
sensors

Article

The Deep Learning Solutions on Lossless Compression
Methods for Alleviating Data Load on IoT Nodes in
Smart Cities

Ammar Nasif *, Zulaiha Ali Othman and Nor Samsiah Sani

����������
�������

Citation: Nasif, A.; Othman, Z.A.;

Sani, N.S. The Deep Learning

Solutions on Lossless Compression

Methods for Alleviating Data Load

on IoT Nodes in Smart Cities. Sensors

2021, 21, 4223. https://doi.org/

10.3390/s21124223

Academic Editor: Carles Gomez

Received: 9 April 2021

Accepted: 2 June 2021

Published: 20 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Center for Artificial Intelligence Technology (CAIT), Faculty of Information Science & Technology,
University Kebangsaan Malaysia, Bangi 43600, Malaysia; zao@ukm.edu.my (Z.A.O.);
norsamsiahsani@ukm.edu.my (N.S.S.)
* Correspondence: nasifammar40@gmail.com

Abstract: Networking is crucial for smart city projects nowadays, as it offers an environment where
people and things are connected. This paper presents a chronology of factors on the development
of smart cities, including IoT technologies as network infrastructure. Increasing IoT nodes leads to
increasing data flow, which is a potential source of failure for IoT networks. The biggest challenge
of IoT networks is that the IoT may have insufficient memory to handle all transaction data within
the IoT network. We aim in this paper to propose a potential compression method for reducing
IoT network data traffic. Therefore, we investigate various lossless compression algorithms, such
as entropy or dictionary-based algorithms, and general compression methods to determine which
algorithm or method adheres to the IoT specifications. Furthermore, this study conducts compression
experiments using entropy (Huffman, Adaptive Huffman) and Dictionary (LZ77, LZ78) as well as
five different types of datasets of the IoT data traffic. Though the above algorithms can alleviate the
IoT data traffic, adaptive Huffman gave the best compression algorithm. Therefore, in this paper,
we aim to propose a conceptual compression method for IoT data traffic by improving an adaptive
Huffman based on deep learning concepts using weights, pruning, and pooling in the neural network.
The proposed algorithm is believed to obtain a better compression ratio. Additionally, in this paper,
we also discuss the challenges of applying the proposed algorithm to IoT data compression due to
the limitations of IoT memory and IoT processor, which later it can be implemented in IoT networks.

Keywords: compression; inflation; data traffic; deep learning; internet of thing; IoT; memory;
network; population; problem; pruning; smart city; compression method; pooling; entropy coding;
dictionary coding; IoT market

1. Introduction

The UN reported that by 2030, almost 60% of the world’s population will reside in big
cities with almost 38 million residents, such as Tokyo followed by Delhi, Shanghai, Mexico
City, São Paulo, and Mumbai, which are all ranked amongst the world’s most populated
cities [1]. In 2014, there were 28 mega-cities with thrice the population than back in 1990,
and this number was estimated to exceed 41 cities in 2030. In the European Union the urban
population is expected to reach 80% in 2050. Now, more than 50% of the world’s population
live in urban areas, where they consume 75% of the energy, and they are also responsible for
80% of the greenhouse effect [2]. In 2050 it is predicted that the largest 200 cities in the world
will each have a minimum population of 3 million people and that Mumbai (Bombay)
in India, for example, may exceed 42 million [3]. The cities’ infrastructure has been
developed to cater to the demands of the new urban population. In the beginning, when
wireless technologies had not been introduced yet, governments tried to connect buildings
through cables and wires, and the cities containing these buildings have been referred to
as wired cities [4]. Later the term “virtual cities” was proposed in order to show digital

Sensors 2021, 21, 4223. https://doi.org/10.3390/s21124223 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s21124223
https://doi.org/10.3390/s21124223
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21124223
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21124223?type=check_update&version=2

Sensors 2021, 21, 4223 2 of 27

representations and manifestations as an infrastructure [5]. Consequently, many other
new names emerged with different purposes, such as cyber city (virtual 3D and GIS) [6],
digital city (web-based representative) [7], intelligent city (high capacity for learning and
innovation) [8], sentient city (the experience of living in a city that can remember-correlate-
anticipate) [9], sustainable city (reducing CO2 emissions with efficient energy), [10] and
green city (reducing greenhouse gas emissions and pollution with minimizing waste and
inefficient use of natural resources, along with maintaining biodiversity) [11]. Researchers
in [12–28] tried to summarize the impacting factors which affected the development of
smart cities.

Many efforts were made in order to satisfy the abnormal needs and requirements
emerging from these urbanization movements, especially from the traditional manage-
ment systems that provide service to billions of people, which was a nightmare for any
government. Therefore, the concept of smart cities was introduced as a reliable solution for
governments. The first smart city concept was introduced in the late 1990s [29]. At that
time, most researchers defined a smart city as an urban area where data could be collected
using various forms using electronic sensors connected to the internet. The information
collected was then used in order to effectively control resources and services, and later
used to optimize activities around the city. Consequently, many smart city definitions
were proposed due to the various factors that influenced a smart city. These factors led
to the change of smart city definition and affected its concept, as well. Figure 1 shows
the chronology of the effecting factors that developed the various smart city definitions.
All previous definitions have a common concept that the smart cities focus on the quality
of life by using the latest technology and by offering new industries in order to promote
urban development through many intelligent services systems. The IoT networks emerged
on the market in 2014 taking on the form of infrastructure. Although the demand for IoT
started in 2010, smart cities completely depended on networking systems and sensors,
even in 2018, the IoT networks were in a high demand because it enabled analyzing data in
real-time systems.

Nowadays, the notion of a smart city is globally used, and the number of smart
cities has gradually increased. In 2012, approximately 143 smart cities, including 35
in North America and 47 in Europe, integrated new technologies into urban problem
management [30]. Until now, smart city projects have increased in response to urbanization
requirements and, as a result of the emerging technology, created capable infrastructures
that can be used for new services. One of the most reliable technologies, which is considered
the backbone of smart cities, is the IoT network because of its many features that fulfill the
criteria needed for various smart city applications. Furthermore, it has a low cost compared
to other traditional networks. All of the IoT components work as a single integrated system.
The network has characteristics such as automation, intelligence, dynamicity, and zero-
configuration, as illustrated in [31]. However, these IoT specifications still have limitations
such as limited memory and low power processors. In smart cities with millions of people,
most individuals own wearable devices and make use of IoT in their daily lives [32], such
as smart homes and cars; therefore, heavy transmission of data every second over IoT
networks is expected.

Furthermore, sometimes problems occur, especially when transmitting large amounts
of data, such as delays in responding to citizens, which is highly expected in these large
cities. This will be further discussed in the IoT memory challenge in section two, wherein
it will be shown increasing the speed of data transfer, as a solo solution is not enough.

Later, many new technologies emerged, utilizing artificial intelligence, such as ma-
chine learning and deep learning [33], with the introduction of IoT as an infrastructure
for smart cities [34]. This allowed edge computing to be implemented in the real world to
alleviate the load on servers and sustain the implementation of smart cities. However, even
during the 4th industrial revolution, several IoT applications still operate in a centralized
structure [13]. Therefore, many researchers have tried to demonstrate the significance
of IoT in applying edge computing and how it can be more feasible for smart cities [35].

Sensors 2021, 21, 4223 3 of 27

Nevertheless, manufacturers and researchers were not sufficiently interested in developing
IoT, particularly its limited memory capacity.

Sensors 2021, 21, x FOR PEER REVIEW 3 of 25

even during the 4th industrial revolution, several IoT applications still operate in a cen-
tralized structure [13]. Therefore, many researchers have tried to demonstrate the signifi-
cance of IoT in applying edge computing and how it can be more feasible for smart cities
[35]. Nevertheless, manufacturers and researchers were not sufficiently interested in de-
veloping IoT, particularly its limited memory capacity.

Figure 1. Chronology of factors on the development of smart cities.

Memory size can be considered a critical problem in the IoT network because the
small available memory segments messages into many smaller packets that require more
transmission time, leading to consumption of more power and more latency [36]. A real-
istic example of this was stated in [37] where the RootMetrics smart city project relied on
the IoT network as an infrastructure, and the enormous network data traffic caused sys-
tem failure because the tiny IoT memory was unable to handle such massive data without
intelligent management. It has been shown that when sensed data is sent directly to a

Figure 1. Chronology of factors on the development of smart cities.

Memory size can be considered a critical problem in the IoT network because the
small available memory segments messages into many smaller packets that require more
transmission time, leading to consumption of more power and more latency [36]. A realistic
example of this was stated in [37] where the RootMetrics smart city project relied on the IoT
network as an infrastructure, and the enormous network data traffic caused system failure
because the tiny IoT memory was unable to handle such massive data without intelligent
management. It has been shown that when sensed data is sent directly to a gateway or
server, it not only consumes excessive power but also increases the chance of data loss [38].

As a solution, many previous research studies have focused on enhancing the transmis-
sion range and speed. Scratchpad Memory (SPM) & Non-Volatile Memory Express (NVMe)
memory types were developed in order to hold small items of data for rapid retrieval in IoT
devices [39]. SPMs are software-controlled and require additional programmer effort [40],

Sensors 2021, 21, 4223 4 of 27

while NVMe enables the code to be executed directly. No code has to be copied to the
Random Access Memory (RAM), which will reduce the boot-up time as well [21]. SPMs &
NVMe were expensive enough to be implemented for IoT.

The key contributions of this study are summarized as follows:

(1) We study the technical side of IoT memory to clarify why small IoT memory cannot
handle massive amounts of data.

(2) We investigate lossless compression algorithms as well as previous and current related
work that has been used to reduce data size and illustrated detailed differences
between them to clarify which can be used for IoT.

(3) We demonstrate the fundamentals of deep learning, which later help us understand
the techniques used for dimension reduction and how we can use them to compress
data in IoT memory.

(4) We implement experiments on five datasets using lossless compression algorithms
to justify which fits better for IoT and which is more suitable for numeric and time
series data type as IoT data type.

The paper is organized as follows: we investigate the technical details about IoT
memory and why the small IoT memory cannot handle large data traffic, as well as how
previous studies have tried to manage such large data using compression algorithms in
Section 2. Then we investigate in more details the compression algorithms and methods
in Section 3 and review algorithms that can be applied for numeric and time series data
because of their similar characteristics with IoT data. In Section 4, deep learning fundamen-
tals are illustrated in order to understand the techniques used for dimensionality reduction.
We also investigate the current compression algorithms using deep learning in order to
assess whether they, as well as traditional compression algorithms, can be used to compress
the IoT data. However, we found that compression algorithms in deep learning do not
share a similar concept with traditional compression algorithms. Additionally, we also
discuss the potential of combining pruning and pooling in deep learning techniques with
any suitable traditional compression algorithms. This paper describes how to minimize or
compress the data to fit into a memory of IoT node in order to alleviate IoT data traffic in
the IoT network.

