Simultaneous Detection of Glucose and Fructose in Synthetic Musts by Multivariate Analysis of Silica-Based Amperometric Sensor Signals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Electrochemical Tests in Aqueous Solutions of Glucose and Fructose
2.2. Electrochemical Tests in Synthetic Must
2.3. Multivariate Analysis of CV and DPV Signals
3. Results and Discussion
3.1. Electrochemical Responses of Fructose Oxidation
3.2. Electrochemical Responses of Glucose and Fructose Mixtures
3.3. Multivariate Exploratory Data Analysis of Aqueous Solutions Containing Glucose and Fructose Mixtures
3.4. Analysis of Glucose and Fructose Responses in Synthetic Musts
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Paredes, E.; Maestre, S.E.; Prats, S.; Todolì, J.L. Simultaneous Determination of Carbohydrates, Carboxylic Acids, Alcohols, and Metals in Foods by High-Performance Liquid Chromatography Inductively Coupled Plasma Atomic Emission Spectrometry. Anal. Chem. 2006, 78, 6774–6782. [Google Scholar] [CrossRef]
- Ma, C.; Sun, Z.; Chen, C.; Zhang, L.; Zhu, S. Simultaneous separation and determination of fructose, sorbitol, glucose and sucrose in fruits by HPLC-ELSD. Food Chem. 2014, 145, 784–788. [Google Scholar] [CrossRef] [PubMed]
- Ghfar, A.A.; Wabaidur, S.M.; Ahmed, A.Y.B.H.; Alothman, Z.A.; Khan, M.R.; Al-Shaalan, N.H. Simultaneous determination of monosaccharides and oligosaccharides in dates using liquid chromatography-electrospray ionization mass spectrometry. Food Chem. 2015, 176, 487–492. [Google Scholar] [CrossRef]
- Filip, M.; Vlassa, M.; Coman, V.; Halmagyi, A. Simultaneous determination of glucose, fructose, sucrose and sorbitol in the leaf and fruit peel of different apple cultivars by the HPLC–RI optimized method. Food Chem. 2016, 199, 653–659. [Google Scholar] [CrossRef]
- Sun, S.; Wang, H.; Xie, J.; Su, Y. Simultaneous determination of rhamnose, xylitol, arabitol, fructose, glucose, inositol, sucrose, maltose in jujube (Zizyphus jujube Mill.) extract: Comparison of HPLC–ELSD, LC–ESI–MS/MS and GC–MS. Chem. Centr. J. 2016, 10, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, X.; Zhang, S.; Zhang, H.; Wang, Q.; He, P.; Fang, Y. Determination of carbohydrates by capillary zone electrophoresis with amperometric detection at a nano-nickel oxide modified carbon paste electrode. Food Chem. 2018, 106, 830–835. [Google Scholar] [CrossRef]
- Tuma, P.; Málková, K.; Samcová, E.; Stulík, K. Rapid monitoring of mono- and disaccharides in drinks, foodstuffs and foodstuff additives by capillary electrophoresis with contactless conductivity detection. Anal. Chim. Acta 2011, 698, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, M.A.; Jacksén, J.; Emmer, Å.; Centurión, M.E. Capillary electrophoresis method for the simultaneous determination of carbohydrates and proline in honey samples. Microchem. J. 2016, 129, 1–4. [Google Scholar] [CrossRef]
- Antiochia, R.; Palleschi, G. A Tri-Enzyme Electrode Probe for the Sequential Determination of Fructose and Glucose in the Same Sample. Anal. Lett. 1997, 30, 683–697. [Google Scholar] [CrossRef]
- Vargas, E.; Gamella, M.; Campuzano, S.; Guzmán-Vázquez de Prada, A.; Ruiz, M.A.; Reviejo, A.J.; Oingarron, J.M. Development of an integrated electrochemical biosensor for sucrose and its implementation in a continuous flow system for the simultaneous monitoring of sucrose, fructose and glucose. Talanta 2013, 105, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Toghill, K.E.; Compton, R.G. Electrochemical non-enzymatic glucose sensors: A perspective and an evaluation. Int. J. Electrochem. Sci. 2010, 5, 1246–1301. [Google Scholar]
