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Abstract: Networking is crucial for smart city projects nowadays, as it offers an environment where
people and things are connected. This paper presents a chronology of factors on the development
of smart cities, including IoT technologies as network infrastructure. Increasing IoT nodes leads to
increasing data flow, which is a potential source of failure for IoT networks. The biggest challenge
of IoT networks is that the IoT may have insufficient memory to handle all transaction data within
the IoT network. We aim in this paper to propose a potential compression method for reducing
IoT network data traffic. Therefore, we investigate various lossless compression algorithms, such
as entropy or dictionary-based algorithms, and general compression methods to determine which
algorithm or method adheres to the IoT specifications. Furthermore, this study conducts compression
experiments using entropy (Huffman, Adaptive Huffman) and Dictionary (LZ77, LZ78) as well as
five different types of datasets of the IoT data traffic. Though the above algorithms can alleviate the
IoT data traffic, adaptive Huffman gave the best compression algorithm. Therefore, in this paper,
we aim to propose a conceptual compression method for IoT data traffic by improving an adaptive
Huffman based on deep learning concepts using weights, pruning, and pooling in the neural network.
The proposed algorithm is believed to obtain a better compression ratio. Additionally, in this paper,
we also discuss the challenges of applying the proposed algorithm to IoT data compression due to
the limitations of IoT memory and IoT processor, which later it can be implemented in IoT networks.

Keywords: compression; inflation; data traffic; deep learning; internet of thing; IoT; memory;
network; population; problem; pruning; smart city; compression method; pooling; entropy coding;
dictionary coding; IoT market

1. Introduction

The UN reported that by 2030, almost 60% of the world’s population will reside in big
cities with almost 38 million residents, such as Tokyo followed by Delhi, Shanghai, Mexico
City, São Paulo, and Mumbai, which are all ranked amongst the world’s most populated
cities [1]. In 2014, there were 28 mega-cities with thrice the population than back in 1990,
and this number was estimated to exceed 41 cities in 2030. In the European Union the urban
population is expected to reach 80% in 2050. Now, more than 50% of the world’s population
live in urban areas, where they consume 75% of the energy, and they are also responsible for
80% of the greenhouse effect [2]. In 2050 it is predicted that the largest 200 cities in the world
will each have a minimum population of 3 million people and that Mumbai (Bombay)
in India, for example, may exceed 42 million [3]. The cities’ infrastructure has been
developed to cater to the demands of the new urban population. In the beginning, when
wireless technologies had not been introduced yet, governments tried to connect buildings
through cables and wires, and the cities containing these buildings have been referred to
as wired cities [4]. Later the term “virtual cities” was proposed in order to show digital
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representations and manifestations as an infrastructure [5]. Consequently, many other
new names emerged with different purposes, such as cyber city (virtual 3D and GIS) [6],
digital city (web-based representative) [7], intelligent city (high capacity for learning and
innovation) [8], sentient city (the experience of living in a city that can remember-correlate-
anticipate) [9], sustainable city (reducing CO2 emissions with efficient energy), [10] and
green city (reducing greenhouse gas emissions and pollution with minimizing waste and
inefficient use of natural resources, along with maintaining biodiversity) [11]. Researchers
in [12–28] tried to summarize the impacting factors which affected the development of
smart cities.

Many efforts were made in order to satisfy the abnormal needs and requirements
emerging from these urbanization movements, especially from the traditional manage-
ment systems that provide service to billions of people, which was a nightmare for any
government. Therefore, the concept of smart cities was introduced as a reliable solution for
governments. The first smart city concept was introduced in the late 1990s [29]. At that
time, most researchers defined a smart city as an urban area where data could be collected
using various forms using electronic sensors connected to the internet. The information
collected was then used in order to effectively control resources and services, and later
used to optimize activities around the city. Consequently, many smart city definitions
were proposed due to the various factors that influenced a smart city. These factors led
to the change of smart city definition and affected its concept, as well. Figure 1 shows
the chronology of the effecting factors that developed the various smart city definitions.
All previous definitions have a common concept that the smart cities focus on the quality
of life by using the latest technology and by offering new industries in order to promote
urban development through many intelligent services systems. The IoT networks emerged
on the market in 2014 taking on the form of infrastructure. Although the demand for IoT
started in 2010, smart cities completely depended on networking systems and sensors,
even in 2018, the IoT networks were in a high demand because it enabled analyzing data in
real-time systems.

Nowadays, the notion of a smart city is globally used, and the number of smart
cities has gradually increased. In 2012, approximately 143 smart cities, including 35
in North America and 47 in Europe, integrated new technologies into urban problem
management [30]. Until now, smart city projects have increased in response to urbanization
requirements and, as a result of the emerging technology, created capable infrastructures
that can be used for new services. One of the most reliable technologies, which is considered
the backbone of smart cities, is the IoT network because of its many features that fulfill the
criteria needed for various smart city applications. Furthermore, it has a low cost compared
to other traditional networks. All of the IoT components work as a single integrated system.
The network has characteristics such as automation, intelligence, dynamicity, and zero-
configuration, as illustrated in [31]. However, these IoT specifications still have limitations
such as limited memory and low power processors. In smart cities with millions of people,
most individuals own wearable devices and make use of IoT in their daily lives [32], such
as smart homes and cars; therefore, heavy transmission of data every second over IoT
networks is expected.

Furthermore, sometimes problems occur, especially when transmitting large amounts
of data, such as delays in responding to citizens, which is highly expected in these large
cities. This will be further discussed in the IoT memory challenge in section two, wherein
it will be shown increasing the speed of data transfer, as a solo solution is not enough.

Later, many new technologies emerged, utilizing artificial intelligence, such as ma-
chine learning and deep learning [33], with the introduction of IoT as an infrastructure
for smart cities [34]. This allowed edge computing to be implemented in the real world to
alleviate the load on servers and sustain the implementation of smart cities. However, even
during the 4th industrial revolution, several IoT applications still operate in a centralized
structure [13]. Therefore, many researchers have tried to demonstrate the significance
of IoT in applying edge computing and how it can be more feasible for smart cities [35].
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Nevertheless, manufacturers and researchers were not sufficiently interested in developing
IoT, particularly its limited memory capacity.
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Memory size can be considered a critical problem in the IoT network because the
small available memory segments messages into many smaller packets that require more
transmission time, leading to consumption of more power and more latency [36]. A realistic
example of this was stated in [37] where the RootMetrics smart city project relied on the IoT
network as an infrastructure, and the enormous network data traffic caused system failure
because the tiny IoT memory was unable to handle such massive data without intelligent
management. It has been shown that when sensed data is sent directly to a gateway or
server, it not only consumes excessive power but also increases the chance of data loss [38].