2. Internet of Things

To illustrate in detail how an IoT system works, Figure 2 shows the IoT network archi-
tecture where every IoT node can be connected at least with one sensor or actuator or both.
The node contains many integrated modules such as a processing unit (microcontroller),
power management, memory (SRAM, Flash Memory, EEPROM), and communication
modules (Wi-Fi, Bluetooth, 802.15.4 Wireless, wired). IoT nodes can be connected to an IoT
gateway forming a local network. The gateway is connected to the internet which allows
end-users to access (monitor or control) things.

Sensors 2021, 21, x FOR PEER REVIEW 5 of 25

Figure 2. The IoT network architecture.

2.1. IoT Memory
Memory is an essential component of an IoT device, as it stores both received and

sent data. However, the performance of this memory depends on its type. One of these
types is non-volatile memory (NVM), which retains data even if power is removed. The
other type is volatile memory (VM), which loses data if power is removed. VM is faster
than NVM but more expensive. Manufacturers using NVM for embedded devices have
two options: one-time programmable (OTP) and multiple-time programmable (MTP).
MTP offers applications that require long battery life, it is considered better than external
flash memory and also lower in cost per bit. OTP is more suitable when the contents of
memory cannot be modified once configured.

For IoT devices, manufacturers have developed scratchpad memories (SPMs) that
are high-speed internal memories used for the temporary storage of calculations, data,
and other works in progress. Ratzke stated in [39] that SPM is used to hold small items of
data for rapid retrieval in IoT devices. In [40], researchers stated that SPM is different from
cache memory because cache memory is managed by hardware while SPM is managed
by software and requires additional effort from programmers. However, many research-
ers have focused on improving the IoT network by improving SPMs for performance gain,
instead of focusing on data allocation, they focused on instruction allocation because IoT
has embedded systems that have particular and special uses [39]. The researchers men-
tioned in [39] discovered that dynamic allocation of memory is better than static; there-
fore, there is no need to fill the memory before execution; instead, the memory should be
filled when needed. Therefore, they proposed an algorithm that would decide whether to
store memory objects (variables and code segments) in the SPM first or to the main
memory before computing the addresses in the SPM. The SPM includes an array of SRAM
cells and is used as an alternative to cache due to its specifications in energy efficiency,
time predictability, and scalability. However, there is a need for the compiler or the pro-
grammer to allocate appropriate data to the SPM efficiently. Therefore, data management
is the most challenging issue in systems equipped with SPMs, as researchers have stated
in [41]. Furthermore, Lipman suggested one of the other ways to improve IoT devices
would be using non-volatile memory (NVM). NVM is fast enough to allow executing the
code directly, and there is no need to copy the code to the RAM here, which would reduce
the boot-up time as well. However, there are still many improvements to be made, such
as those in size and cost [21]. Because of this, manufacturers still use the traditional
memory, which is the SRAM, to store data in IoT devices.

2.2. The IoT Memory Challenge
IoT memory has a low capacity, which is used in caching enormous network data,

the IoT insufficient memory space is a crucial problem for smart city projects that rely on
IoT networks as infrastructure. However, manufacturers of IoT devices have focused on
increasing the speed of accessing data by proposing SPMs and NVM, as illustrated in the

Figure 2. The IoT network architecture.

Sensors 2021, 21, 4223 5 of 27

2.1. IoT Memory

Memory is an essential component of an IoT device, as it stores both received and sent
data. However, the performance of this memory depends on its type. One of these types
is non-volatile memory (NVM), which retains data even if power is removed. The other
type is volatile memory (VM), which loses data if power is removed. VM is faster than
NVM but more expensive. Manufacturers using NVM for embedded devices have two
options: one-time programmable (OTP) and multiple-time programmable (MTP). MTP
offers applications that require long battery life, it is considered better than external flash
memory and also lower in cost per bit. OTP is more suitable when the contents of memory
cannot be modified once configured.

For IoT devices, manufacturers have developed scratchpad memories (SPMs) that are
high-speed internal memories used for the temporary storage of calculations, data, and
other works in progress. Ratzke stated in [39] that SPM is used to hold small items of data
for rapid retrieval in IoT devices. In [40], researchers stated that SPM is different from
cache memory because cache memory is managed by hardware while SPM is managed by
software and requires additional effort from programmers. However, many researchers
have focused on improving the IoT network by improving SPMs for performance gain,
instead of focusing on data allocation, they focused on instruction allocation because
IoT has embedded systems that have particular and special uses [39]. The researchers
mentioned in [39] discovered that dynamic allocation of memory is better than static;
therefore, there is no need to fill the memory before execution; instead, the memory should
be filled when needed. Therefore, they proposed an algorithm that would decide whether
to store memory objects (variables and code segments) in the SPM first or to the main
memory before computing the addresses in the SPM. The SPM includes an array of SRAM
cells and is used as an alternative to cache due to its specifications in energy efficiency, time
predictability, and scalability. However, there is a need for the compiler or the programmer
to allocate appropriate data to the SPM efficiently. Therefore, data management is the
most challenging issue in systems equipped with SPMs, as researchers have stated in [41].
Furthermore, Lipman suggested one of the other ways to improve IoT devices would
be using non-volatile memory (NVM). NVM is fast enough to allow executing the code
directly, and there is no need to copy the code to the RAM here, which would reduce the
boot-up time as well. However, there are still many improvements to be made, such as
those in size and cost [21]. Because of this, manufacturers still use the traditional memory,
which is the SRAM, to store data in IoT devices.

2.2. The IoT Memory Challenge

IoT memory has a low capacity, which is used in caching enormous network data,
the IoT insufficient memory space is a crucial problem for smart city projects that rely
on IoT networks as infrastructure. However, manufacturers of IoT devices have focused
on increasing the speed of accessing data by proposing SPMs and NVM, as illustrated
in the IoT memory section. Furthermore, they have focused on increasing the range of
connections with low power consumption. Unfortunately, only a handful of researchers
were interested in increasing the memory size both because the process was expensive and
because this was not a critical issue since data was not large in the past.

For more clarification, Figure 3 shows that IoT memories are of three types: non-
volatile flash memory, which is used for programs, also known as program memory, and
the other two types are for data and are known as data memory. A non-volatile EEPROM
and volatile SRAM are used to temporarily store data. Memory sizes differ by controller
type and version; the data that is received and transmitted through the network is stored
in the SRAM. Data for Wi-Fi credentials, such as usernames and passwords, is stored in
the EEPROM.

Sensors 2021, 21, 4223 6 of 27

Sensors 2021, 21, x FOR PEER REVIEW 6 of 25

IoT memory section. Furthermore, they have focused on increasing the range of connec-
tions with low power consumption. Unfortunately, only a handful of researchers were
interested in increasing the memory size both because the process was expensive and be-
cause this was not a critical issue since data was not large in the past.

For more clarification, Figure 3 shows that IoT memories are of three types: non-vol-
atile flash memory, which is used for programs, also known as program memory, and the
other two types are for data and are known as data memory. A non-volatile EEPROM and
volatile SRAM are used to temporarily store data. Memory sizes differ by controller type
and version; the data that is received and transmitted through the network is stored in the
SRAM. Data for Wi-Fi credentials, such as usernames and passwords, is stored in the
EEPROM.

Figure 3. Three memory types for the IoT.

One of the challenges faced here is the insufficient memory size that causes buffer
overflow, which can happen when software writes data to a buffer and anomalously over-
flows the capacity of the buffer, resulting in the overriding of adjacent memory positions.
Information is transmitted into a container with insufficient space, and this information is
then replaced by the data in neighboring recipients. In the IoT, the SRAM memory works
as a buffer when it receives and transmits data. Most controllers have a small SRAM size,
for example, Arduino controllers SRAM, in comparison to many boards (shown in Table
1) [42].

Table 1. Controllers Comparison Board Specs.

Name Processor Operating/Input Voltage CPU Speed EEPROM [KB] SRAM [KB] Flash [KB]
101 Intel® Curie 3.3 V/7–12 V 32 MHz - 24 196

Gemma ATtiny85 3.3 V/4–16 V 8 MHz 0.5 0.5 8

LilyPad
ATmega168V 2.7–5.5 V/

8 MHz 0.512 1 16
ATmega328P 2.7–5.5 V

LilyPad SimpleSnap ATmega328P 2.7–5.5 V/2.7–5.5 V 8 MHz 1 2 32
LilyPad USB ATmega32U4 3.3 V/3.8–5 V 8 MHz 1 2.5 32
Mega 2560 ATmega2560 5 V/7–12 V 16 MHz 4 8 256

Micro ATmega32U4 5 V/7–12 V 16 MHz 1 2.5 32
MKR1000 SAMD21 Cortex-M0+ 3.3 V/5 V 48 MHz - 32 256

Pro
ATmega168 3.3 V/3.35–12 V 8 MHz 0.512 1 16

ATmega328P 5 V/5–12 V 16 MHz 1 2 32

Pro Mini ATmega328P
3.3 V/3.35–12 V 8 MHz

1 2 32
5 V/5–12 V 16 MHz

Uno ATmega328P 5 V/7–12 V 16 MHz 1 2 32
Zero ATSAMD21G18 3.3 V/7–12 V 48 MHz - 32 256
Due ATSAM3X8E 3.3 V/7–12 V 84 MHz - 96 512

Esplora ATmega32U4 5 V/7–12 V 16 MHz 1 2.5 32
Ethernet ATmega328P 5 V/7–12 V 16 MHz 1 2 32
Leonardo ATmega32U4 5 V/7–12 V 16 MHz 1 2.5 32

Mega ADK ATmega2560 5 V/7–12 V 16 MHz 4 8 256

Figure 3. Three memory types for the IoT.

One of the challenges faced here is the insufficient memory size that causes buffer
overflow, which can happen when software writes data to a buffer and anomalously over-
flows the capacity of the buffer, resulting in the overriding of adjacent memory positions.
Information is transmitted into a container with insufficient space, and this information
is then replaced by the data in neighboring recipients. In the IoT, the SRAM memory
works as a buffer when it receives and transmits data. Most controllers have a small SRAM
size, for example, Arduino controllers SRAM, in comparison to many boards (shown in
Table 1) [42].