- Wang, G.; He, X.; Wang, L.; Gu, A.; Huang, Y.; Fang, B.; Geng, B.; Zhang, X. Non-enzymatic electrochemical sensing of glucose. Microchim. Acta 2013, 180, 161–186. [Google Scholar] [CrossRef]
- Hwang, D.W.; Lee, S.; Seo, M.; Dong Chung, T. Recent advances in electrochemical non-enzymatic glucose sensors. A review. Anal. Chim. Acta 2018, 1033, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Si, P.; Huang, Y.; Wang, T.; Ma, J. Nanomaterials for electrochemical non-enzymatic glucose biosensors. RSC Adv. 2013, 3, 3487–3502. [Google Scholar] [CrossRef]
- Terzi, F.; Pigani, L.; Zanardi, C. Unusual metals as electrode materials for electrochemical sensors. Curr. Opin. Electrochem. 2019, 16, 157–163. [Google Scholar] [CrossRef]
- Liu, X.W.; Pan, P.; Zhang, Z.M.; Guo, F.; Yang, Z.C.; Wei, J.; We, Z. Ordered self-assembly of screen-printedflower-like CuO and CuO/MWCNTs modified graphite electrodes and applications innon-enzymatic glucose sensor. J. Electroanal. Chem. 2016, 763, 37–44. [Google Scholar] [CrossRef]
- He, J.; Zhong, Y.; Xu, Q.; Sun, H.; Zhou, W.; Shao, Z. Nitrogen-Doped Graphic Carbon Protected Cu/Co/CoO Nanoparticles for Ultrasensitive and Stable Non-Enzymatic Determination of Glucose and Fructose in Wine. J. Electrochem. Soc. 2018, 165, B543–B550. [Google Scholar] [CrossRef]
- Guellis, C.; Valério, D.C.; Bessegato, G.G.; Boroski, M.; Dragunski, J.C.; Lindino, C.A. Non-targeted method to detect honey adulteration: Combination of electrochemical and spectrophotometric responses with principal component analysis. J. Food Comp. Anal. 2020, 89, 103466. [Google Scholar] [CrossRef]
- Wu, H.; Tian, Q.; Zheng, W.; Jiang, Y.; Xu, J.; Li, X.; Zhang, W.; Qiu, F. Non-enzymatic glucose sensor based on molecularly imprinted polymer: A theoretical, strategy fabrication and application. J. Sol. St. Electrochem. 2019, 23, 1379–1388. [Google Scholar] [CrossRef]
- Jeevanandham, G.; Jerome, R.; Murugan, N.; Preethika, M.; Vediappan, M.; Sundramoorthy, A.K. Nickel oxide decorated MoS2 nanosheet-based non-enzymatic sensor for the selective detection of glucose. RSC Adv. 2020, 10, 643–654. [Google Scholar] [CrossRef] [Green Version]
- López-Fernández, E.; Gil-Rostra, J.; Espinós, J.P.; Gonzalez, R.; Yubero, F.; de Lucas-Consuegra, A.; González-Elipe, A.R. Robust label-free CuxCoyOz electrochemical sensors for hexose detection during fermentation process monitoring. Sens. Act. B Chem. 2020, 304, 127360. [Google Scholar] [CrossRef]
- Revenga-Parra, M.; Robledo, S.N.; Martínez-Periñán, E.; González-Quirós, M.M.; Colina, A.; Heras, A.; Pariente, F.; Lorenzo, E. Direct determination of monosaccharides in honey by coupling a sensitive new Schiff base Ni complex electrochemical sensor and chemometric tools. Sens. Act. B Chem. 2020, 312, 127848. [Google Scholar] [CrossRef]
- Pérez-Fernández, B.; Martín-Yerga, D.; Costa-García, A. Galvanostatic electrodeposition of copper nanoparticles on screen-printed carbon electrodes and their application for reducing sugars determination. Talanta 2017, 175, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Pletcher, D. Electrocatalysis: Present and future. J. Appl. Electrochem. 1984, 14, 403–415. [Google Scholar] [CrossRef]