As a solution, many previous research studies have focused on enhancing the transmis-
sion range and speed. Scratchpad Memory (SPM) & Non-Volatile Memory Express (NVMe)
memory types were developed in order to hold small items of data for rapid retrieval in IoT
devices [39]. SPMs are software-controlled and require additional programmer effort [40],
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while NVMe enables the code to be executed directly. No code has to be copied to the
Random Access Memory (RAM), which will reduce the boot-up time as well [21]. SPMs &
NVMe were expensive enough to be implemented for IoT.

The key contributions of this study are summarized as follows:

(1) We study the technical side of IoT memory to clarify why small IoT memory cannot
handle massive amounts of data.

(2) We investigate lossless compression algorithms as well as previous and current related
work that has been used to reduce data size and illustrated detailed differences
between them to clarify which can be used for IoT.

(3) We demonstrate the fundamentals of deep learning, which later help us understand
the techniques used for dimension reduction and how we can use them to compress
data in IoT memory.

(4) We implement experiments on five datasets using lossless compression algorithms
to justify which fits better for IoT and which is more suitable for numeric and time
series data type as IoT data type.

The paper is organized as follows: we investigate the technical details about IoT
memory and why the small IoT memory cannot handle large data traffic, as well as how
previous studies have tried to manage such large data using compression algorithms in
Section 2. Then we investigate in more details the compression algorithms and methods
in Section 3 and review algorithms that can be applied for numeric and time series data
because of their similar characteristics with IoT data. In Section 4, deep learning fundamen-
tals are illustrated in order to understand the techniques used for dimensionality reduction.
We also investigate the current compression algorithms using deep learning in order to
assess whether they, as well as traditional compression algorithms, can be used to compress
the IoT data. However, we found that compression algorithms in deep learning do not
share a similar concept with traditional compression algorithms. Additionally, we also
discuss the potential of combining pruning and pooling in deep learning techniques with
any suitable traditional compression algorithms. This paper describes how to minimize or
compress the data to fit into a memory of IoT node in order to alleviate IoT data traffic in
the IoT network.

2. Internet of Things

To illustrate in detail how an IoT system works, Figure 2 shows the IoT network archi-
tecture where every IoT node can be connected at least with one sensor or actuator or both.
The node contains many integrated modules such as a processing unit (microcontroller),
power management, memory (SRAM, Flash Memory, EEPROM), and communication
modules (Wi-Fi, Bluetooth, 802.15.4 Wireless, wired). IoT nodes can be connected to an IoT
gateway forming a local network. The gateway is connected to the internet which allows
end-users to access (monitor or control) things.

Sensors 2021, 21, x FOR PEER REVIEW 5 of 25 
 

 

 
Figure 2. The IoT network architecture. 

2.1. IoT Memory 
Memory is an essential component of an IoT device, as it stores both received and 

sent data. However, the performance of this memory depends on its type. One of these 
types is non-volatile memory (NVM), which retains data even if power is removed. The 
other type is volatile memory (VM), which loses data if power is removed. VM is faster 
than NVM but more expensive. Manufacturers using NVM for embedded devices have 
two options: one-time programmable (OTP) and multiple-time programmable (MTP). 
MTP offers applications that require long battery life, it is considered better than external 
flash memory and also lower in cost per bit. OTP is more suitable when the contents of 
memory cannot be modified once configured. 

For IoT devices, manufacturers have developed scratchpad memories (SPMs) that 
are high-speed internal memories used for the temporary storage of calculations, data, 
and other works in progress. Ratzke stated in [39] that SPM is used to hold small items of 
data for rapid retrieval in IoT devices. In [40], researchers stated that SPM is different from 
cache memory because cache memory is managed by hardware while SPM is managed 
by software and requires additional effort from programmers. However, many research-
ers have focused on improving the IoT network by improving SPMs for performance gain, 
instead of focusing on data allocation, they focused on instruction allocation because IoT 
has embedded systems that have particular and special uses [39]. The researchers men-
tioned in [39] discovered that dynamic allocation of memory is better than static; there-
fore, there is no need to fill the memory before execution; instead, the memory should be 
filled when needed. Therefore, they proposed an algorithm that would decide whether to 
store memory objects (variables and code segments) in the SPM first or to the main 
memory before computing the addresses in the SPM. The SPM includes an array of SRAM 
cells and is used as an alternative to cache due to its specifications in energy efficiency, 
time predictability, and scalability. However, there is a need for the compiler or the pro-
grammer to allocate appropriate data to the SPM efficiently. Therefore, data management 
is the most challenging issue in systems equipped with SPMs, as researchers have stated 
in [41]. Furthermore, Lipman suggested one of the other ways to improve IoT devices 
would be using non-volatile memory (NVM). NVM is fast enough to allow executing the 
code directly, and there is no need to copy the code to the RAM here, which would reduce 
the boot-up time as well. However, there are still many improvements to be made, such 
as those in size and cost [21]. Because of this, manufacturers still use the traditional 
memory, which is the SRAM, to store data in IoT devices. 

2.2. The IoT Memory Challenge 
IoT memory has a low capacity, which is used in caching enormous network data, 

the IoT insufficient memory space is a crucial problem for smart city projects that rely on 
IoT networks as infrastructure. However, manufacturers of IoT devices have focused on 
increasing the speed of accessing data by proposing SPMs and NVM, as illustrated in the 

Figure 2. The IoT network architecture.



Sensors 2021, 21, 4223 5 of 27

2.1. IoT Memory

Memory is an essential component of an IoT device, as it stores both received and sent
data. However, the performance of this memory depends on its type. One of these types
is non-volatile memory (NVM), which retains data even if power is removed. The other
type is volatile memory (VM), which loses data if power is removed. VM is faster than
NVM but more expensive. Manufacturers using NVM for embedded devices have two
options: one-time programmable (OTP) and multiple-time programmable (MTP). MTP
offers applications that require long battery life, it is considered better than external flash
memory and also lower in cost per bit. OTP is more suitable when the contents of memory
cannot be modified once configured.

For IoT devices, manufacturers have developed scratchpad memories (SPMs) that are
high-speed internal memories used for the temporary storage of calculations, data, and
other works in progress. Ratzke stated in [39] that SPM is used to hold small items of data
for rapid retrieval in IoT devices. In [40], researchers stated that SPM is different from
cache memory because cache memory is managed by hardware while SPM is managed by
software and requires additional effort from programmers. However, many researchers
have focused on improving the IoT network by improving SPMs for performance gain,
instead of focusing on data allocation, they focused on instruction allocation because
IoT has embedded systems that have particular and special uses [39]. The researchers
mentioned in [39] discovered that dynamic allocation of memory is better than static;
therefore, there is no need to fill the memory before execution; instead, the memory should
be filled when needed. Therefore, they proposed an algorithm that would decide whether
to store memory objects (variables and code segments) in the SPM first or to the main
memory before computing the addresses in the SPM. The SPM includes an array of SRAM
cells and is used as an alternative to cache due to its specifications in energy efficiency, time
predictability, and scalability. However, there is a need for the compiler or the programmer
to allocate appropriate data to the SPM efficiently. Therefore, data management is the
most challenging issue in systems equipped with SPMs, as researchers have stated in [41].
Furthermore, Lipman suggested one of the other ways to improve IoT devices would
be using non-volatile memory (NVM). NVM is fast enough to allow executing the code
directly, and there is no need to copy the code to the RAM here, which would reduce the
boot-up time as well. However, there are still many improvements to be made, such as
those in size and cost [21]. Because of this, manufacturers still use the traditional memory,
which is the SRAM, to store data in IoT devices.