Table 1. Controllers Comparison Board Specs.

Name Processor Operating/Input
Voltage CPU Speed EEPROM [KB] SRAM [KB] Flash [KB]

101 Intel® Curie 3.3 V/7–12 V 32 MHz - 24 196

Gemma ATtiny85 3.3 V/4–16 V 8 MHz 0.5 0.5 8

LilyPad ATmega168V 2.7–5.5 V/
8 MHz 0.512 1 16ATmega328P 2.7–5.5 V

LilyPad
SimpleSnap ATmega328P 2.7–5.5

V/2.7–5.5 V 8 MHz 1 2 32

LilyPad USB ATmega32U4 3.3 V/3.8–5 V 8 MHz 1 2.5 32

Mega 2560 ATmega2560 5 V/7–12 V 16 MHz 4 8 256

Micro ATmega32U4 5 V/7–12 V 16 MHz 1 2.5 32

MKR1000 SAMD21
Cortex-M0+ 3.3 V/5 V 48 MHz - 32 256

Pro
ATmega168 3.3 V/3.35–12 V 8 MHz 0.512 1 16

ATmega328P 5 V/5–12 V 16 MHz 1 2 32

Pro Mini ATmega328P 3.3 V/3.35–12 V 8 MHz
1 2 325 V/5–12 V 16 MHz

Uno ATmega328P 5 V/7–12 V 16 MHz 1 2 32

Zero ATSAMD21G18 3.3 V/7–12 V 48 MHz - 32 256

Due ATSAM3X8E 3.3 V/7–12 V 84 MHz - 96 512

Esplora ATmega32U4 5 V/7–12 V 16 MHz 1 2.5 32

Ethernet ATmega328P 5 V/7–12 V 16 MHz 1 2 32

Leonardo ATmega32U4 5 V/7–12 V 16 MHz 1 2.5 32

Mega ADK ATmega2560 5 V/7–12 V 16 MHz 4 8 256

Mini ATmega328P 5 V/7–9 V 16 MHz 1 2 32

Nano
ATmega168

5 V/7–9 V 16 MHz
0.512 1 16

ATmega328P 1 2 32

Yùn
ATmega32U4

5 V
16 MHz

1
2.5 32

AR9331 Linux 400 MHz 16 MB 64 MB

Sensors 2021, 21, 4223 7 of 27

Table 1. Cont.

Name Processor Operating/Input
Voltage CPU Speed EEPROM [KB] SRAM [KB] Flash [KB]

Arduino Robot ATmega32u4 5 V 16 MHz
1 KB

(ATmega32u4)/
512 Kbit (I2C)

2.5 KB
(ATmega32u4)

32 KB
(ATmega32u4)
of which 4 KB

used by
bootloader

MKRZero

SAMD21
Cortex-M0+
32 bit low

power ARM
MCU

3.3 V 48 MHz No 32 KB 256 KB

To clarify the problem, Figure 4 illustrates how many sensors (from Sensor 1 to Sensor
n, where n is an undetermined number) try to send their data to the SRAM memory of a
connected IoT node, and sometimes the sensors send the data simultaneously and cause
overflowing the IoT SRAM. Hence potential problems here are memory overflow and the
possible loss of data due to buffer overflow. The probability of these problems increases,
especially when more sensors are connected to the IoT node.

total messages in one millisecond =
n

∑
i=0

Sn.DF (1)

where S denotes the sensor, i the number of sensors, which ranges from 1 to n, where n
is the sensor’s max count connected to an IoT node. DF is the data flow from the sensor
to the IoT node. If we have at least 2 bytes every millisecond, we can calculate the data
flow size for one second from the following example: If the total number of messages
sent in one second from sensor 1 = 2 Bytes × 1000 = 2000 Bytes ~ 2 KB/1 second, 2 KB
is the max capacity of the IoT memory (SRAM). It has been found that the size of the
transmitted data from all sensors can collapse the IoT node memory. To solve this problem,
many solutions were proposed, such as limiting the count of sensors connected to the IoT
node, adjusting the time interval in order to control when the sensor sends the data—i.e.,
when the controller reads sensor data—although, the fact remains that less read means less
accuracy, or adjusting the packet size, sent from the sensor to the IoT node, which is not
reliable to send fewer numbers. For example, instead of sending the integer 25, send 2,
then 5, or just 2. Therefore, the best solution is to compress the data immediately when
received using a compression algorithm suitable to work within the IoT memory limits
and processer power. In the next section, we will investigate data compression algorithms.

Sensors 2021, 21, x FOR PEER REVIEW 7 of 25

Mini ATmega328P 5 V/7–9 V 16 MHz 1 2 32

Nano
ATmega168

5 V/7–9 V 16 MHz
0.512 1 16

ATmega328P 1 2 32

Yùn
ATmega32U4

5 V
16 MHz

1
2.5 32

AR9331 Linux 400 MHz 16 MB 64 MB

Arduino Robot ATmega32u4 5 V 16 MHz
1 KB (AT-

mega32u4)/512
Kbit (I2C)

2.5 KB (AT-
mega32u4)

32 KB (AT-
mega32u4) of

which 4 KB used
by bootloader

MKRZero
SAMD21 Cortex-M0+

32 bit low power ARM
MCU

3.3 V 48 MHz No 32 KB 256 KB

To clarify the problem, Figure 4 illustrates how many sensors (from Sensor 1 to Sen-
sor n, where n is an undetermined number) try to send their data to the SRAM memory
of a connected IoT node, and sometimes the sensors send the data simultaneously and
cause overflowing the IoT SRAM. Hence potential problems here are memory overflow
and the possible loss of data due to buffer overflow. The probability of these problems
increases, especially when more sensors are connected to the IoT node.

Figure 4. Multi sensors to one IoT node architecture.

݀݊ܿ݁ݏ݈݈݅݅݉ ݁݊ ݊݅ ݏ݁݃ܽݏݏ݁݉ ݈ܽݐݐ = ܵ.ܨܦ
ୀ (1)

where S denotes the sensor, i the number of sensors, which ranges from 1 to n, where n is
the sensor’s max count connected to an IoT node. DF is the data flow from the sensor to
the IoT node. If we have at least 2 bytes every millisecond, we can calculate the data flow
size for one second from the following example: If the total number of messages sent in
one second from sensor 1 = 2 Bytes × 1000 = 2000 Bytes ~ 2 KB/1 second, 2 KB is the max
capacity of the IoT memory (SRAM). It has been found that the size of the transmitted
data from all sensors can collapse the IoT node memory. To solve this problem, many
solutions were proposed, such as limiting the count of sensors connected to the IoT node,
adjusting the time interval in order to control when the sensor sends the data—i.e., when
the controller reads sensor data—although, the fact remains that less read means less ac-
curacy, or adjusting the packet size, sent from the sensor to the IoT node, which is not
reliable to send fewer numbers. For example, instead of sending the integer 25, send 2,
then 5, or just 2. Therefore, the best solution is to compress the data immediately when
received using a compression algorithm suitable to work within the IoT memory limits
and processer power. In the next section, we will investigate data compression algorithms.

Figure 4. Multi sensors to one IoT node architecture.

Sensors 2021, 21, 4223 8 of 27

2.3. The IoT Data Traffic Reduction Motivations

After collecting the data from sensors inside IoT memories, every node sends its
data packets to the servers through IoT gateways, as illustrated in the IoT architecture in
Figure 2. Thus, the number of sensors and IoT nodes directly affects the size of the data
transmitted to the server. However, there are limitations for any network system, such as
connection bandwidth, which could overflow when trying to send massive data in a period
that the bandwidth of the network cannot handle. Furthermore, connection overflow could
occur when sending an abundance of connection requests from clients to the server during
a period that cannot be handled by the server, thus pushing the server to drop many of
these connections. As a solution to these problems, compressing the data during the first
stages before sending it to the servers will minimize connection sessions and reduce data
traffic. Compression means that instead of sending the original data, we can send data of
a smaller size, which will consume less battery and need fewer connection sessions and
less time. For example, if the original data was 100 MB and the network bandwidth was
10 MB/S, it would take 10 turns to send this data, where every turn takes a second, which
needs 10 s for sending the entirety of the data. However, if this data was compressed to
10 MB, the time needed would be reduced to one second, which reduces the network use
by about 90%. Accordingly, this reduces data traffic and makes bandwidth available for
service and for transmitting other data.

2.4. The IoT Data Compression State of Art

Many studies on aggregation and compression have been conducted in WSNs as the
backbone of IoT networks [43,44], however, they mostly used compression at the servers
because these nodes have more processing power than the sense/edge nodes and they
do not have consumption problems, and that did not reduce much the traffic [45]. On
the other hand, a IoT network differs from a WSN in terms of connectivity between each
node, whereby the IoT node can be connected directly to the internet and has the ability
to make decisions [46,47]. Therefore, a new way of aggregation and compression became
in demand in IoT edge and sense nodes as the number of connected IoT devices and data
increased exponentially during the last years [48,49].

Therefore, to deal with such large IoT data, a method was proposed as an update and
a query-efficient index system in [4,50], with several criteria such as regular and necessary
multidimensional updating of data. Some researchers stated that traditional database
systems are not capable of handling large volumes of data and cannot support millions
of data inputs per minute [51]. Other researchers in [52] stated that it could be highly
impossible to move enormous data from IoT peripheral nodes to the server in a timely
fashion and they stated that IoT devices should be able to store data, process, analyze,
and sometimes make decisions in real time. Despite the IoT’s memory limitations, many
machine intelligent algorithms have been proposed in [53] (ASIC-based acceleration [54],
FPGA-based acceleration [55], mobile SoC-based acceleration [53]) in order to accelerate
convolutional neural networks (CNNs) on embedded platforms. They focused on accel-
erating processing [56] and decreasing its energy consumption [57,58]. Few researchers
have focused on data compression to minimize data size by retaining identical information
content [36]. Although they have proposed that different algorithms compress data, be-
cause of various factors, the performances of these algorithms differ. These include factors
such as power consumption [13], speed of data transmission [59], bandwidth [60], size of
transmitted data [61], and processor power [62]. All these factors affect the IoT network’s
performance directly.

