studia Geotech. Mech. 2011, 33, 31–39. [Google Scholar]
- Burland, J.B.; Georgiannou, V.N. Small strain stiffness under generalized stress changes. In Proceedings of the 10th European Conference on Soil Mechanics and Foundation Engineering, Florence, Italy, 26–30 May 1991; Balkema: Rotterdam, The Netherlands, 1991; Volume 1, pp. 41–44. [Google Scholar]
- Burland, J.B. Small is beautiful—The stiffness of soils at small strains. 9th Bjerrum Memorial Lecture. Can. Geotech. Test. J. 1989, 26, 499–516. [Google Scholar] [CrossRef]
- Georgiannou, V.N. The Behaviour of Clayey Sands under Monotonic and Cyclic Loading. Ph.D. Thesis, University of London, London, UK, 1988. [Google Scholar]
- Jamiolkowski, M.; Lancellotta, R.; Lo Presti, D.C.F.; Pallara, O. Stiffness of toyoura sand at small and intermediate strain. In Proceedings of the13th International Conference on Soil Mechanics and Foundation Engineering, ICSMFE 1994, New Delhi, India, 5–10 January 1994; Publications Committee of XIII ICSMFE, Ed.; Balkema: Rotterdam, The Netherlands, 1994; Volume 1, pp. 169–172. [Google Scholar]
- Jardine, R.J. Some observations on the kinematic nature of soil stiffness. Soils Found. 1992, 32, 111–124. [Google Scholar] [CrossRef] [Green Version]
- Jardine, R.J.; Fourie, A.; Maswoswe, J.; Burland, J.B. Field and laboratory measurements of soil stiffness. In Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering, ICSMFE 1985, San Francisco, CA, USA, 12–16 August 1985; CRC Press: Boca Raton, FL, USA, 1985; Volume 1, pp. 511–514. [Google Scholar]
- Jardine, R.J.; Potts, D.M.; Fourie, A.B.; Bourland, J.B. Studies of the influence of non-linear stress-strain characteristics in soil—structure interaction. Géotechnique 1986, 36, 377–396. [Google Scholar] [CrossRef]
- Jardine, R.J.; Potts, D.M.; St. John, H.D.; Hight, D.W. Some practical applications of a non-linear ground model. In Proceedings of the 10th European Conference on Soil Mechanics and Foundation Engineering, Florence, Italy, 2–30 May 1991; Belkema: Rotterdam, The Netherlands, 1991; Volume 1, pp. 223–228. [Google Scholar]
- Jastrzębska, M. Calibration and Verification of One-Surface Elasto-Plastic Soil Model of Strongly Non-Linear Anisotropic Strengthening. Ph.D. Thesis, Silesian University of Technology, Gliwice, Poland, 2002. (In Polish). [Google Scholar]
- Lipiński, M.J.; Wolski, W.; Fioravante, V.; Jamiolkowski, M.B. Preliminary evaluation of hazard due to liquefaction for żelazny most tailings pond. In Soil Mechanics and Foundation Engineering, Proceedings of the 4th International Conference on Soil Mechanics and Foundation Engineering, ICSMFE 1997, Hamburg, 6–12 September 1997; Publications Committee of XIV ICSMFE, Ed.; Balkema: Rotterdam, The Netherlands, 1997; Volume 3, pp. 1843–1846. [Google Scholar]
- Kuwano, J.; Katagiri, M. Recent state of laboratory stress-strain tests on geomaterials in Japan. In Advanced Laboratory Stress-Strain Testing of Geomaterials; Tatsuoka, F., Shibuya, S., Kuwano, R., Eds.; A.A. Balkema Publishers: Tokyo, Japan, 2001; pp. 47–52. [Google Scholar]
- Dyvik, R.; Olsen, T.S. Gmax measured in oedometer and DSS tests using bender elements. In Proceedings of the 12th International Conference on Soil Mechanics and Foundation Engineering, ICSMFE 1989, Rio dr Janeiro, Brazil, 13–18 August 1989; Publications Committee of XII ICSMFE, Ed.; Taylor & Francis: Milton Park, UK, 1989; Volume 1, pp. 39–42. [Google Scholar]
- Fam, M.; Santamarina, C. Study of geoprocesses with complementary mechanical and electromagnetic wave measurements in an oedometer. Geotech. Test. J. 1995, 18, 307–314. [Google Scholar] [CrossRef]
- Zeng, X.; Ni, B. Stress-induced anisotropic Gmax of sands and its measurement. J. Geotech. Geoenviron. Eng. 1999, 125, 741–749. [Google Scholar] [CrossRef]
- Zeng, X.; Grolewski, B. Measurement of Gmax and estimation of K0 of saturated clay using bender elements in an oedometer. Geotech. Test. J. 2005, 28, 264–274. [Google Scholar] [CrossRef]
- Yun, T.S.; Santamarina, J.C. Decementation, Softening, and Collapse: Changes in small-strain shear stiffness in K0 loading. J. Geotech. Geoenviron. Eng. 2005, 131, 350–358. [Google Scholar] [CrossRef]
- Wang, Y.H.; Ooi, G.L.; Gao, Y. New sensing technology and new applications in geotechnical engineering. In Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, ICSMGE 2013, Paris, France, 2–6 September 2013; Delage, P., Desrues, J., Frank, R., Eds.; Presses des Ponts: Paris, France, 2013; Volume 3, pp. 1909–1912. Available online: http://hdl.handle.net/1783.1/65825 (accessed on 30 June 2014).