2.2. The IoT Memory Challenge

IoT memory has a low capacity, which is used in caching enormous network data,
the IoT insufficient memory space is a crucial problem for smart city projects that rely
on IoT networks as infrastructure. However, manufacturers of IoT devices have focused
on increasing the speed of accessing data by proposing SPMs and NVM, as illustrated
in the IoT memory section. Furthermore, they have focused on increasing the range of
connections with low power consumption. Unfortunately, only a handful of researchers
were interested in increasing the memory size both because the process was expensive and
because this was not a critical issue since data was not large in the past.

For more clarification, Figure 3 shows that IoT memories are of three types: non-
volatile flash memory, which is used for programs, also known as program memory, and
the other two types are for data and are known as data memory. A non-volatile EEPROM
and volatile SRAM are used to temporarily store data. Memory sizes differ by controller
type and version; the data that is received and transmitted through the network is stored
in the SRAM. Data for Wi-Fi credentials, such as usernames and passwords, is stored in
the EEPROM.
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One of the challenges faced here is the insufficient memory size that causes buffer
overflow, which can happen when software writes data to a buffer and anomalously over-
flows the capacity of the buffer, resulting in the overriding of adjacent memory positions.
Information is transmitted into a container with insufficient space, and this information
is then replaced by the data in neighboring recipients. In the IoT, the SRAM memory
works as a buffer when it receives and transmits data. Most controllers have a small SRAM
size, for example, Arduino controllers SRAM, in comparison to many boards (shown in
Table 1) [42].

Table 1. Controllers Comparison Board Specs.

Name Processor Operating/Input
Voltage CPU Speed EEPROM [KB] SRAM [KB] Flash [KB]

101 Intel® Curie 3.3 V/7–12 V 32 MHz - 24 196

Gemma ATtiny85 3.3 V/4–16 V 8 MHz 0.5 0.5 8

LilyPad ATmega168V 2.7–5.5 V/
8 MHz 0.512 1 16ATmega328P 2.7–5.5 V

LilyPad
SimpleSnap ATmega328P 2.7–5.5

V/2.7–5.5 V 8 MHz 1 2 32

LilyPad USB ATmega32U4 3.3 V/3.8–5 V 8 MHz 1 2.5 32

Mega 2560 ATmega2560 5 V/7–12 V 16 MHz 4 8 256

Micro ATmega32U4 5 V/7–12 V 16 MHz 1 2.5 32

MKR1000 SAMD21
Cortex-M0+ 3.3 V/5 V 48 MHz - 32 256

Pro
ATmega168 3.3 V/3.35–12 V 8 MHz 0.512 1 16

ATmega328P 5 V/5–12 V 16 MHz 1 2 32

Pro Mini ATmega328P 3.3 V/3.35–12 V 8 MHz
1 2 325 V/5–12 V 16 MHz

Uno ATmega328P 5 V/7–12 V 16 MHz 1 2 32

Zero ATSAMD21G18 3.3 V/7–12 V 48 MHz - 32 256

Due ATSAM3X8E 3.3 V/7–12 V 84 MHz - 96 512

Esplora ATmega32U4 5 V/7–12 V 16 MHz 1 2.5 32

Ethernet ATmega328P 5 V/7–12 V 16 MHz 1 2 32

Leonardo ATmega32U4 5 V/7–12 V 16 MHz 1 2.5 32

Mega ADK ATmega2560 5 V/7–12 V 16 MHz 4 8 256

Mini ATmega328P 5 V/7–9 V 16 MHz 1 2 32

Nano
ATmega168

5 V/7–9 V 16 MHz
0.512 1 16

ATmega328P 1 2 32

Yùn
ATmega32U4

5 V
16 MHz

1
2.5 32

AR9331 Linux 400 MHz 16 MB 64 MB
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Table 1. Cont.

Name Processor Operating/Input
Voltage CPU Speed EEPROM [KB] SRAM [KB] Flash [KB]

Arduino Robot ATmega32u4 5 V 16 MHz
1 KB

(ATmega32u4)/
512 Kbit (I2C)

2.5 KB
(ATmega32u4)

32 KB
(ATmega32u4)
of which 4 KB

used by
bootloader

MKRZero

SAMD21
Cortex-M0+
32 bit low

power ARM
MCU

3.3 V 48 MHz No 32 KB 256 KB

To clarify the problem, Figure 4 illustrates how many sensors (from Sensor 1 to Sensor
n, where n is an undetermined number) try to send their data to the SRAM memory of a
connected IoT node, and sometimes the sensors send the data simultaneously and cause
overflowing the IoT SRAM. Hence potential problems here are memory overflow and the
possible loss of data due to buffer overflow. The probability of these problems increases,
especially when more sensors are connected to the IoT node.

total messages in one millisecond =
n

∑
i=0

Sn.DF (1)

where S denotes the sensor, i the number of sensors, which ranges from 1 to n, where n
is the sensor’s max count connected to an IoT node. DF is the data flow from the sensor
to the IoT node. If we have at least 2 bytes every millisecond, we can calculate the data
flow size for one second from the following example: If the total number of messages
sent in one second from sensor 1 = 2 Bytes × 1000 = 2000 Bytes ~ 2 KB/1 second, 2 KB
is the max capacity of the IoT memory (SRAM). It has been found that the size of the
transmitted data from all sensors can collapse the IoT node memory. To solve this problem,
many solutions were proposed, such as limiting the count of sensors connected to the IoT
node, adjusting the time interval in order to control when the sensor sends the data—i.e.,
when the controller reads sensor data—although, the fact remains that less read means less
accuracy, or adjusting the packet size, sent from the sensor to the IoT node, which is not
reliable to send fewer numbers. For example, instead of sending the integer 25, send 2,
then 5, or just 2. Therefore, the best solution is to compress the data immediately when
received using a compression algorithm suitable to work within the IoT memory limits
and processer power. In the next section, we will investigate data compression algorithms.
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2.3. The IoT Data Traffic Reduction Motivations