The motivation to use compression algorithms comes from the small memory capac-
ity of IoT devices, which works either as a buffer or cache memory in IoT networks, as
researchers have stated in [63]. Some researchers in [31] have suggested data compression
as a technique to reduce data traffic in the network and to empower IoT capability while
others focused on power consumption; for example, Kimura and Latifi in [64] stated that
energy consumption of one bit transmission via radio is 480 times higher than conducting

Sensors 2021, 21, 4223 9 of 27

one addition process. Some researchers tried to classify compression algorithms depend-
ing on the type of data, for example, algorithms that rely on the temporal correlation of
sequenced residue data, as shown in [44,65], where they used information for compression
like in [66]; therefore, they proposed S-LZW, SHuffman, and ND-encoding algorithms as
examples. Another type of algorithm depends on data prediction [67], which has been
considered more complicated and has several drawbacks such as high power consumption
and large memory requirements, which is not available in most IoTs; for example, the
MinDiff algorithm in [66]. Many data compression algorithms were proposed, such as
coding by ordering, which dropped some sensor nodes and their data in an aggregated
node [68]. Another method is pipelined in-network compression, which has been proposed
for audio and video sensors and depends on the common similarity of data packets in
bit values in order to delete the redundancies in data packets. Yet another method was
proposed as a low-complexity video compression algorithm in [55] for video surveillance
sequences collected by a wireless sensor network, where researchers introduced a frame-
work based on change detection and JPEG compression of the region of interest (ROI); they
stated that the proposed compression algorithm is similar to MPEG-2 and available at a
much less computational cost. Another algorithm is distributed compression, which is
used to obtain data from many spatial sources. The central node compares every sensor
partial data with the data from the reference node in order to determine if there are any
changes or errors, then decides what to send over the network and how to remove spatial
redundancy [69,70]. Although some of these algorithms have been applied on WSNs,
none of them have been applied for the IoT. The next section investigates compression
techniques in order to determine which could better fit in IoT networks.

3. Compression

Compression is a way to represent massive data, which could be numeric, text, pic-
tures, videos, and audios, or any other type, using a small data size. Compression is
categorized into lossy and lossless. Lossy means the decompressed data is different from
the original one while lossless compression is identical to the original and the decom-
pressed data. The selection from the two types of compression techniques or algorithms
depends on the type of data to be compressed. For example, to compress a picture using
lossy compression, one should only keep enough information to know what is inside the
picture, such as a car or a person. In contrast, lossless compression is not suitable for
sensitive data such as financial or election data where it is used to alleviate transmission
on the internet or storing data on USB drives. Therefore, when every single bit of data is
critical, lossless data compression is used; otherwise, lossy compression is used. For video,
audio, and picture data, it is better to use lossy compression because the accuracy and the
compression ratio are high, otherwise, the original files are too large to be transmitted. For
text and numerals or symbols, it is better to use lossless compression because identical data
is required when decompressing. For example, we cannot rely on two words to replace
ten words when representing the names of students, nor can we rely on two numbers to
represent ten numbers because we will lose accuracy and sometimes transmit wrong data,
which will lead to destructive results. However, IoT data only has numeric and text data
format; therefore, using lossless data compression is the best solution.

3.1. Lossless Data Compression

A high compression ratio for any algorithm does not imply it is the best algorithm
for all data types. Every data type has many suitable compression methods and algo-
rithms. Many factors affect choosing the best compression method for every data type.
However, it is known that the most influential compression factors are the speed of compres-
sion/decompression and compression ratio. Also, real-time data vs. offline data influences
the selection of the compression algorithm as well. However, this paper focuses on lossless
algorithms that have been proposed to compress numeric and time series data because
the purpose of this paper is to investigate compression algorithms for IoT data. Therefore,

Sensors 2021, 21, 4223 10 of 27

three lossless compression types of algorithms were reviewed, which are categorized as
entropy, dictionary, and general-based algorithms.

3.1.1. Lossless Entropy Algorithms

Entropy encoding is a lossless data compression scheme in information theory, regard-
less of the medium’s specific characteristics. One of the main entropy coding types creates
and assigns every single symbol of the entry into a unique prefix-free code. There are
more than 16 algorithms support entropy algorithms such as Arithmetic Coding [71–74],
Asymmetric Numeral Systems (ANS) [75–77], Golomb Coding [78,79], Adaptive Huff-
man [80–82], Canonical Huffman [83], Modified Huffman [84], Range encoding [85,86],
Shannon [87], Shannon–Fano [88–90], Shannon–Fano–Elias [91], Tunstall coding [92,93],
Unary coding [94–96], Universal Exp-Golomb [97,98], Universal Fibonacci Coding [99–101],
Universal Gamma Coding [102,103], Universal Levenshtein Coding [104].

The main concept of entropy is to replace the symbol with a prefix code, which
reserves a smaller size in the memory. In most of these algorithms, there is a need to
store the symbols with their frequencies, which is then used in order to determine the
replacement codes for the symbol, and this needs an abundance of memory. Furthermore,
due to the complexity of searching and counting for the matched symbols and the encoding
process itself, algorithms use more memory and need a large processing power that is
not available in IoT devices; therefore, without modifying these algorithms, none of them
would be suitable or applicable for the IoT systems and cannot be implemented on IoT
nodes. The most potential candidate algorithm to be used after modification is the Adaptive
Huffman because it can process real time inputs which is similar to the case of IoT inputs.

3.1.2. Lossless Dictionary Based Algorithms

A dictionary-based algorithm is a scheme that creates a dictionary containing the
symbols and the codewords assigned to it. The symbols are collected from the input data
with no redundancy and represent all the input data, and the codeword assigned to every
symbol should be smaller than the symbol itself, otherwise, inflation could happen. Many
applications and algorithms create the dictionary dynamically, hence, when there is an
input, the dictionary can be updated as needed. There are more than 19 algorithms support
dictionary-based algorithms such as Byte pair encoding [105], Lz77 [87,106,107], Lz78 [74],
(LZW) Lempel–Ziv–Welch [108], (LZSS) Lempel–Ziv–Storer–Szymanski [103,109–111],
(LZS) Lempel–Ziv–Stac [112], (LZO) Lempel–Ziv–Oberhumer [113,114], Snappy [115,116],
Brotli [117,118], Deflate [119], Deflate64 [120], LZ4 [121–123], (LZFSE) Lempel–Ziv Finite
State Entropy [124,125], (LZJB) Lempel Ziv Jeff Bonwick [108], (LZMA) Lempel-Ziv-Markov
chain-Algorithm [108], (LZRW) Lempel–Ziv Ross Williams [108,121,126], LZWL [127,128],
LZX [129].

Entropy scheme algorithms rely on giving an index value for each symbol with the
rule that each entry in the dictionary should not be iterated and has a unique index value.
The dictionary size increases every time we have a new entry, which makes it a critical
issue because the max size of the dictionary is limited according to the size of memory. The
sliding window comes as a solution, which limits the entries for every interval. Every value
in the sliding window is compared with previous indexed values in the dictionary. Hence,
if the size of the dictionary increases, the search process for match symbols can take a long
time, and this can make the encoding process even slower. All these are considered as
obstacles for running any of these algorithms on an IoT node because of its low processing
power and low memory size. Many modifications are needed, such as reducing the slide
window size and limiting the dictionary size, to fit the IoT node specifications.

3.1.3. Lossless General Compression Algorithms

Lossless general compression algorithms are implemented by replacing symbols in
the context with codes or numbers in order to refer to their counts or predictions in the data,
or by differences between the values if the input data is made of integers. The methods of

Sensors 2021, 21, 4223 11 of 27

these algorithms come in many shapes and steps, such as prediction at first followed by
arithmetic coding that can be involved in order to encode the data. Hence, in this scheme,
no dictionary or slide window is used. There are more than 8 algorithms support Lossless
general compression algorithms such as Burrows-Wheeler transform (BWT) Burrows-
Wheeler transform [130], (CTW) Context tree weighting [131], Delta [132,133], (PPM)
Prediction by partial matching [134,135], (DMC) Dynamic Markov compression [136,137],
(MTF) Move-to-front transform [138], PAQ [139], RLE [140,141].

Lossless general compression algorithms are different from entropy and dictionary-
based algorithms in that they do not use a sliding window or create a dictionary. This is
clear, especially in the BWT, Delta, and RLE algorithms The results of these algorithms
depend on the sequence of input data, which is not guaranteed when dealing with IoT data.
Most of the others need a large memory that exceeds the limits of IoT nodes. Furthermore,
there is the complexity of encoding processes such as PPM and DMC algorithms that use
arithmetic coding as a step or PPM and PAQ that use context mixing in order to increase the
prediction preciseness. Many symbols move to the header of the stack in MTF, exceeding
the limits of IoT nodes as well as all the mentioned algorithms.

4. Deep Learning

Deep learning is an evolution of machine learning mainly consisting of neural net-
works that aims to automate systems for many applications. It consists of neurons arranged
in layers. Deep learning become popular recently due to its ability to provide accurate
solutions in many domain problems. It has neurons, weight, bias and activation functions
which need to be adjusted to obtain the best solution.

4.1. Deep Learning Architectures

There are various variants of deep learning in neural network architectures that con-
sist of a wide variety of neural network training strategies [142,143]. Deep learning is
divided into unlabeled and labeled data according to the type of data under processing.
Autoencoder (AE) architecture [144,145] and restricted Boltzmann machine (RBM) architec-
ture [146], which have been proposed by the so called “Father of Deep Learning”, Geoff
Hinton, are considered the best for unsupervised learning and unlabeled data [147].

Both the architectures are considered to belong to the feature-extractor family and are
supposed to be suitable for pattern recognition. For any work that involves the processing
of time-series data, it is better to use a recurrent net (RNN) [148]. Supervised learning ar-
chitectures are used for labeled data, such as using recursive neural tensor net (RNTN) and
RNN for sentiment analysis [149], parsing [150], and entity/object recognition [151]. Deep
belief networks (DBN) [152,153] and CNN [154,155] are used for images, objects [156], and
speech recognition. RNN is used for speech recognition [157,158], entity recognition [159],
and time-series analysis [160]. Many of the current deep learning architectures use one or a
combination of previous solutions, depending on the data type they are analyzing.

Researchers in [161] stated that some functions have a complexity that cannot be
handled in IoT devices without machine learning or deep learning. Other researchers
in [162] explained that the obstacles of low memory and low processing power were
the reason behind this. Despite this, the IoT and sensors’ data are the most common
potential uses for brontobyte-level storage that is equal to 10 to the 27th power of bytes,
as stated in [163]. Therefore, many scientists have studied how to reduce data traffic
in order to alleviate the load on memory, as stated in [164,165]. The next paragraph
illustrates the techniques used in deep learning in order to reduce the weights and number
of parameters. These techniques are defined under dimensionality reduction, which
represents big data using small, meaningful data by reducing its space [166]. Pruning and
pooling are illustrated in more details to see if they can be used to reduce the data traffic.