- Burke, L.D.; Ryan, T.G. The role of incipient hydrous oxides in the oxidation of glucose and some of its derivatives in aqueous media. Electrochim. Acta 1992, 37, 1363–1370. [Google Scholar] [CrossRef]
- Pasta, M.; La Mantia, F.; Cui, Y. Mechanism of glucose electrochemical oxidation on gold surface. Electrochim. Acta 2010, 55, 5561–5568. [Google Scholar] [CrossRef]
- Arjona, N.; Trejo, G.; Lodesma-García, J.; Arriaga, L.G.; Guerra-Balcázar, M. An electrokinetic-combined electrochemical study of the glucose electro-oxidation reaction: Effect of gold surface energy. RSC Adv. 2016, 6, 15630–15638. [Google Scholar] [CrossRef]
- Tominaga, M.; Shimazoe, T.; Nagashima, M.; Taniguchi, I. Electrocatalytic oxidation of glucose at gold nanoparticle-modified carbon electrodes in alkaline and neutral solutions. Electrochem. Commun. 2005, 7, 189–193. [Google Scholar] [CrossRef]
- Burke, L.D. Premonolayer oxidation and its role in electrocatalysis. Electrochim. Acta 1994, 39, 1841–1848. [Google Scholar] [CrossRef]
- Crespo Rosa, J.R.; Zanardi, C.; Elkaoutit, M.; Terzi, F.; Seeber, R.; Naranjo Rodriguez, I. Electroanalytical applications of a graphite-Au nanoparticles composite included in a sonogel matrix. Electrochim. Acta 2014, 122, 310–315. [Google Scholar] [CrossRef]
- Del Mar Cordero-Rando, M.; Hidalgo-Hidalgo de Cisneros, J.L.; Blanco, E.; Rodríguez, I. The Sonogel-Carbon Electrode As a Sol−Gel Graphite-Based Electrode. Anal. Chem. 2002, 74, 2423–2427. [Google Scholar] [CrossRef] [PubMed]
- Della Pelle, F.; Rojasa, D.; Scroccarello, A.; Del Carlo, M.; Ferraro, G.; Di Mattia, C.; Martuscelli, M.; Escarpa, A.; Compagnone, D. High-performance carbon black/molybdenum disulfide nanohybrid sensor for cocoa catechins determination using an extraction-free approach. Sens. Act. B Chem. 2019, 296, 126651. [Google Scholar] [CrossRef]
- Pigani, L.; Seeber, R.; Bedini, A.; Dalcanale, E.; Suman, E. Adsorptive-Stripping Voltammetry at PEDOT-Modified Electrodes. Determination of Epicatechin. Food Anal. Methods 2014, 7, 754–760. [Google Scholar] [CrossRef]
- Pigani, L.; Vasile Simone, G.; Foca, G.; Ulrici, A.; Masino, F.; Cubillana-Aguilera, L.; Calvini, R.; Seeber, R. Prediction of parameters related to grape ripening by multivariate calibration of voltammetric signals acquired by an electronic tongue. Talanta 2018, 178, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Pigani, L.; Rioli, C.; Foca, G.; Ulrici, A.; Seeber, R.; Terzi, F.; Zanardi, C. Determination of polyphenol content and colour index in wines through PEDOT-modified electrodes. Anal. Bioanal. Chem. 2016, 408, 7329–7338. [Google Scholar] [CrossRef] [PubMed]
- Pigani, L.; Culetu, A.; Ulrici, A.; Foca, G.; Vignali, M.; Seeber, R. Pedot modified electrodes in amperometric sensing for analysis of red wine samples. Food Chem. 2011, 129, 226–233. [Google Scholar] [CrossRef]
- Palacios-Santander, J.M.; Cubillana-Aguilera, L.M.; Cocchi, M.; Ulrici, A.; Naranjo-Rodríguez, I.; Seeber, R.; Hidalgo-Hidalgo de Cisneros, J.L. Multicomponent analysis in the wavelet domain of highly overlapped electrochemical signals: Resolution of quaternary mixtures of chlorophenols using a peg-modified Sonogel-Carbon electrode. Chemom. Intell. Lab. Syst. 2008, 91, 110–120. [Google Scholar] [CrossRef]
- Martina, V.; Ionescu, K.; Pigani, L.; Terzi, F.; Ulrici, A.; Zanardi, C.; Seeber, R. Development of an electronic tongue based on a PEDOT-modified voltammetric sensor. Anal. Bioanal. Chem. 2007, 387, 2101–2110. [Google Scholar] [CrossRef]