After collecting the data from sensors inside IoT memories, every node sends its
data packets to the servers through IoT gateways, as illustrated in the IoT architecture in
Figure 2. Thus, the number of sensors and IoT nodes directly affects the size of the data
transmitted to the server. However, there are limitations for any network system, such as
connection bandwidth, which could overflow when trying to send massive data in a period
that the bandwidth of the network cannot handle. Furthermore, connection overflow could
occur when sending an abundance of connection requests from clients to the server during
a period that cannot be handled by the server, thus pushing the server to drop many of
these connections. As a solution to these problems, compressing the data during the first
stages before sending it to the servers will minimize connection sessions and reduce data
traffic. Compression means that instead of sending the original data, we can send data of
a smaller size, which will consume less battery and need fewer connection sessions and
less time. For example, if the original data was 100 MB and the network bandwidth was
10 MB/S, it would take 10 turns to send this data, where every turn takes a second, which
needs 10 s for sending the entirety of the data. However, if this data was compressed to
10 MB, the time needed would be reduced to one second, which reduces the network use
by about 90%. Accordingly, this reduces data traffic and makes bandwidth available for
service and for transmitting other data.

2.4. The IoT Data Compression State of Art

Many studies on aggregation and compression have been conducted in WSNs as the
backbone of IoT networks [43,44], however, they mostly used compression at the servers
because these nodes have more processing power than the sense/edge nodes and they
do not have consumption problems, and that did not reduce much the traffic [45]. On
the other hand, a IoT network differs from a WSN in terms of connectivity between each
node, whereby the IoT node can be connected directly to the internet and has the ability
to make decisions [46,47]. Therefore, a new way of aggregation and compression became
in demand in IoT edge and sense nodes as the number of connected IoT devices and data
increased exponentially during the last years [48,49].

Therefore, to deal with such large IoT data, a method was proposed as an update and
a query-efficient index system in [4,50], with several criteria such as regular and necessary
multidimensional updating of data. Some researchers stated that traditional database
systems are not capable of handling large volumes of data and cannot support millions
of data inputs per minute [51]. Other researchers in [52] stated that it could be highly
impossible to move enormous data from IoT peripheral nodes to the server in a timely
fashion and they stated that IoT devices should be able to store data, process, analyze,
and sometimes make decisions in real time. Despite the IoT’s memory limitations, many
machine intelligent algorithms have been proposed in [53] (ASIC-based acceleration [54],
FPGA-based acceleration [55], mobile SoC-based acceleration [53]) in order to accelerate
convolutional neural networks (CNNs) on embedded platforms. They focused on accel-
erating processing [56] and decreasing its energy consumption [57,58]. Few researchers
have focused on data compression to minimize data size by retaining identical information
content [36]. Although they have proposed that different algorithms compress data, be-
cause of various factors, the performances of these algorithms differ. These include factors
such as power consumption [13], speed of data transmission [59], bandwidth [60], size of
transmitted data [61], and processor power [62]. All these factors affect the IoT network’s
performance directly.

The motivation to use compression algorithms comes from the small memory capac-
ity of IoT devices, which works either as a buffer or cache memory in IoT networks, as
researchers have stated in [63]. Some researchers in [31] have suggested data compression
as a technique to reduce data traffic in the network and to empower IoT capability while
others focused on power consumption; for example, Kimura and Latifi in [64] stated that
energy consumption of one bit transmission via radio is 480 times higher than conducting
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one addition process. Some researchers tried to classify compression algorithms depend-
ing on the type of data, for example, algorithms that rely on the temporal correlation of
sequenced residue data, as shown in [44,65], where they used information for compression
like in [66]; therefore, they proposed S-LZW, SHuffman, and ND-encoding algorithms as
examples. Another type of algorithm depends on data prediction [67], which has been
considered more complicated and has several drawbacks such as high power consumption
and large memory requirements, which is not available in most IoTs; for example, the
MinDiff algorithm in [66]. Many data compression algorithms were proposed, such as
coding by ordering, which dropped some sensor nodes and their data in an aggregated
node [68]. Another method is pipelined in-network compression, which has been proposed
for audio and video sensors and depends on the common similarity of data packets in
bit values in order to delete the redundancies in data packets. Yet another method was
proposed as a low-complexity video compression algorithm in [55] for video surveillance
sequences collected by a wireless sensor network, where researchers introduced a frame-
work based on change detection and JPEG compression of the region of interest (ROI); they
stated that the proposed compression algorithm is similar to MPEG-2 and available at a
much less computational cost. Another algorithm is distributed compression, which is
used to obtain data from many spatial sources. The central node compares every sensor
partial data with the data from the reference node in order to determine if there are any
changes or errors, then decides what to send over the network and how to remove spatial
redundancy [69,70]. Although some of these algorithms have been applied on WSNs,
none of them have been applied for the IoT. The next section investigates compression
techniques in order to determine which could better fit in IoT networks.

3. Compression

Compression is a way to represent massive data, which could be numeric, text, pic-
tures, videos, and audios, or any other type, using a small data size. Compression is
categorized into lossy and lossless. Lossy means the decompressed data is different from
the original one while lossless compression is identical to the original and the decom-
pressed data. The selection from the two types of compression techniques or algorithms
depends on the type of data to be compressed. For example, to compress a picture using
lossy compression, one should only keep enough information to know what is inside the
picture, such as a car or a person. In contrast, lossless compression is not suitable for
sensitive data such as financial or election data where it is used to alleviate transmission
on the internet or storing data on USB drives. Therefore, when every single bit of data is
critical, lossless data compression is used; otherwise, lossy compression is used. For video,
audio, and picture data, it is better to use lossy compression because the accuracy and the
compression ratio are high, otherwise, the original files are too large to be transmitted. For
text and numerals or symbols, it is better to use lossless compression because identical data
is required when decompressing. For example, we cannot rely on two words to replace
ten words when representing the names of students, nor can we rely on two numbers to
represent ten numbers because we will lose accuracy and sometimes transmit wrong data,
which will lead to destructive results. However, IoT data only has numeric and text data
format; therefore, using lossless data compression is the best solution.

3.1. Lossless Data Compression

A high compression ratio for any algorithm does not imply it is the best algorithm
for all data types. Every data type has many suitable compression methods and algo-
rithms. Many factors affect choosing the best compression method for every data type.
However, it is known that the most influential compression factors are the speed of compres-
sion/decompression and compression ratio. Also, real-time data vs. offline data influences
the selection of the compression algorithm as well. However, this paper focuses on lossless
algorithms that have been proposed to compress numeric and time series data because
the purpose of this paper is to investigate compression algorithms for IoT data. Therefore,
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three lossless compression types of algorithms were reviewed, which are categorized as
entropy, dictionary, and general-based algorithms.