Sensors 2021, 21, 4223 12 of 27

4.2. Dimensionality Reduction Techniques
4.2.1. Pruning

Pruning is a method used for various applications and areas. It is very commonly
used in different ways to minimize complexity [146]. For example, it is used for mining
spatial high utility co-location patterns based on actually shared weights and features [167].
However, pruning aims to make it fast and small in the neural network by reducing
learning weights [168]. After training the network for the first time, all connections with
weights below a threshold are deleted from the network. This process occurs whenever the
network is retrained. The training results can minimize the network size by keeping sparse
connections and neurons [169]. In [60] researchers used pruning and other techniques in
order to compress neural networks. from the ImageNet ILSVRC-2012 dataset, researchers
experimented on AlexNet Caffe to get 89% of weights pruned with 9× compression
ratio and on VGGNet-16 to get 92.5% of weights pruned with 13× compression ratio.
Researchers experimented on the MINIST dataset with two architectures. First, the Lenet-
300-100, a fully connected network with two hidden layers, has 300 and 100 neurons
in each layer. The second is the Lenet-5, which has two convolutional layers and two
fully connected layers, they got 92% of weights pruned with 12× compression ratio for
both architectures.

The ImageNet datasets describes the layer of convolutional (Conv) and full connected
(Fc), while the MINIST datasets uses the layer of Conv and learnable parameters (lp). Each
nodes describes the weights number and percent of weights pruned. The effectiveness of
the pruning process was assessed in reducing the number of parameters and connections.
Pruning removes the low-value weights and only keeps the high-value ones.

4.2.2. Pooling

The pooling layer is used to reduce the features or the spatial volume of inputs.
Pooling is usually used after the convolution layer or between two convolution layers [170].
The size of the dimension after pooling is reduced [155]. There are three types of pooling:
minimum, average, and maximum pooling. CNN used pruning after convolution and
before using a classifier to reduce complexity and avoid overfitting. This depends on
dividing the convolved layer into disjoined regions, then determining the max or min or
the average value for every region’s features [171,172].

5. Deep Learning Solutions for IoT Data Compression

Han in [60] proposed a deep learning algorithm to reduce the storage and energy
required to run inference on large networks and deploy on mobile devices in three phases.
He used pruning to reduce redundant connections, then applied quantization on weights to
produce fewer codebooks that needed to be stored because many of the connections share
the same weight. After that, Huffman coding was applied to effective weights. Although
the experiment was not applied for IoTs, the results were promising. However, researchers
in [173] tried to compress neural network structures into smaller matrices by finding the
non-redundant elements. Other researchers in [174] proposed SparseSep for deep learning
in order to fully connect layers for sparsification and for the separation of convolutional
kernels in order to reduce the resource requirements. The authors in [175] stated that the
large model’s group could be transferred to one small model after training using distillation,
and that this would be much better for deployment. However, in [176,177], researchers
proposed a dynamic network surgery compression algorithm to reduce the complexity
of the network using the on-the-fly pruning method. They limited pruning in order to
save accuracy. Therefore, they used the splicing method to compensate the important
connections and weights that were pruned. Researchers in [178] worked on reducing the
test time for the large convolutional network, which was directed for object recognition,
starting with each convolution layer compressing and identifying the perfect low rank
approximation before adjusting the top layers until the performance of the prediction was
restored. Researchers in [179] investigated techniques for reducing complexity. Others

Sensors 2021, 21, 4223 13 of 27

tried to accelerate training by computing convolutions in the Fourier domain while reusing
the same transformed feature map many times [180]. However, it is stated that most of the
parameter values predicted need not be learned; architectures can be trained by learning a
small weight number and predicting the others [181]. In order to improve model discrimi-
nation in responsive fields for local patches, a new network structure called “network in
network” was suggested. It is a micro neural network that is instantiated with a multi-layer
perceptron. This micro neural network is slid over the input in the same manner as CNN
to generate the feature maps and use average pooling for classification [182,183]. Other
researchers tried using information theory ideas in order to determine the optimal neural
network size by having a tradeoff between complexity and a training error using second
derivative information, which includes removing unimportant weights [184]. Researchers
in [185] proposed a new method to train binarized neural networks at run-time; during
forward propagation, this method greatly reduces the required memory size and replaces
most operations with bit-wise operations [186]. However, binary weights were also pro-
posed in [187], where researchers tried to replace the simple accumulations of several
multiply-accumulate operations because multipliers took up most of the space and are con-
sidered power-hungry components when digital neural network is implemented. Another
way to compress neural networks using a hashing trick was proposed in [188], where the
idea of linking every group of weights in the same hash bucket with a single parameter
using a hash function was proposed. The proposed method managed to minimize the
model sizes significantly by exploiting redundancy in neural networks. Other researchers
in [189] found that the use of k-means in weights clustering can lead to a very good balance
between the size of the model and the accuracy of the recognition.

6. Experiments and Results

According to the specifications of the IoT data, this paper experiments on selected
algorithms that need minimum memory, consume the least power, and have the potential
to be modified and implemented into IoT nodes. The three algorithms that have been
selected are Lz77 from sliding window algorithms, Lz78 from dictionary-based algorithms
because these algorithms are considered to have the lowest complexity amongst the three,
and the Huffman code from entropy algorithms, which been used in many compression
applications and is very good for text compression with minimum complexity. Because
the IoT data type can be heterogeneous since it comes from many different sensors, it is
better to deal with this data as text instead of numbers. Otherwise, the data will have to
be classified according to its sources, which will be more complex for the IoT device. The
datasets used in the experiment are categorized into three types:

(1) The first type is a time-series dataset collected from sensors connected to IoT devices,
(2) The second type is time-series data not collected by sensors or IoT devices, and
(3) The third type is a collection of varied files, not time series, and not collected by

sensors or IoT devices.

All three types of datasets were used in order to evaluate the performance of the
proposed algorithms. All the experiments used at least 17 threads on a Dell server with a
2.4 GHz Intel Zeon 8 Cores E5620 46-bit-based processor and 100 GB RAM. Windows 10
Pro virtual was hosted on Centos 6, the operating system of the server. The five datasets
with various dataset files are used for Compression Algorithms evaluation are: four data
sets in the Dataset Kaggle [190], 5 in UCI database [191], 6 datasets in AMPDs [192,193],
10 datasets in The Calgary Corpus [194] and 6 datasets from Meteorology Department
in Malaysian. The Malaysia Air Pollution consists 9 attributes: temperature, humidity,
wind speed, wind direction, CO, O3, NO, NO2, and NOx for 6 stations: Cheras, Tanjong
Malim, Putrajaya, Petaling Jaya and Nilai, Klang collected for 10 years between 01/01/2005
to 31/12/2016.

Compression algorithms were implemented on the previous datasets in order to
evaluate these algorithms depending on the compression ratio that can be obtained by
dividing the size of compressed files by the size of uncompressed. However, before

Sensors 2021, 21, 4223 14 of 27

calculating the compression ratio, the compressed size for each file should be calculated
from the datasets according to every compression algorithm used. Table 2 shows the results
for the dataset compression.

Figure 5 shows the results and ratios of compression algorithms have been categorized
by the source of the datasets. a, c, e, g, and i show the compression results, whereas b, d, f,
h, and j show the compression ratios. It is clear from compression results that the adaptive
Huffman algorithm had the best values in all the datasets, although it equaled the canonical
Huffman in some results such as in ozone level detection for eight hours in c and Book1 in
g. In contrast, Lz77 got the worst results—in some cases the sizes of compressed files were
even bigger than the original ones in many cases because of an inflation problem. However,
there were cases where Lz78 obtained the worst results, especially for electricity monthly,
electricity billing, and climate historical normally in e, which proves that compression
results depend on the distribution and iterations in data.

The compression results in a, c, e, g, and i show the comparison between compression
algorithms when applying to the same files in datasets, whereas b, d, f, h, and j show the
differences between compression ratios where the lowest compression ratio means better
compression result. The adaptive Huffman also had the lowest compression ratio with one
exception in h, where Lz78 got the lowest value for Book1 in the Calgary Corpus dataset.

Table 2 also shows the results categorized by data type; the minimum compression
ratio is 32%, which resulted using Lz78 on Book1 from the Calgary Corpus dataset, where
the maximum compression ratio is 263%, which resulted in using Lz77 on water billing
data from the AMPDs dataset. However, for data type 1, the minimum compression ratio
is 38%, which was obtained using adaptive Huffman, and for data type 2, the minimum
ratio is 43%, which was also obtained using adaptive Huffman.

For data type 3, Lz78 is the lowest compression ratio when applying to Book1. How-
ever, if we exclude Book1 from the dataset, the adaptive Huffman would be the lowest
ratio again, which is 58% ratio on paper2 from the Calgary Corpus. This means adaptive
Huffman is the best when compressing time series and numeric data such as data type 1
and 2, however, it not necessarily good for data type 3.

Sensors 2021, 21, x FOR PEER REVIEW 15 of 25

Corpus 3 paper1 51.915 33.200 64 32.700 63 90.000 173 78.540 151

Corpus 3 paper2 80.272 47.200 59 46.600 58 138.000 172
114.83

0
143

Corpus 3 progc 38.683 26.000 67 25.400 66 69.000 178 59.540 154

Corpus 3 progl 69.967 42.600 61 42.100 60 121.000 173 89.410 128

Corpus 3 progp 48.222 30.200 63 29.600 61 85.000 176 61.680 128

Corpus 3 trans 91.499 64.400 70 62.100 68 156.000 170
120.39

4
132

Figure 5 shows the results and ratios of compression algorithms have been catego-

rized by the source of the datasets. a, c, e, g, and i show the compression results, whereas

b, d, f, h, and j show the compression ratios. It is clear from compression results that the

adaptive Huffman algorithm had the best values in all the datasets, although it equaled

the canonical Huffman in some results such as in ozone level detection for eight hours in

c and Book1 in g. In contrast, Lz77 got the worst results—in some cases the sizes of com-

pressed files were even bigger than the original ones in many cases because of an inflation

problem. However, there were cases where Lz78 obtained the worst results, especially for

electricity monthly, electricity billing, and climate historical normally in e, which proves

that compression results depend on the distribution and iterations in data.

The compression results in a, c, e, g, and i show the comparison between compression

algorithms when applying to the same files in datasets, whereas b, d, f, h, and j show the

differences between compression ratios where the lowest compression ratio means better

compression result. The adaptive Huffman also had the lowest compression ratio with

one exception in h, where Lz78 got the lowest value for Book1 in the Calgary Corpus da-

taset.