- Lee, J.S.; Park, G.; Byun, Y.H.; Lee, C. Modified fixed wall oedometer when considering stress dependence of elastic wave velocities. Sensors 2020, 20, 6291. [Google Scholar] [CrossRef] [PubMed]
- Chamorro-Zurita, C.; Ovando-Shelley, E. Anisotropy of lacustrine soils in a large oedometer equipped with bender elements. Soils Found. 2020, 60, 372–383. [Google Scholar] [CrossRef]
- Byun, Y.H.; Tran, M.K.; Yun, T.S.; Lee, J.S. Strength and stiffness characteristics of unsaturated hydrophobic granular media. Geotech. Test. J. 2012, 35, 193–200. [Google Scholar] [CrossRef]
- Souto, A.; Hartikainen, J.; Ozudogru, K. Measurement of dynamic parameters of road pavement materials by the bender element and resonant column tests. Géotechnique 1994, 44, 519–526. [Google Scholar] [CrossRef]
- Fam, M.A.; Cascante, G.; Dusseault, M.B. Large and small strain properties of sands subjected to local void increase. J. Geotech. Geoenviron. Eng. 2002, 128, 1018–1025. [Google Scholar] [CrossRef]
- Ferreira, C.; Viana da Fonseca, A.; Santos, J.A. Comparison of simultaneous bender elements and resonant column tests on porto residual soil. In Soil Stress-Strain Behavior: Measurement, Modeling and Analysis, Proceedings of the Geotechnical Symposium in Rome, Italy, 16–17 March 2006; Ling, H.I., Callisto, L., Leshchinsky, D., Koseki, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 523–535. [Google Scholar]
- Sas, W.; Soból, E.; Gabryś, K.; Markowska-Lech, K. Study of the cohesive soil stiffness in a modified resonant column. Zesz. Nauk. Inst. Gospod. Surowcami Miner. Energią PAN 2016, 93, 21–33. [Google Scholar]
- Ismail, M.; Hourani, Y. An innovative facility to measure shear-wave velocity in centrifuge and 1-G Models. In Proceedings of the 3rd International Symposium on Deformation Characteristics of Geomaterials, IS-Lyon 2003, Lyon, France, 22–24 September 2003; Di Benedetto, H., Ed.; Balkema: Rotterdam, The Netherlands, 2003; pp. 21–29. [Google Scholar]
- Fu, L. Application of Piezoelectric Sensors in Soil Property Determination. Ph.D. Thesis, Case Western Reserve University, Cleveland, OH, USA, 2004. [Google Scholar]
- Di Benedetto, H.; Geoffroy, H.; Sauzéat, C. Sand behaviour in very small to medium strain domain. In Proceedings of the 2nd International Symposium on Pre-Failure Deformation of Geomaterials, Torino, Italy, 28–30 September 1999; Jamiolkowski, M., Lancellotta, R., Lo Presti, D., Eds.; Balkema: Rotterdam, The Netherlands, 1999; pp. 89–96. [Google Scholar]
- Geoffroy, H.; Di Benedetto, H.; Duttine, A.; Sauzéat, C. Dynamic and Cyclic Loadings on Sands: Results and Modelling for General Stress–Strain Conditions. In Proceedings of the 3rd International Symposium on Deformation Characteristics of Geomaterials, IS-Lyon 2003, Lyon, France, 22–24 September 2003; Di Benedetto, H., Ed.; Balkema: Rotterdam, The Netherlands, 2003; pp. 353–363. [Google Scholar]
- Chaudhary, S.K.; Kuwano, J.; Hayano, Y. Measurement of quasi-elastic stiffness parameters of dense Toyoura sand in hollow cylinder apparatus and triaxial apparatus with bender elements. Geotech. Test. J. 2004, 27, 23–35. [Google Scholar] [CrossRef]
- Bellotti, R.; Jamiolkowski, M.; Lo Presti, D.C.F.; O’Neill, D.A. Anisotropy of small strain stiffness in Ticino sand. Géotechnique 1996, 46, 115–131. [Google Scholar] [CrossRef]
- Brignoli, E.G.M.; Fretti, C.; Jamiolkowski, M.; Pedroni, S.; Stokoe, I.K.H. Stiffness of gravelly soils to small Strains. In Soil Mechanics and Foundation Engineering, Proceedings of the 4th International Conference on Soil Mechanics and Foundation Engineering, ICSMFE 1997, Hamburg, 6–12 September 1997; Publications Committee of XIV ICSMFE, Ed.; Balkema: Rotterdam, The Netherlands, 1997; Volume 1, pp. 37–40. [Google Scholar]