3.1.1. Lossless Entropy Algorithms

Entropy encoding is a lossless data compression scheme in information theory, regard-
less of the medium’s specific characteristics. One of the main entropy coding types creates
and assigns every single symbol of the entry into a unique prefix-free code. There are
more than 16 algorithms support entropy algorithms such as Arithmetic Coding [71–74],
Asymmetric Numeral Systems (ANS) [75–77], Golomb Coding [78,79], Adaptive Huff-
man [80–82], Canonical Huffman [83], Modified Huffman [84], Range encoding [85,86],
Shannon [87], Shannon–Fano [88–90], Shannon–Fano–Elias [91], Tunstall coding [92,93],
Unary coding [94–96], Universal Exp-Golomb [97,98], Universal Fibonacci Coding [99–101],
Universal Gamma Coding [102,103], Universal Levenshtein Coding [104].

The main concept of entropy is to replace the symbol with a prefix code, which
reserves a smaller size in the memory. In most of these algorithms, there is a need to
store the symbols with their frequencies, which is then used in order to determine the
replacement codes for the symbol, and this needs an abundance of memory. Furthermore,
due to the complexity of searching and counting for the matched symbols and the encoding
process itself, algorithms use more memory and need a large processing power that is
not available in IoT devices; therefore, without modifying these algorithms, none of them
would be suitable or applicable for the IoT systems and cannot be implemented on IoT
nodes. The most potential candidate algorithm to be used after modification is the Adaptive
Huffman because it can process real time inputs which is similar to the case of IoT inputs.

3.1.2. Lossless Dictionary Based Algorithms

A dictionary-based algorithm is a scheme that creates a dictionary containing the
symbols and the codewords assigned to it. The symbols are collected from the input data
with no redundancy and represent all the input data, and the codeword assigned to every
symbol should be smaller than the symbol itself, otherwise, inflation could happen. Many
applications and algorithms create the dictionary dynamically, hence, when there is an
input, the dictionary can be updated as needed. There are more than 19 algorithms support
dictionary-based algorithms such as Byte pair encoding [105], Lz77 [87,106,107], Lz78 [74],
(LZW) Lempel–Ziv–Welch [108], (LZSS) Lempel–Ziv–Storer–Szymanski [103,109–111],
(LZS) Lempel–Ziv–Stac [112], (LZO) Lempel–Ziv–Oberhumer [113,114], Snappy [115,116],
Brotli [117,118], Deflate [119], Deflate64 [120], LZ4 [121–123], (LZFSE) Lempel–Ziv Finite
State Entropy [124,125], (LZJB) Lempel Ziv Jeff Bonwick [108], (LZMA) Lempel-Ziv-Markov
chain-Algorithm [108], (LZRW) Lempel–Ziv Ross Williams [108,121,126], LZWL [127,128],
LZX [129].

Entropy scheme algorithms rely on giving an index value for each symbol with the
rule that each entry in the dictionary should not be iterated and has a unique index value.
The dictionary size increases every time we have a new entry, which makes it a critical
issue because the max size of the dictionary is limited according to the size of memory. The
sliding window comes as a solution, which limits the entries for every interval. Every value
in the sliding window is compared with previous indexed values in the dictionary. Hence,
if the size of the dictionary increases, the search process for match symbols can take a long
time, and this can make the encoding process even slower. All these are considered as
obstacles for running any of these algorithms on an IoT node because of its low processing
power and low memory size. Many modifications are needed, such as reducing the slide
window size and limiting the dictionary size, to fit the IoT node specifications.

3.1.3. Lossless General Compression Algorithms

Lossless general compression algorithms are implemented by replacing symbols in
the context with codes or numbers in order to refer to their counts or predictions in the data,
or by differences between the values if the input data is made of integers. The methods of
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these algorithms come in many shapes and steps, such as prediction at first followed by
arithmetic coding that can be involved in order to encode the data. Hence, in this scheme,
no dictionary or slide window is used. There are more than 8 algorithms support Lossless
general compression algorithms such as Burrows-Wheeler transform (BWT) Burrows-
Wheeler transform [130], (CTW) Context tree weighting [131], Delta [132,133], (PPM)
Prediction by partial matching [134,135], (DMC) Dynamic Markov compression [136,137],
(MTF) Move-to-front transform [138], PAQ [139], RLE [140,141].

Lossless general compression algorithms are different from entropy and dictionary-
based algorithms in that they do not use a sliding window or create a dictionary. This is
clear, especially in the BWT, Delta, and RLE algorithms The results of these algorithms
depend on the sequence of input data, which is not guaranteed when dealing with IoT data.
Most of the others need a large memory that exceeds the limits of IoT nodes. Furthermore,
there is the complexity of encoding processes such as PPM and DMC algorithms that use
arithmetic coding as a step or PPM and PAQ that use context mixing in order to increase the
prediction preciseness. Many symbols move to the header of the stack in MTF, exceeding
the limits of IoT nodes as well as all the mentioned algorithms.

4. Deep Learning

Deep learning is an evolution of machine learning mainly consisting of neural net-
works that aims to automate systems for many applications. It consists of neurons arranged
in layers. Deep learning become popular recently due to its ability to provide accurate
solutions in many domain problems. It has neurons, weight, bias and activation functions
which need to be adjusted to obtain the best solution.

4.1. Deep Learning Architectures

There are various variants of deep learning in neural network architectures that con-
sist of a wide variety of neural network training strategies [142,143]. Deep learning is
divided into unlabeled and labeled data according to the type of data under processing.
Autoencoder (AE) architecture [144,145] and restricted Boltzmann machine (RBM) architec-
ture [146], which have been proposed by the so called “Father of Deep Learning”, Geoff
Hinton, are considered the best for unsupervised learning and unlabeled data [147].

Both the architectures are considered to belong to the feature-extractor family and are
supposed to be suitable for pattern recognition. For any work that involves the processing
of time-series data, it is better to use a recurrent net (RNN) [148]. Supervised learning ar-
chitectures are used for labeled data, such as using recursive neural tensor net (RNTN) and
RNN for sentiment analysis [149], parsing [150], and entity/object recognition [151]. Deep
belief networks (DBN) [152,153] and CNN [154,155] are used for images, objects [156], and
speech recognition. RNN is used for speech recognition [157,158], entity recognition [159],
and time-series analysis [160]. Many of the current deep learning architectures use one or a
combination of previous solutions, depending on the data type they are analyzing.