Table 2 also shows the results categorized by data type; the minimum compression

ratio is 32%, which resulted using Lz78 on Book1 from the Calgary Corpus dataset, where

the maximum compression ratio is 263%, which resulted in using Lz77 on water billing

data from the AMPDs dataset. However, for data type 1, the minimum compression ratio

is 38%, which was obtained using adaptive Huffman, and for data type 2, the minimum

ratio is 43%, which was also obtained using adaptive Huffman.

For data type 3, Lz78 is the lowest compression ratio when applying to Book1. How-

ever, if we exclude Book1 from the dataset, the adaptive Huffman would be the lowest

ratio again, which is 58% ratio on paper2 from the Calgary Corpus. This means adaptive

Huffman is the best when compressing time series and numeric data such as data type 1

and 2, however, it not necessarily good for data type 3.

(a) Compression Results for Kaggle Dataset (b) Compression Ratios for Kaggle Dataset

0% 20% 40% 60% 80% 100%

daily-minimum-temperatures-in-me

Electric_Production

monthly-beer-production-in-austr

sales-of-shampoo-over-a-three-year

54.5

7.14

6.74

0.497

26.8

3.6

3.46

0.6

24.2

3.18

2.95

0.334

94

12

11

1

55.6

9.6

7.9

0.98

Size (KB) Huffman Adaptive Huffman Lz77 Lz78

4
9

%

5
0

%

5
1

%

1
2

1
%

4
4

%

4
5

%

4
4

%

6
7

%

1
7

2
%

1
6

8
%

1
6

3
%

2
0

1
%

1
0

2
%

1
3

4
%

1
1

7
%

1
9

7
%

0%

50%

100%

150%

200%

250%

D A I L Y M I N I M U M
T E M P E R A T U R E S

I N M E L B O R N E

E L E C T R I C
P R O D U C T I O N

M O N T H L Y B E E R
P R O D U C T I O N I N

A U S T R

S A L E S O F
S H A M P O O O V E A

T H R E E Y E A R

Huffman Adaptive Huffman Lz77 Lz78

Figure 5. Cont.

Sensors 2021, 21, 4223 15 of 27Sensors 2021, 21, x FOR PEER REVIEW 16 of 25

(c) Compression Results for UCI Dataset (d) Compression Ratios for UCI Dataset

(e) Compression Results for AMPDS Dataset (f) Compression Ratios for AMPDS Dataset

(g) Compression Results for Calgary Dataset (h) Compression Ratios for Calgary Dataset

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Daily total female births

Monthly sunspots

Ozone level Detection 8 Hours

Occupacy dataset

ionosphere Data

6.07

43.9

799

196

74.6

2.99

21.7

346

95.5

33.8

2.59

19.7

346

95.2

33.7

10

73

1336

331

125

5.5

42.95

783.82

191.623

89.48

Size (KB) Huffman Adaptive Huffman Lz77 Lz78

4
9

%

4
9

%

4
3

% 4
9

%

4
5

%

4
3

%

4
5

%

4
3

% 4
9

%

4
5

%

1
6

5
%

1
6

6
%

1
6

7
%

1
6

9
%

1
6

8
%

9
1

% 9
8

%

9
8

%

9
8

%

1
2

0
%

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

Daily total
female births

Monthly
sunspots

Ozone level
Detection 8

Hours

Occupacy
dataset

ionosphere
Data

Huffman Adaptive Huffman Lz77 Lz78

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Climate Hourly Weather

Climate Historical Normals

Electricity Billing

Electricity Monthly

Natural Gas Monthly

Water Billing

1413.12

2.58

1.74

0.735

0.416

0.18

697

1.94

1.27

0.781

0.576

0.344

680

1.61

0.965

0.489

0.301

0.135

2372

4

3

1

0.986

0.474

1004.17

4.2

3.25

1.55

0.861

0.421

Size (KB) Huffman Adaptive Huffman Lz77 Lz78

4
9

%

7
5

%

7
3

%

1
0

6
%

1
3

8
%

1
9

1
%

4
8

% 6
2

%

5
5

% 6
7

%

7
2

%

7
5

%

1
6

8
%

1
5

5
% 1
7

2
%

1
3

6
%

2
3

7
% 2

6
3

%

7
1

%

1
6

3
% 1

8
7

% 2
1

1
%

2
0

7
% 2

3
4

%

0%

50%

100%

150%

200%

250%

300%

Climate
Hourly

Weather

Climate
Historical
Normals

Electricity
Billing

Electricity
Monthly

Natural Gas
Monthly

Water Billing

Huffman Adaptive Huffman Lz77 Lz78

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

bib

book1

book2

news

paper1

paper2

progc

progl

progp

trans

108.653

750.753

596.539

368.271

51.915

80.272

38.683

69.967

48.222

91.499

71.7

428

360

241

33.2

47.2

26

42.6

30.2

64.4

71.2

428

359

240

32.7

46.6

25.4

42.1

29.6

62.1

193

291

1023

635

90

138

69

121

85

156

144.443

242.69

752.284

523

78.54

114.83

59.54

89.41

61.68

120.394

Size (KB) Huffman Adaptive Huffman Lz77 Lz78

6
6

%

5
7

% 6
0

% 6
5

%

6
4

%

5
9

% 6
7

%

6
1

%

6
3

% 7
0

%

6
6

%

5
7

%

6
0

% 6
5

%

6
3

%

5
8

% 6
6

%

6
0

%

6
1

% 6
8

%

1
7

8
%

3
9

%

1
7

1
%

1
7

2
%

1
7

3
%

1
7

2
%

1
7

8
%

1
7

3
%

1
7

6
%

1
7

0
%

1
3

3
%

3
2

%

1
2

6
% 1

4
2

%

1
5

1
%

1
4

3
% 1

5
4

%

1
2

8
%

1
2

8
%

1
3

2
%

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

bib book1 book2 news paper1 paper2 progc progl progp trans

Huffman Adaptive Huffman Lz77 Lz78

Figure 5. Cont.

Sensors 2021, 21, 4223 16 of 27
Sensors 2021, 21, x FOR PEER REVIEW 17 of 25

(i) Compression Results for Malaysia Ozone Dataset (j) Compression Ratios for Malaysia Ozone Dataset

Figure 5. Compression results and ratios for all datasets.

The results clearly show that adaptive Huffman has a better compression ratio and

is more significant than canonical Huffman. This means compressing real-time data is

better than compressing offline data. On the other hand, Lz78, which is a dictionary-based

algorithm, has more significant results than Lz77, which is a sliding window-based algo-

rithm. However, some anomalies could happen, such as the three results in AMPDs da-

taset, where Lz77 has better compression ratios, and the reason for this was data sequence

and redundancy as well as the file sizes, therefore the inflation problem can be noticed in

the Lz77 sliding window in all the datasets.

7. Discussion

In the Compression section, it was found that not all the mentioned algorithms are

suitable to be implemented in the IoT nodes without being modified because they require

more memory and greater power processors than what an IoT node can provide. How-

ever, compression algorithms can be implemented in cloud servers or some aggregated

nodes. These algorithms need a considerable space of stack and heap that should be re-

served according to every algorithm code (arrays and pointers). Because of the differences

between these codes, the size of the allocated memory could not be known before the

implementation. Furthermore, the size of the data itself, in some cases, could require hours

to be compressed.

The Deep Learning section explains that it is rather difficult to determine how many

features are required to recognize an object, classify an image, or carry out other deep

learning functions. These processes evolve deferent tasks according to the architecture

used, and they also depend on the data type under processing. Therefore, every deep

learning architecture has a different scenario. All architectures aim to know the minimum

number of features in order to have the knowledge of which feature is good enough to

have satisfied outputs with minimum errors. They transformed the high-dimensional

data space into small-dimensional data space, which in turn conserves the same original

data properties. High-dimensional data has many problems. It requires more time and

space complexity and can also lead to overfitting. Furthermore, not all the features in high-

dimensional data are involved or related to the problem we are solving. Reducing the

dimension of data space leads to reducing the noise and unnecessary parts of data and

helps to determine the features most related to the problem. Two approaches to apply

dimensionality reduction were proposed. The first is feature selection, where the most

related features to the problem are selected. The second is feature extraction, where new

features from the high-dimensional data space are assessed to create the low-dimensional

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

C h e r a s

T a n j u n g M a l i m

P u t r a j a y a

P e t a l i n g J a y a

N i l a i

K l a n g

3257.6

2642.0

2742.1

3105.8

102.9

3279.0

1276.6

1046.8

1091.6

1234.0

39.9

1284.8

1271

1043

1087

1230

39.2

1281

5429

4403

4570

5176

171

5465

2064.0

1616.7

1726.0

2074.1

75.0

2075.1

Size (KB) Huffman Adaptive Huffman Lz77 Lz78

3
9

%

4
0

%

4
0

%

4
0

%

3
9

%

3
9

%

3
9

%

3
9

%

4
0

%

4
0

%

3
8

%

3
9

%

1
6

7
%

1
6

7
%

1
6

7
%

1
6

7
%

1
6

6
%

1
6

7
%

6
3

%

6
1

%

6
3

%

6
7

% 7
3

%

6
3

%

Cheras TanjungMalim Putrajaya PetalingJaya Nilai Klang

Huffman Adaptive Huffman Lz77 Lz78

Figure 5. Compression results and ratios for all datasets.

The results clearly show that adaptive Huffman has a better compression ratio and
is more significant than canonical Huffman. This means compressing real-time data is
better than compressing offline data. On the other hand, Lz78, which is a dictionary-
based algorithm, has more significant results than Lz77, which is a sliding window-based
algorithm. However, some anomalies could happen, such as the three results in AMPDs
dataset, where Lz77 has better compression ratios, and the reason for this was data sequence
and redundancy as well as the file sizes, therefore the inflation problem can be noticed in
the Lz77 sliding window in all the datasets.

Sensors 2021, 21, 4223 17 of 27

Table 2. The Compression Results for Applying Algorithms on Datasets.