- Ismail, M.; Sharma, S.S.; Fahey, M. A small true triaxial apparatus with wave velocity measurement. Geotech. Test. J. 2005, 28, 113–122. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, W.M.; Lo, K.F. Damping-ratio measurements by the spectral ratio method. Can. Geotech. J. 2006, 43, 1180–1194. [Google Scholar] [CrossRef]
- Lawrence, F.V. Propagation of Ultrasonic Waves Through Sand. Research Report R63-8; Massachusetts Institute of Technology: Cambridge, MA, USA, 1963. [Google Scholar]
- Ismail, M.A.; Rammah, K.I. Shear-plate transducers as a possible alternative to bender elements for meas-uring Gmax. Géotechnique 2005, 55, 403–407. [Google Scholar] [CrossRef]
- Mulmi, S.; Sato, T.; Kuwano, R. Performance of plate type piezoceramic transducers for elastic wave measurements in laboratory soil specimens. Seisan Kenkyu 2008, 60, 565–569. [Google Scholar] [CrossRef]
- Mohammed, A.A.; Haris, S.M.; Nuawi, M.Z. Role of piezoelectric elements in finding the mechanical properties of solid industrial materials. Appl. Sci. 2018, 8, 1737. [Google Scholar] [CrossRef] [Green Version]
- Hall, S.A. Digital image correlation in experimental geomechanics. ALERT Doctoral School, Aussois, France, 4–6 October 2012. In Advanced Experimental Techniques in Geomechanics; Viggiani, G., Hall, S.A., Romero, E., Eds.; The Alliance of Laboratories in Europe for Research and Technology: Grenoble, France, 2012; pp. 69–102. [Google Scholar]
- Viggiani, G.; Hall, S.A. Full-field measurements in experimental geomechanics: Historical perspective, current trends and recent results. ALERT Doctoral School, Aussois, France, 4–6 October 2012. In Advanced Experimental Techniques in Geomechanics; Viggiani, G., Hall, S.A., Romero, E., Eds.; The Alliance of Laboratories in Europe for Research and Technology: Grenoble, France, 2012; pp. 3–68. [Google Scholar]
- Lenoir, N. Comportement Mécanique et Rupture dans les Roches Argileuses Etudiés par Micro Tomographie à Rayons, X. Ph.D. Thesis, l’Université Joseph Fourier—Grenoble, Grenoble, France, 2006. [Google Scholar]
- Lenoir, N.; Bornert, M.; Desrues, J.; Besuelle, P.; Viggiani, G. Volumetric digital image correlation applied to X-ray micro tomography images from triaxial compression tests on argillaceous rocks. Strain 2007, 43, 193–205. [Google Scholar] [CrossRef]
- Viggiani, G.; Hall, S.A. Full-field measurements, a new tool for laboratory experimental geomechanics. In Proceedings of the 4th International Symposium on Deformation Characteristics of Geomaterials; IS Atlanta 2008, Atlanta, GA, USA, 22–24 September 2008; Burns, S.E., Mayne, P.W., Santamarina, J.C., Eds.; IOS Press: Amsterdam, The Netherlands, 2008; pp. 3–26. [Google Scholar]
- Andò, E.; Viggiani, G.; Hall, S.A.; Desrues, J. Experimental micro-mechanics of granular media studied by X-ray tomography: Recent results and challenges. Géotech. Lett. 2013, 3, 142–146. [Google Scholar] [CrossRef]
- Solymar, M.; Lehmann, E.; Vontobel, P.; Nordlund, A. Relating variations in water saturation of a sandstone sample to pore geometry by neutron tomography and image analysis of thin sections. Bull. Eng. Geol. Environ. 2003, 62, 85–88. [Google Scholar] [CrossRef]
- Masschaele, B.; Dierick, M.; Van Hoorebeke, L.; Cnudde, V.; Jacobs, P. The use of neutrons and monochromatic X-rays for non-destructive testing in geological materials. Environ. Geol. 2004, 46, 486–492. [Google Scholar] [CrossRef]