- Terzi, F.; Zanfrognini, B.; Zanardi, C.; Pigani, L.; Seeber, R. Poly(3,4-ethylenedioxythiophene)/Au-nanoparticles composite as electrode coating suitable for electrocatalytic oxidation. Electrochim. Acta 2011, 56, 3575–3579. [Google Scholar] [CrossRef]
0.00–0.00 | 1.25–0.00 | 2.50–0.00 | 3.75–0.00 | 5.00–0.00 | 6.75–0.00 | 7.50–0.00 | 8.75–0.00 | 10.0–0.00 | |
0.00–1.25 | 1.25–1.25 | 2.50–1.25 | 3.75–1.25 | 5.00–1.25 | 6.75–1.25 | 7.50–1.25 | 8.75–1.25 | 10.0–1.25 | |
0.00–2.50 | 1.25–2.50 | 2.50–2.50 | 3.75–2.50 | 5.00–2.50 | 6.75–2.50 | 7.50–2.50 | 8.75–2.50 | 10.0–2.50 | |
0.00–3.75 | 1.25–3.75 | 2.50–3.75 | 3.75–3.75 | 5.00–3.75 | 6.75–3.75 | 7.50–3.75 | 8.75–3.75 | 10.0–3.75 | |
0.00–5.00 | 1.25–5.00 | 2.50–5.00 | 3.75–5.00 | 5.00–5.00 | 6.75–5.00 | 7.50–5.00 | 8.75–5.00 | 10.0–5.00 | |
0.00–6.75 | 1.25–6.75 | 2.50–6.75 | 3.75–6.75 | 5.00–6.75 | 6.75–6.75 | 7.50–6.75 | 8.75–6.75 | 10.0–6.75 | |
0.00–7.50 | 1.25–7.50 | 2.50–7.50 | 3.75–7.50 | 5.00–7.50 | 6.75–7.50 | 7.50–7.50 | 8.75–7.50 | 10.0–7.50 | |
0.00–8.75 | 1.25–8.75 | 2.50–8.75 | 3.75–8.75 | 5.00–8.75 | 6.75–8.75 | 7.50–8.75 | 8.75–8.75 | 10.0–8.75 | |
0.00–10.0 | 1.25–10.0 | 2.50–10.0 | 3.75–10.0 | 5.00–10.0 | 6.75–10.0 | 7.50–10.0 | 8.75–10.0 | 10.0–10.0 |
0–0 | 25–0 | 50–0 | 75–0 | 100–0 | 125–0 | 150–0 | 175–0 | 200–0 | |
0–25 | 25–25 | 50–25 | 75–25 | 100–25 | 125–25 | 150–25 | 175–25 | 200–25 | |
0–50 | 25–50 | 50–50 | 75–50 | 100–50 | 125–50 | 150–50 | 175–50 | 200–50 | |
0–75 | 25–75 | 50–75 | 75–75 | 100–75 | 125–75 | 150–75 | 175–75 | 200–75 | |
0–100 | 25–100 | 50–100 | 75–100 | 100–100 | 125–100 | 150–100 | 175–100 | 200–100 | |
0–125 | 25–125 | 50–125 | 75–125 | 100–125 | 125–125 | 150–125 | 175–125 | 200–125 | |
0–150 | 25–150 | 50–150 | 75–150 | 100–150 | 125–150 | 150–150 | 175–150 | 200–150 | |
0–175 | 25–175 | 50–175 | 75–175 | 100–175 | 125–175 | 150–175 | 175–175 | 200–175 | |
0–200 | 25–200 | 50–200 | 75–200 | 100–200 | 125–200 | 150–200 | 175–200 | 200–200 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crespo-Rosa, J.R.; Foca, G.; Ulrici, A.; Pigani, L.; Zanfrognini, B.; Cubillana-Aguilera, L.; Palacios-Santander, J.M.; Zanardi, C. Simultaneous Detection of Glucose and Fructose in Synthetic Musts by Multivariate Analysis of Silica-Based Amperometric Sensor Signals. Sensors 2021, 21, 4190. https://doi.org/10.3390/s21124190
Crespo-Rosa JR, Foca G, Ulrici A, Pigani L, Zanfrognini B, Cubillana-Aguilera L, Palacios-Santander JM, Zanardi C. Simultaneous Detection of Glucose and Fructose in Synthetic Musts by Multivariate Analysis of Silica-Based Amperometric Sensor Signals. Sensors. 2021; 21(12):4190. https://doi.org/10.3390/s21124190
Chicago/Turabian StyleCrespo-Rosa, Joaquin Rafael, Giorgia Foca, Alessandro Ulrici, Laura Pigani, Barbara Zanfrognini, Laura Cubillana-Aguilera, José María Palacios-Santander, and Chiara Zanardi. 2021. "Simultaneous Detection of Glucose and Fructose in Synthetic Musts by Multivariate Analysis of Silica-Based Amperometric Sensor Signals" Sensors 21, no. 12: 4190. https://doi.org/10.3390/s21124190
APA StyleCrespo-Rosa, J. R., Foca, G., Ulrici, A., Pigani, L., Zanfrognini, B., Cubillana-Aguilera, L., Palacios-Santander, J. M., & Zanardi, C. (2021). Simultaneous Detection of Glucose and Fructose in Synthetic Musts by Multivariate Analysis of Silica-Based Amperometric Sensor Signals. Sensors, 21(12), 4190. https://doi.org/10.3390/s21124190