Researchers in [161] stated that some functions have a complexity that cannot be
handled in IoT devices without machine learning or deep learning. Other researchers
in [162] explained that the obstacles of low memory and low processing power were
the reason behind this. Despite this, the IoT and sensors’ data are the most common
potential uses for brontobyte-level storage that is equal to 10 to the 27th power of bytes,
as stated in [163]. Therefore, many scientists have studied how to reduce data traffic
in order to alleviate the load on memory, as stated in [164,165]. The next paragraph
illustrates the techniques used in deep learning in order to reduce the weights and number
of parameters. These techniques are defined under dimensionality reduction, which
represents big data using small, meaningful data by reducing its space [166]. Pruning and
pooling are illustrated in more details to see if they can be used to reduce the data traffic.
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4.2. Dimensionality Reduction Techniques
4.2.1. Pruning

Pruning is a method used for various applications and areas. It is very commonly
used in different ways to minimize complexity [146]. For example, it is used for mining
spatial high utility co-location patterns based on actually shared weights and features [167].
However, pruning aims to make it fast and small in the neural network by reducing
learning weights [168]. After training the network for the first time, all connections with
weights below a threshold are deleted from the network. This process occurs whenever the
network is retrained. The training results can minimize the network size by keeping sparse
connections and neurons [169]. In [60] researchers used pruning and other techniques in
order to compress neural networks. from the ImageNet ILSVRC-2012 dataset, researchers
experimented on AlexNet Caffe to get 89% of weights pruned with 9× compression
ratio and on VGGNet-16 to get 92.5% of weights pruned with 13× compression ratio.
Researchers experimented on the MINIST dataset with two architectures. First, the Lenet-
300-100, a fully connected network with two hidden layers, has 300 and 100 neurons
in each layer. The second is the Lenet-5, which has two convolutional layers and two
fully connected layers, they got 92% of weights pruned with 12× compression ratio for
both architectures.

The ImageNet datasets describes the layer of convolutional (Conv) and full connected
(Fc), while the MINIST datasets uses the layer of Conv and learnable parameters (lp). Each
nodes describes the weights number and percent of weights pruned. The effectiveness of
the pruning process was assessed in reducing the number of parameters and connections.
Pruning removes the low-value weights and only keeps the high-value ones.

4.2.2. Pooling

The pooling layer is used to reduce the features or the spatial volume of inputs.
Pooling is usually used after the convolution layer or between two convolution layers [170].
The size of the dimension after pooling is reduced [155]. There are three types of pooling:
minimum, average, and maximum pooling. CNN used pruning after convolution and
before using a classifier to reduce complexity and avoid overfitting. This depends on
dividing the convolved layer into disjoined regions, then determining the max or min or
the average value for every region’s features [171,172].

5. Deep Learning Solutions for IoT Data Compression

Han in [60] proposed a deep learning algorithm to reduce the storage and energy
required to run inference on large networks and deploy on mobile devices in three phases.
He used pruning to reduce redundant connections, then applied quantization on weights to
produce fewer codebooks that needed to be stored because many of the connections share
the same weight. After that, Huffman coding was applied to effective weights. Although
the experiment was not applied for IoTs, the results were promising. However, researchers
in [173] tried to compress neural network structures into smaller matrices by finding the
non-redundant elements. Other researchers in [174] proposed SparseSep for deep learning
in order to fully connect layers for sparsification and for the separation of convolutional
kernels in order to reduce the resource requirements. The authors in [175] stated that the
large model’s group could be transferred to one small model after training using distillation,
and that this would be much better for deployment. However, in [176,177], researchers
proposed a dynamic network surgery compression algorithm to reduce the complexity
of the network using the on-the-fly pruning method. They limited pruning in order to
save accuracy. Therefore, they used the splicing method to compensate the important
connections and weights that were pruned. Researchers in [178] worked on reducing the
test time for the large convolutional network, which was directed for object recognition,
starting with each convolution layer compressing and identifying the perfect low rank
approximation before adjusting the top layers until the performance of the prediction was
restored. Researchers in [179] investigated techniques for reducing complexity. Others
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tried to accelerate training by computing convolutions in the Fourier domain while reusing
the same transformed feature map many times [180]. However, it is stated that most of the
parameter values predicted need not be learned; architectures can be trained by learning a
small weight number and predicting the others [181]. In order to improve model discrimi-
nation in responsive fields for local patches, a new network structure called “network in
network” was suggested. It is a micro neural network that is instantiated with a multi-layer
perceptron. This micro neural network is slid over the input in the same manner as CNN
to generate the feature maps and use average pooling for classification [182,183]. Other
researchers tried using information theory ideas in order to determine the optimal neural
network size by having a tradeoff between complexity and a training error using second
derivative information, which includes removing unimportant weights [184]. Researchers
in [185] proposed a new method to train binarized neural networks at run-time; during
forward propagation, this method greatly reduces the required memory size and replaces
most operations with bit-wise operations [186]. However, binary weights were also pro-
posed in [187], where researchers tried to replace the simple accumulations of several
multiply-accumulate operations because multipliers took up most of the space and are con-
sidered power-hungry components when digital neural network is implemented. Another
way to compress neural networks using a hashing trick was proposed in [188], where the
idea of linking every group of weights in the same hash bucket with a single parameter
using a hash function was proposed. The proposed method managed to minimize the
model sizes significantly by exploiting redundancy in neural networks. Other researchers
in [189] found that the use of k-means in weights clustering can lead to a very good balance
between the size of the model and the accuracy of the recognition.

6. Experiments and Results

According to the specifications of the IoT data, this paper experiments on selected
algorithms that need minimum memory, consume the least power, and have the potential
to be modified and implemented into IoT nodes. The three algorithms that have been
selected are Lz77 from sliding window algorithms, Lz78 from dictionary-based algorithms
because these algorithms are considered to have the lowest complexity amongst the three,
and the Huffman code from entropy algorithms, which been used in many compression
applications and is very good for text compression with minimum complexity. Because
the IoT data type can be heterogeneous since it comes from many different sensors, it is
better to deal with this data as text instead of numbers. Otherwise, the data will have to
be classified according to its sources, which will be more complex for the IoT device. The
datasets used in the experiment are categorized into three types:

(1) The first type is a time-series dataset collected from sensors connected to IoT devices,
(2) The second type is time-series data not collected by sensors or IoT devices, and
(3) The third type is a collection of varied files, not time series, and not collected by

sensors or IoT devices.

All three types of datasets were used in order to evaluate the performance of the
proposed algorithms. All the experiments used at least 17 threads on a Dell server with a
2.4 GHz Intel Zeon 8 Cores E5620 46-bit-based processor and 100 GB RAM. Windows 10
Pro virtual was hosted on Centos 6, the operating system of the server. The five datasets
with various dataset files are used for Compression Algorithms evaluation are: four data
sets in the Dataset Kaggle [190], 5 in UCI database [191], 6 datasets in AMPDs [192,193],
10 datasets in The Calgary Corpus [194] and 6 datasets from Meteorology Department
in Malaysian. The Malaysia Air Pollution consists 9 attributes: temperature, humidity,
wind speed, wind direction, CO, O3, NO, NO2, and NOx for 6 stations: Cheras, Tanjong
Malim, Putrajaya, Petaling Jaya and Nilai, Klang collected for 10 years between 01/01/2005
to 31/12/2016.