- Hall, S.A.; Tudisco, E. Full-field Ultrasonic Measurement (Ultrasonic Tomography) in Experimental Geomechanics. ALERT Doctoral School, Aussois, France, 4–6 October 2012. In Advanced Experimental Techniques in Geomechanics; Viggiani, G., Hall, S.A., Romero, E., Eds.; The Alliance of Laboratories in Europe for Research and Technology: Grenoble, France, 2012; pp. 106–124. [Google Scholar]
- Tudisco, E.; Roux, P.; Hall, S.A.; Viggiani, G.M.B.; Viggiani, G. Timelapse ultrasonic tomography for measuring damage localization in geomechanics laboratory tests. J. Acoust. Soc. Am. 2015, 137, 1389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, W.; Liu, A.; Mao, W.; Koseki, J. Acoustic emission behavior of granular soils with various ground conditions in drained triaxial compression tests. Soils Found. 2020, 60, 929–943. [Google Scholar] [CrossRef]
- Sheppard, S.; Mantleb, M.D.; Sedermanb, A.J.; Johnsb, M.L.; Gladden, L.F. Magnetic resonance imaging study of complex fluid flow in porous media: Flow patterns and quantitative saturation profiling of amphiphilic fracturing fluid displacement in sandstone cores. J. Magn. Reson. Imaging 2003, 21, 365–367. [Google Scholar] [CrossRef]
- Comina, C.; Festa, C.; Foti, S.; Musso, G. Monitoring 3D diffusion processes with high-speed electric tomography. Lead. Edge 2008, 27, 468–471. [Google Scholar] [CrossRef]
- Desrues, J.; Viggiani, G. Strain localization in sand: Anoverview of the experimental results obtained in Grenoble using stereophotogrammetry. Int. J. Numer. Anal. Meth. Geomech. 2004, 28, 279–321. [Google Scholar] [CrossRef]
- Niedostatkiewicz, M.; Lesniewska, D.; Tejchman, J. Experimental analysis of shear zone patterns in cohesionless for earth pressure problems using particle image velocimetry. Strain 2011, 47, 218–231. [Google Scholar] [CrossRef]
- Hosseini, A.; Mostofinejad, D.; Hajialilue-Bonab, M. Displacement measurement of bending tests using digital image analysis method. Int. J. Eng. Technol. 2012, 4, 642–644. [Google Scholar] [CrossRef]
- Liu, C. Beyond Pixels: Exploring New Representations and Applications for Motion Analysis. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2009. [Google Scholar]
- Besuelle, P.; Lanata., P. Experimental Investigation of the Emergence of Strain Localization in Geomaterials. ALERT Doctoral School, Aussois, France, 6–8 October 2016. In Modelling of Instabilities and Bifurcation in Geomechanics; Sulem, J., Stefanou, I., Papamichos, E., Veveakis, M., Eds.; The Alliance of Laboratories in Europe for Research and Technology: Grenoble, France, 2016; pp. 87–132. [Google Scholar]
- Desrues, J. Experimental Aspects of Strain Localization in Geomaterials. In Proceedings of the Institut Henri Poincare, Thematic Meeting: Instabilities, Bifurcation, Localization, 24–25 February 2005. (Desrues’ own seminar materials made available to the Author in 2008). [Google Scholar]
- Macari, E.J.; Parker, J.K.; Costes, N.C. Measurement of volume changes in triaxial tests using digital imaging techniques. Geotech. Test. J. 1997, 20, 103–109. [Google Scholar] [CrossRef]
- Zhang, X.; Li, L.; Chen, G.; Lytton, R. A photogrammetry-based method to measure total and local volume changes of unsaturated soils during triaxial testing. Acta Geotech. 2015, 10, 55–82. [Google Scholar] [CrossRef]
- Shao, L.T.; Liu, G.; Zeng, F.T.; Guo, X.X. Recognition of the stress-strain curve based on the local deformation measurement of soil specimens in the triaxial test. Geotech. Test. J. 2016, 39, 658–672. [Google Scholar] [CrossRef]
- Bhandari, A.; Powrie, W.; Harkness, R. A digital image-based deformation measure-ment system for triaxial tests. Geotech. Test. J. 2012, 35, 209–226. [Google Scholar] [CrossRef]