Dataset Type File Name Size Huffman Huffman
Ratio (%)

Adaptive
Huffman

Adaptive Huffman
Ratio (%) Lz77 Lz77 Ratio (%) Lz78 Lz78 Ratio (%)

Kaggle 1 Daily-minimum-
temperatures-in-me 54.500 26.800 49 24.200 44 94.000 172 55.600 102

Kaggle 1 Electric_Production 7.1400 3.600 50 3.180 45 12.000 168 9.600 134

UCI 1 Monthly sunspots 43.900 21.700 49 19.700 45 73.000 166 42.950 98

UCI 1 Ozone level Detection
8 Hours 799.000 346.000 43 346.000 43 1336.000 167 783.820 98

UCI 1 Occupancy dataset 196.000 95.500 49 95.200 49 331.000 169 191.623 98

UCI 1 Ionosphere data 74.600 33.800 45 33.700 45 125.000 168 89.480 120

AMPDS 1 Climate hourly
weather 1413.120 697.000 49 680.000 48 2372.000 168 1004.170 71

AMPDS 1 Climate historical
normals 2.580 1.940 75 1.610 62 4.000 155 4.200 163

AMPDS 1 Electricity monthly 0.735 0.781 106 0.489 67 1.000 136 1.550 211

AMPDS 1 Natural gas monthly 0.416 0.576 138 0.301 72 0.986 237 0.861 207

Ozone 1 Cheras 3257.585 1276.561 39 1271.000 39 5429.000 167 2063.960 63

Ozone 1 TanjungMalim 2641.970 1046.768 40 1043.000 39 4403.000 167 1616.730 61

Ozone 1 Putrajaya 2742.100 1091.609 40 1087.000 40 4570.000 167 1726.020 63

Ozone 1 PetalingJaya 3105.790 1234.014 40 1230.000 40 5176.000 167 2074.050 67

Ozone 1 Nilai 102.932 39.881 39 39.200 38 171.000 166 75.000 73

Ozone 1 Klang 3279.01 1284.780 39 1281.000 39 5465.000 167 2075.070 63

Kaggle 2
Monthly beer
production in

Australia
6.740 3.460 51 2.950 44 11.000 163 7.900 117

Kaggle 2 Sales of shampoo over
a three year period 0.497 0.600 121 0.334 67 1.000 201 0.980 197

UCI 2 Daily total
female births 6.070 2.990 49 2.590 43 10.000 165 5.500 91

Sensors 2021, 21, 4223 18 of 27

Table 2. Cont.

Dataset Type File Name Size Huffman Huffman
Ratio (%)

Adaptive
Huffman

Adaptive Huffman
Ratio (%) Lz77 Lz77 Ratio (%) Lz78 Lz78 Ratio (%)

AMPDS 2 Electricity billing 1.740 1.270 73 0.965 55 3.000 172 3.250 187

AMPDS 2 Water billing 0.180 0.344 191 0.135 75 0.474 263 0.421 234

Corpus 3 bib 108.653 71.700 66 71.200 66 193.000 178 144.443 133

Corpus 3 book1 750.753 428.000 57 428.000 57 291.000 39 242.690 32

Corpus 3 book2 596.539 360.000 60 359.000 60 1023.000 171 752.284 126

Corpus 3 news 368.271 241.000 65 240.000 65 635.000 172 523.000 142

Corpus 3 paper1 51.915 33.200 64 32.700 63 90.000 173 78.540 151

Corpus 3 paper2 80.272 47.200 59 46.600 58 138.000 172 114.830 143

Corpus 3 progc 38.683 26.000 67 25.400 66 69.000 178 59.540 154

Corpus 3 progl 69.967 42.600 61 42.100 60 121.000 173 89.410 128

Corpus 3 progp 48.222 30.200 63 29.600 61 85.000 176 61.680 128

Corpus 3 trans 91.499 64.400 70 62.100 68 156.000 170 120.394 132

Sensors 2021, 21, 4223 19 of 27

7. Discussion

In the Compression section, it was found that not all the mentioned algorithms
are suitable to be implemented in the IoT nodes without being modified because they
require more memory and greater power processors than what an IoT node can provide.
However, compression algorithms can be implemented in cloud servers or some aggregated
nodes. These algorithms need a considerable space of stack and heap that should be
reserved according to every algorithm code (arrays and pointers). Because of the differences
between these codes, the size of the allocated memory could not be known before the
implementation. Furthermore, the size of the data itself, in some cases, could require hours
to be compressed.

The Deep Learning section explains that it is rather difficult to determine how many
features are required to recognize an object, classify an image, or carry out other deep
learning functions. These processes evolve deferent tasks according to the architecture
used, and they also depend on the data type under processing. Therefore, every deep
learning architecture has a different scenario. All architectures aim to know the minimum
number of features in order to have the knowledge of which feature is good enough to
have satisfied outputs with minimum errors. They transformed the high-dimensional
data space into small-dimensional data space, which in turn conserves the same original
data properties. High-dimensional data has many problems. It requires more time and
space complexity and can also lead to overfitting. Furthermore, not all the features in
high-dimensional data are involved or related to the problem we are solving. Reducing
the dimension of data space leads to reducing the noise and unnecessary parts of data and
helps to determine the features most related to the problem. Two approaches to apply
dimensionality reduction were proposed. The first is feature selection, where the most
related features to the problem are selected. The second is feature extraction, where new
features from the high-dimensional data space are assessed to create the low-dimensional
data space. Many deep learning techniques could be used for this, such as principal
component analysis (PCA), non-negative matrix factorization (NMF), kernel PCA, graph-
based kernel PCA, linear discriminant analysis (LDA), generalized discriminant analysis
(GDA), Autoencoder, t-SNE, and UMAP. However, in order to avoid the problems or curses
of dimensionality, the K-nearest neighbor algorithm (k-NN) is most commonly applied.

Traditional compression algorithms, as illustrated earlier in the Compression section,
have a different meaning. In deep learning, compression in many architectures means
minimizing the number of neurons or weights by removing them from layers, and this
process is achieved by using the dimensionality reduction techniques. It is categorized as
lossy compression, where lost information after compression does not fit the aim of IoT
data compression. One of the first steps in deep learning architectures is initializing the
values of the weights, which is done randomly, as illustrated in Figure 5. This process
alone makes the output values unequal compared to the input data in the first layer, even
though these output values could be very high accuracy. Furthermore, the process of deep
learning is carried out in one direction from the input layer to the output layers. Activation
functions are used through this process in order to determine which neuron values are
relied upon to drop or keep these neurons and their connected weights. Hence, using
activation functions breaks the linearity by retaining sparred values randomly and then
training the model. When implementing the activation functions, the model starts from
scratch with different weights values and leads to different results and outputs. However,
previous results show some cases have a very close similarity with the original inputs and
have smaller sizes and dimensions, as we have in lossy compression algorithms, which are
acceptable in some cases and applications.

8. Conclusions, Challenges and Future Work

This paper reviewed smart cities’ issues and the importance of IoT in reducing data
traffic, especially between sensors and IoT nodes. The current compression algorithms
have limitations when trying to implement them using the IoT’s small memory. Lossy

Sensors 2021, 21, 4223 20 of 27

compression algorithms are not suitable due to the loss of information after transmission.
In contrast, applying lossless compression algorithms is complex for IoT devices. Deep
learning using pruning and pooling methods was applied in order to reduce data. However,
it uses a lossy approach and does not aim for connections between sensors and IoT devices.
In the future, a new algorithm using deep learning techniques combined with the lowest
complex lossless compression algorithm and has the best compression ratio is needed. The
suggested algorithm should fit the sensors and IoT data type and aim to produce a good
compression ratio on every IoT node that reduces the network data traffic and transmits
data faster, has higher utilization, and has better throughput.

Author Contributions: This research has been carried out through a concerted effort by three authors.
Hence, any author has participated in conducting every single part of the paper. Each author’s basic
role has been summarizing in the following: A.N. is the first author and responsible for writing the
paper and implementation of the compression algorithms on the datasets and conducting reviews
for related, previous and current works. Z.A.O. is the second author and owned the research grant.
Z.A.O. supervised the research topic and ensuring the novelty, Z.A.O. also do editing and reviewing
the paper, Z.A.O. is the main supervisor of the first author. N.S.S. is the third author, she is the
consultant of the research group in Deep Learning architectures, also editing and reviewing the
paper, N.S.S. is the co-supervisor. All authors have read and agreed to the published version of
the manuscript.

Funding: Grant funding by FRGS/1/2019/ICT02/UKM/02/7.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Relevant Data are available at [190–194].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Siyuan, C. World Urbanization Prospects. In Proceedings of the United Nations, Department of Economic and Social Affairs; United

Nations: New York, NY, USA, 2014; Volume 1, pp. 1–32.
2. Eremia, M.; Toma, L.; Sanduleac, M. The Smart City Concept in the 21st Century. Procedia Eng. 2017, 181, 12–19. [CrossRef]
3. Hoornweg, D.; Pope, K. Socioeconomic Pathways and Regional Distribution of the World’s 101 Largest Cities; Global Cities Institute:

Oshawa, ON, Canada, 2014; Volume 1.
4. Bajer, M. Building an IoT data hub with elasticsearch, Logstash and Kibana. In Proceedings of the 2017 5th International

Conference on Future Internet of Things and Cloud Workshops (FiCloudW), Prague, Czech Republic, 21–23 August 2017;
pp. 63–68. [CrossRef]

5. Schuler, D. Digital Cities and Digital Citizens; Springer: Berlin/Heidelberg, Germany, 2002; pp. 71–85.
6. Deren, L.; Qing, Z.; Xiafei, L. Cybercity: Conception, technical supports and typical applications. Geo-Spat. Inf. Sci. 2000, 3, 1–8.