Compression algorithms were implemented on the previous datasets in order to
evaluate these algorithms depending on the compression ratio that can be obtained by
dividing the size of compressed files by the size of uncompressed. However, before
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calculating the compression ratio, the compressed size for each file should be calculated
from the datasets according to every compression algorithm used. Table 2 shows the results
for the dataset compression.

Figure 5 shows the results and ratios of compression algorithms have been categorized
by the source of the datasets. a, c, e, g, and i show the compression results, whereas b, d, f,
h, and j show the compression ratios. It is clear from compression results that the adaptive
Huffman algorithm had the best values in all the datasets, although it equaled the canonical
Huffman in some results such as in ozone level detection for eight hours in c and Book1 in
g. In contrast, Lz77 got the worst results—in some cases the sizes of compressed files were
even bigger than the original ones in many cases because of an inflation problem. However,
there were cases where Lz78 obtained the worst results, especially for electricity monthly,
electricity billing, and climate historical normally in e, which proves that compression
results depend on the distribution and iterations in data.

The compression results in a, c, e, g, and i show the comparison between compression
algorithms when applying to the same files in datasets, whereas b, d, f, h, and j show the
differences between compression ratios where the lowest compression ratio means better
compression result. The adaptive Huffman also had the lowest compression ratio with one
exception in h, where Lz78 got the lowest value for Book1 in the Calgary Corpus dataset.

Table 2 also shows the results categorized by data type; the minimum compression
ratio is 32%, which resulted using Lz78 on Book1 from the Calgary Corpus dataset, where
the maximum compression ratio is 263%, which resulted in using Lz77 on water billing
data from the AMPDs dataset. However, for data type 1, the minimum compression ratio
is 38%, which was obtained using adaptive Huffman, and for data type 2, the minimum
ratio is 43%, which was also obtained using adaptive Huffman.

For data type 3, Lz78 is the lowest compression ratio when applying to Book1. How-
ever, if we exclude Book1 from the dataset, the adaptive Huffman would be the lowest
ratio again, which is 58% ratio on paper2 from the Calgary Corpus. This means adaptive
Huffman is the best when compressing time series and numeric data such as data type 1
and 2, however, it not necessarily good for data type 3.
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Figure 5. Compression results and ratios for all datasets.

The results clearly show that adaptive Huffman has a better compression ratio and
is more significant than canonical Huffman. This means compressing real-time data is
better than compressing offline data. On the other hand, Lz78, which is a dictionary-
based algorithm, has more significant results than Lz77, which is a sliding window-based
algorithm. However, some anomalies could happen, such as the three results in AMPDs
dataset, where Lz77 has better compression ratios, and the reason for this was data sequence
and redundancy as well as the file sizes, therefore the inflation problem can be noticed in
the Lz77 sliding window in all the datasets.
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Table 2. The Compression Results for Applying Algorithms on Datasets.

Dataset Type File Name Size Huffman Huffman
Ratio (%)

Adaptive
Huffman

Adaptive Huffman
Ratio (%) Lz77 Lz77 Ratio (%) Lz78 Lz78 Ratio (%)

Kaggle 1 Daily-minimum-
temperatures-in-me 54.500 26.800 49 24.200 44 94.000 172 55.600 102

Kaggle 1 Electric_Production 7.1400 3.600 50 3.180 45 12.000 168 9.600 134

UCI 1 Monthly sunspots 43.900 21.700 49 19.700 45 73.000 166 42.950 98

UCI 1 Ozone level Detection
8 Hours 799.000 346.000 43 346.000 43 1336.000 167 783.820 98

UCI 1 Occupancy dataset 196.000 95.500 49 95.200 49 331.000 169 191.623 98

UCI 1 Ionosphere data 74.600 33.800 45 33.700 45 125.000 168 89.480 120

AMPDS 1 Climate hourly
weather 1413.120 697.000 49 680.000 48 2372.000 168 1004.170 71

AMPDS 1 Climate historical
normals 2.580 1.940 75 1.610 62 4.000 155 4.200 163

AMPDS 1 Electricity monthly 0.735 0.781 106 0.489 67 1.000 136 1.550 211

AMPDS 1 Natural gas monthly 0.416 0.576 138 0.301 72 0.986 237 0.861 207

Ozone 1 Cheras 3257.585 1276.561 39 1271.000 39 5429.000 167 2063.960 63

Ozone 1 TanjungMalim 2641.970 1046.768 40 1043.000 39 4403.000 167 1616.730 61

Ozone 1 Putrajaya 2742.100 1091.609 40 1087.000 40 4570.000 167 1726.020 63

Ozone 1 PetalingJaya 3105.790 1234.014 40 1230.000 40 5176.000 167 2074.050 67

Ozone 1 Nilai 102.932 39.881 39 39.200 38 171.000 166 75.000 73

Ozone 1 Klang 3279.01 1284.780 39 1281.000 39 5465.000 167 2075.070 63

Kaggle 2
Monthly beer
production in

Australia
6.740 3.460 51 2.950 44 11.000 163 7.900 117

Kaggle 2 Sales of shampoo over
a three year period 0.497 0.600 121 0.334 67 1.000 201 0.980 197

UCI 2 Daily total
female births 6.070 2.990 49 2.590 43 10.000 165 5.500 91
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Table 2. Cont.

Dataset Type File Name Size Huffman Huffman
Ratio (%)

Adaptive
Huffman

Adaptive Huffman
Ratio (%) Lz77 Lz77 Ratio (%) Lz78 Lz78 Ratio (%)

AMPDS 2 Electricity billing 1.740 1.270 73 0.965 55 3.000 172 3.250 187

AMPDS 2 Water billing 0.180 0.344 191 0.135 75 0.474 263 0.421 234

Corpus 3 bib 108.653 71.700 66 71.200 66 193.000 178 144.443 133

Corpus 3 book1 750.753 428.000 57 428.000 57 291.000 39 242.690 32

Corpus 3 book2 596.539 360.000 60 359.000 60 1023.000 171 752.284 126

Corpus 3 news 368.271 241.000 65 240.000 65 635.000 172 523.000 142

Corpus 3 paper1 51.915 33.200 64 32.700 63 90.000 173 78.540 151

Corpus 3 paper2 80.272 47.200 59 46.600 58 138.000 172 114.830 143

Corpus 3 progc 38.683 26.000 67 25.400 66 69.000 178 59.540 154

Corpus 3 progl 69.967 42.600 61 42.100 60 121.000 173 89.410 128

Corpus 3 progp 48.222 30.200 63 29.600 61 85.000 176 61.680 128

Corpus 3 trans 91.499 64.400 70 62.100 68 156.000 170 120.394 132
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7. Discussion

In the Compression section, it was found that not all the mentioned algorithms
are suitable to be implemented in the IoT nodes without being modified because they
require more memory and greater power processors than what an IoT node can provide.
However, compression algorithms can be implemented in cloud servers or some aggregated
nodes. These algorithms need a considerable space of stack and heap that should be
reserved according to every algorithm code (arrays and pointers). Because of the differences
between these codes, the size of the allocated memory could not be known before the
implementation. Furthermore, the size of the data itself, in some cases, could require hours
to be compressed.