- Alshibli, K.A.; Sture, S.; Costes, N.C.; Frank, M.; Lankton, M.; Batiste, S.; Swanson, R. Assessment of localized deformations in sand using x-ray computed tomography. ASTM Geotech. Test. J. 2000, 23, 274–299. [Google Scholar] [CrossRef]
- Messerklinger, S. Non-linearity and Small Strain Behaviour in Lacustrine Clay. Ph.D. Thesis, Swiss Federal Institute of Technology, ETH, Zurich, Switzerland, 2006. [Google Scholar] [CrossRef]
- Romero, E.; Facio, J.A.; Lloret, A.; Gens, A.; Alonso, E.E. A New suction and temperature controlled triaxial apparatus. In Soil Mechanics and Foundation Engineering. In Proceedings of the 4th International Conference on Soil Mechanics and Foundation Engineering, ICSMFE 1997, Hamburg, Germany, 6–12 September 1997; Publications Committee of XIV ICSMFE, Ed.; Balkema: Rotterdam, The Netherlands, 1997; Volume 1, pp. 185–188. [Google Scholar]
- Świdziński, W. Compaction and Liquefaction Mechanisms of Non-Cohesive Soils; Wyd. IBW PAN: Gdańsk, Poland, 2006. (In Polish) [Google Scholar]
- Sawicki, A.; Mierczyński, J.; Świdziński, W. Basic set of experiments for determination of mechanical properties of sand. Bull. Pol. Acad. Sci., Tech. Sci. 2014, 62, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Bolton, M.D.; Cheng, Y.P. Micro-Geomechanics. In Proceedings of the Workshop on Constitutive and Centrifuge Modelling: Two Extremes, Monte Verità, Switzerland, 8–13 July 2001; Springman, S., Ed.; CRC Press: London, UK; Taylor, AZ, USA, 2002; pp. 59–74. [Google Scholar]
- Tani, K. Proposal of New in-Situ Test Methods to Investigate Strength and Deformation Characteristics of Rock Masses. In Proceedings of the 2nd International Symposium on Pre-Failure Deformation of Geomaterials, Torino, Italy, 28–30 September 1999; Jamiolkowski, M., Lancellotta, R., Lo Presti, D., Eds.; Balkema: Rotterdam, The Netherlands, 1999; pp. 357–364. [Google Scholar]
- Tani, K.; Nozaki, T.; Kaneko, S.; Toyo-Oka, Y.; Tachikawa, H. Down-hole triaxial test to measure average stress-strain rela-tionship of rock mass. Soils Found. 2003, 43, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Reiffsteck, P.; Borel, S. Proposition d’une Nouvelle Technique d’Essai en Place: L’Appareil Triaxial in Situ. In Proceedings of the Symposium International Identification et Détermination des Paramètres des Sols et des Roches pour les Calculs Géotech-niques, PARAM 2002, Paris, France, 2–3 September 2002; Presses de l’École Nationale des Ponts et Chaussée/LCPC. pp. 295–302. [Google Scholar]
- Fascicule De Brevet Europeen. Method and Device for in Situ Triaxial Test. European Patent Application EP 1 226 417 B1, 17 January 2007.
- Nguyen Pham, P.T. Etude en Place et au Laboratoire du Comportement en Petites Déformations des Sols Argileux Naturels. Ph.D. Thesis, Laboratoire Central des Ponts et Chaussées, Paris, France, 2008. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jastrzębska, M. Modern Displacement Measuring Systems Used in Geotechnical Laboratories: Advantages and Disadvantages. Sensors 2021, 21, 4139. https://doi.org/10.3390/s21124139
Jastrzębska M. Modern Displacement Measuring Systems Used in Geotechnical Laboratories: Advantages and Disadvantages. Sensors. 2021; 21(12):4139. https://doi.org/10.3390/s21124139
Chicago/Turabian StyleJastrzębska, Małgorzata. 2021. "Modern Displacement Measuring Systems Used in Geotechnical Laboratories: Advantages and Disadvantages" Sensors 21, no. 12: 4139. https://doi.org/10.3390/s21124139
APA StyleJastrzębska, M. (2021). Modern Displacement Measuring Systems Used in Geotechnical Laboratories: Advantages and Disadvantages. Sensors, 21(12), 4139. https://doi.org/10.3390/s21124139