The Deep Learning section explains that it is rather difficult to determine how many
features are required to recognize an object, classify an image, or carry out other deep
learning functions. These processes evolve deferent tasks according to the architecture
used, and they also depend on the data type under processing. Therefore, every deep
learning architecture has a different scenario. All architectures aim to know the minimum
number of features in order to have the knowledge of which feature is good enough to
have satisfied outputs with minimum errors. They transformed the high-dimensional
data space into small-dimensional data space, which in turn conserves the same original
data properties. High-dimensional data has many problems. It requires more time and
space complexity and can also lead to overfitting. Furthermore, not all the features in
high-dimensional data are involved or related to the problem we are solving. Reducing
the dimension of data space leads to reducing the noise and unnecessary parts of data and
helps to determine the features most related to the problem. Two approaches to apply
dimensionality reduction were proposed. The first is feature selection, where the most
related features to the problem are selected. The second is feature extraction, where new
features from the high-dimensional data space are assessed to create the low-dimensional
data space. Many deep learning techniques could be used for this, such as principal
component analysis (PCA), non-negative matrix factorization (NMF), kernel PCA, graph-
based kernel PCA, linear discriminant analysis (LDA), generalized discriminant analysis
(GDA), Autoencoder, t-SNE, and UMAP. However, in order to avoid the problems or curses
of dimensionality, the K-nearest neighbor algorithm (k-NN) is most commonly applied.

Traditional compression algorithms, as illustrated earlier in the Compression section,
have a different meaning. In deep learning, compression in many architectures means
minimizing the number of neurons or weights by removing them from layers, and this
process is achieved by using the dimensionality reduction techniques. It is categorized as
lossy compression, where lost information after compression does not fit the aim of IoT
data compression. One of the first steps in deep learning architectures is initializing the
values of the weights, which is done randomly, as illustrated in Figure 5. This process
alone makes the output values unequal compared to the input data in the first layer, even
though these output values could be very high accuracy. Furthermore, the process of deep
learning is carried out in one direction from the input layer to the output layers. Activation
functions are used through this process in order to determine which neuron values are
relied upon to drop or keep these neurons and their connected weights. Hence, using
activation functions breaks the linearity by retaining sparred values randomly and then
training the model. When implementing the activation functions, the model starts from
scratch with different weights values and leads to different results and outputs. However,
previous results show some cases have a very close similarity with the original inputs and
have smaller sizes and dimensions, as we have in lossy compression algorithms, which are
acceptable in some cases and applications.

8. Conclusions, Challenges and Future Work

This paper reviewed smart cities’ issues and the importance of IoT in reducing data
traffic, especially between sensors and IoT nodes. The current compression algorithms
have limitations when trying to implement them using the IoT’s small memory. Lossy
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compression algorithms are not suitable due to the loss of information after transmission.
In contrast, applying lossless compression algorithms is complex for IoT devices. Deep
learning using pruning and pooling methods was applied in order to reduce data. However,
it uses a lossy approach and does not aim for connections between sensors and IoT devices.
In the future, a new algorithm using deep learning techniques combined with the lowest
complex lossless compression algorithm and has the best compression ratio is needed. The
suggested algorithm should fit the sensors and IoT data type and aim to produce a good
compression ratio on every IoT node that reduces the network data traffic and transmits
data faster, has higher utilization, and has better throughput.

Author Contributions: This research has been carried out through a concerted effort by three authors.
Hence, any author has participated in conducting every single part of the paper. Each author’s basic
role has been summarizing in the following: A.N. is the first author and responsible for writing the
paper and implementation of the compression algorithms on the datasets and conducting reviews
for related, previous and current works. Z.A.O. is the second author and owned the research grant.
Z.A.O. supervised the research topic and ensuring the novelty, Z.A.O. also do editing and reviewing
the paper, Z.A.O. is the main supervisor of the first author. N.S.S. is the third author, she is the
consultant of the research group in Deep Learning architectures, also editing and reviewing the
paper, N.S.S. is the co-supervisor. All authors have read and agreed to the published version of
the manuscript.

Funding: Grant funding by FRGS/1/2019/ICT02/UKM/02/7.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Relevant Data are available at [190–194].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Siyuan, C. World Urbanization Prospects. In Proceedings of the United Nations, Department of Economic and Social Affairs; United

Nations: New York, NY, USA, 2014; Volume 1, pp. 1–32.
2. Eremia, M.; Toma, L.; Sanduleac, M. The Smart City Concept in the 21st Century. Procedia Eng. 2017, 181, 12–19. [CrossRef]
3. Hoornweg, D.; Pope, K. Socioeconomic Pathways and Regional Distribution of the World’s 101 Largest Cities; Global Cities Institute:

Oshawa, ON, Canada, 2014; Volume 1.
4. Bajer, M. Building an IoT data hub with elasticsearch, Logstash and Kibana. In Proceedings of the 2017 5th International

Conference on Future Internet of Things and Cloud Workshops (FiCloudW), Prague, Czech Republic, 21–23 August 2017;
pp. 63–68. [CrossRef]

5. Schuler, D. Digital Cities and Digital Citizens; Springer: Berlin/Heidelberg, Germany, 2002; pp. 71–85.
6. Deren, L.; Qing, Z.; Xiafei, L. Cybercity: Conception, technical supports and typical applications. Geo-Spat. Inf. Sci. 2000, 3, 1–8.

[CrossRef]
7. Ishida, T.; Isbister, K. Digital Cities: Technologies, Experiences, and Future Perspectives—Google Books; Springer Science & Business

Media: Berlin, Germany, 2000; ISBN 0302-9743.
8. Komninos, N. Intelligent Cities and Globalisation of Innovation Networks; Routledge: London, UK, 2008; ISBN 0203894499.
9. Shepard, M. Sentient City: Ubiquitous Computing, Architecture, and the Future of Urban Space, 1st ed.; Shepard, M., Ed.; Architectural

League of New York, The MIT Press: New York, NY, USA, 2011; ISBN 9780262515863.
10. Bătăgan, L. la psicología de la salud en el nuevo currículo de la diplomatura en enfermería. Rev. Enfermer 2011, 18, 80–87.
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