[CrossRef]
7. Ishida, T.; Isbister, K. Digital Cities: Technologies, Experiences, and Future Perspectives—Google Books; Springer Science & Business

Media: Berlin, Germany, 2000; ISBN 0302-9743.
8. Komninos, N. Intelligent Cities and Globalisation of Innovation Networks; Routledge: London, UK, 2008; ISBN 0203894499.
9. Shepard, M. Sentient City: Ubiquitous Computing, Architecture, and the Future of Urban Space, 1st ed.; Shepard, M., Ed.; Architectural

League of New York, The MIT Press: New York, NY, USA, 2011; ISBN 9780262515863.
10. Bătăgan, L. la psicología de la salud en el nuevo currículo de la diplomatura en enfermería. Rev. Enfermer 2011, 18, 80–87.
11. Jedliński, M. The Position of Green Logistics in Sustainable Development of a Smart Green City. Procedia Soc. Behav. Sci. 2014,

151, 102–111. [CrossRef]
12. Heiner, M.; Gilbert, D.; Donaldson, R. Petri nets for systems and synthetic biology. Lect. Notes Comput. Sci. (Subser. Lect. Notes

Artif. Intell. Lect. Notes Bioinform.) 2008, 5016 LNCS, 215–264. [CrossRef]
13. Kang, J.; Eom, D.S. Offloading and transmission strategies for IoT edge devices and networks. Sensors 2019, 19, 835. [CrossRef]

[PubMed]
14. Vanolo, A. Smartmentality: The Smart City as Disciplinary Strategy. Urban Stud. 2014, 51, 883–898. [CrossRef]
15. Lea, R.; Blackstock, M. Smart Cities: An IoT-centric Approach. In Proceedings of the 2014 International Workshop on Web

Intelligence and Smart Sensing, New York, NY, USA, 1–2 September 2014; International Workshop on Web Intelligence and Smart
Sensing, Association for Computing Machinery: New York, NY, USA, 2014. [CrossRef]

http://doi.org/10.1016/j.proeng.2017.02.357
http://doi.org/10.1109/FiCloudW.2017.101
http://doi.org/10.1007/BF02829388
http://doi.org/10.1016/j.sbspro.2014.10.011
http://doi.org/10.1007/978-3-540-68894-5_7
http://doi.org/10.3390/s19040835
http://www.ncbi.nlm.nih.gov/pubmed/30781650
http://doi.org/10.1177/0042098013494427
http://doi.org/10.1145/2637064.2637096

Sensors 2021, 21, 4223 21 of 27

16. Kim, J.S. Reviewed paper Mapping Conflicts in the Development of Smart Cities: The Experience of Using Q Methodology
for Smart Gusu Project, Suzhou, China Joon Sik Kim. In Proceedings of the 21st International Conference on Urban Planning,
Regional Development and Information Society, Hamburg, Germany, 22–24 June 2016; Volume 2, pp. 437–446.

17. Park, E.; P, A.; Pobil, D.; Jib Kwon, S. The role of the Internet of Things in developing smart cities. Sustainability 2018, 14, 1388.
[CrossRef]

18. Lauriault, T.P.; Bloom, R.; Livingstone, C.; Landry, J.-N. Open Smart Cities in Canada: Environmental Scan and Case Studies.
OpenNorth 2018, 33. [CrossRef]

19. Abusaada, H.; Elshater, A. Competitiveness, distinctiveness and singularity in urban design: A systematic review and framework
for smart cities. Sustain. Cities Soc. 2021, 68, 102782. [CrossRef]

20. Nevado Gil, M.T.; Carvalho, L.; Paiva, I. Determining factors in becoming a sustainable smart city: An empirical study in Europe.
Econ. Sociol. 2020, 13, 24–39. [CrossRef]

21. Lipman Jim NVM Memory: A Critical Design Consideration for IoT Applications. Available online: https://www.design-reuse.
com/articles/32614/nvm-memory-iot-applications.html (accessed on 16 February 2019).

22. Chourabi, H.; Nam, T.; Walker, S.; Gil-Garcia, J.R.; Mellouli, S.; Nahon, K.; Pardo, T.A.; Scholl, H.J. Understanding smart cities: An
integrative framework. In Proceedings of the 2012 45th Hawaii International Conference on System Sciences, Maui, HI, USA, 4–7
January 2012; pp. 2289–2297. [CrossRef]

23. Teuben, H.; Dijik, V. Smart Cities. Netherlands. 2015. Available online: https://www2.deloitte.com/content/dam/Deloitte/tr/
Documents/public-sector/deloitte-nl-ps-smart-cities-report.pdf (accessed on 18 May 2021).

24. Pham, C. Tokyo Smart City Development in Perspective of 2020 Olympics Opportunities for EU-Japan Cooperation and Business
Development. Available online: https://www.eu-japan.eu/sites/default/files/publications/docs/smart2020tokyo_final.pdf
(accessed on 18 May 2021).

25. Madox, T. Teena Maddox|US|Meet the Team—TechRepublic. Available online: https://www.techrepublic.com/meet-the-team/
us/teena-maddox/ (accessed on 22 November 2018).

26. Alenezi, A. Challenges of IoT Based Smart City Development in Kuwait. Ph.D. Thesis, Kuwait University, Kuwait City,
Kuwait, 2017. [CrossRef]

27. Trilles, S.; Calia, A.; Belmonte, Ó.; Torres-Sospedra, J.; Montoliu, R.; Huerta, J. Deployment of an open sensorized platform in a
smart city context. Futur. Gener. Comput. Syst. 2017, 76, 221–233. [CrossRef]

28. Goodspeed, R. Smart cities: Moving beyond urban cybernetics to tackle wicked problems. Camb. J. Reg. Econ. Soc. 2015, 8, 79–92.
[CrossRef]

29. Moustaka, V.; Vakali, A. Smart Cities at Risk! Privacy and Security Borderlines from Social Networking in Cities. In Proceedings
of the Companion Proceedings of the The Web Conference 2018, Lyon, France, 23–27 April 2018; pp. 905–910. [CrossRef]

30. Rana, N.P.; Luthra, S.; Mangla, S.K.; Islam, R.; Roderick, S.; Dwivedi, Y.K. Barriers to the Development of Smart Cities in Indian
Context. Inf. Syst. Front. 2019, 21, 503–525. [CrossRef]

31. Lee, G.M.; Kim, J.Y. The Internet of Things—A problem statement. In Proceedings of the 2010 International Conference on
Information and Communication Technology Convergence (ICTC), Jeju, Korea, 17–19 November 2010; pp. 517–518. [CrossRef]

32. Tareq, M.; Sundararajan, E.A.; Mohd, M.; Sani, N.S. Online clustering of evolving data streams using a density grid-based method.
IEEE Access 2020, 8, 166472–166490. [CrossRef]

33. Verhelst, M.; Moons, B. Embedded Deep Neural Network Processing: Algorithmic and Processor Techniques Bring Deep Learning
to IoT and Edge Devices. IEEE Solid-State Circuits Mag. 2017, 9, 55–65. [CrossRef]

34. Kim, T.; Ramos, C.; Mohammed, S. Smart City and IoT. Futur. Gener. Comput. Syst. 2017, 76, 159–162. [CrossRef]
35. Li, H.; Ota, K.; Dong, M. Learning IoT in Edge: Deep Learning for the Internet of Things with Edge Computing. IEEE Netw. 2018,

32, 96–101. [CrossRef]
36. Stojkoska, B.R.; Nikolovski, Z. Data compression for energy efficient IoT solutions. In Proceedings of the 25th Telecommunication

Forum (TELFOR), Belgrade, Serbia, 21–22 November 2017. [CrossRef]
37. Akhtar, N.; Hasley, K. Smart Cities Face Challenges and Opportunities. Available online: https://www.computerweekly.com/

opinion/Smart-cities-face-challenges-and-opportunities (accessed on 24 November 2018).
38. Liu, J.; Chen, F.; Wang, D. Data compression based on stacked RBM-AE model for wireless sensor networks. Sensors 2018, 18, 4273.

[CrossRef]
39. Ratzke, A. An introduction to the research on Scratchpad memory with focus on performance improvement—Instruction SPM,

SPM on Multicoresystems and SPM on Multitaskingsystems. SPM Multicoresyst. SPM Multitaskingsyst. 2012, 1, 1–24.
40. Gottscho, M.; Alam, I.; Schoeny, C.; Dolecek, L.; Gupta, P. Low-Cost Memory Fault Tolerance for IoT Devices. ACM Trans. Embed.

Comput. Syst. 2017, 16, 1–25. [CrossRef]
41. Venkataramani, V.; Chan, M.C.; Mitra, T. Scratchpad-Memory Management for Multi-Threaded Applications on Many-Core

Architectures. ACM Trans. Embed. Comput. Syst. 2019, 18, 1–28. [CrossRef]
42. Controllers of Arduino—Compare Board Specs. Available online: https://www.arduino.cc/en/Products.Compare (accessed on

13 July 2020).
43. Verma, S.; Kawamoto, Y.; Fadlullah, Z.M.; Nishiyama, H.; Kato, N. A Survey on Network Methodologies for Real-Time Analytics

of Massive IoT Data and Open Research Issues. IEEE Commun. Surv. Tutor. 2017, 19, 1457–1477. [CrossRef]

http://doi.org/10.3390/su10041388
http://doi.org/10.31235/osf.io/e4fs8
http://doi.org/10.1016/j.scs.2021.102782
http://doi.org/10.14254/2071-789X.2020/13-1/2
https://www.design-reuse.com/articles/32614/nvm-memory-iot-applications.html
https://www.design-reuse.com/articles/32614/nvm-memory-iot-applications.html
http://doi.org/10.1109/HICSS.2012.615
https://www2.deloitte.com/content/dam/Deloitte/tr/Documents/public-sector/deloitte-nl-ps-smart-cities-report.pdf
https://www2.deloitte.com/content/dam/Deloitte/tr/Documents/public-sector/deloitte-nl-ps-smart-cities-report.pdf
https://www.eu-japan.eu/sites/default/files/publications/docs/smart2020tokyo_final.pdf
https://www.techrepublic.com/meet-the-team/us/teena-maddox/
https://www.techrepublic.com/meet-the-team/us/teena-maddox/
http://doi.org/10.13140/RG.2.2.14375.04002
http://doi.org/10.1016/j.future.2016.11.005
http://doi.org/10.1093/cjres/rsu013
http://doi.org/10.1145/3184558.3191516
http://doi.org/10.1007/s10796-018-9873-4
http://doi.org/10.1109/ICTC.2010.5674788
http://doi.org/10.1109/ACCESS.2020.3021684
http://doi.org/10.1109/MSSC.2017.2745818
http://doi.org/10.1016/j.future.2017.03.034
http://doi.org/10.1109/MNET.2018.1700202
http://doi.org/10.1109/TELFOR.2017.8249368
https://www.computerweekly.com/opinion/Smart-cities-face-challenges-and-opportunities
https://www.computerweekly.com/opinion/Smart-cities-face-challenges-and-opportunities
http://doi.org/10.3390/s18124273
http://doi.org/10.1145/3126534
http://doi.org/10.1145/3301308
https://www.arduino.cc/en/Products.Compare
http://doi.org/10.1109/COMST.2017.2694469

Sensors 2021, 21, 4223 22 of 27

44. Srisooksai, T.; Keamarungsi, K.; Lamsrichan, P.; Araki, K. Practical data compression in wireless sensor networks: A survey. J.
Netw. Comput. Appl. 2012, 35, 37–59. [CrossRef]

45. Azar, J.; Makhoul, A.; Barhamgi, M.; Couturier, R. An energy efficient IoT data compression approach for edge machine learning.
Future Gener. Comput. Syst. 2019, 96, 168–175. [CrossRef]

46. Gonzalez, O.B. Integration of a Wireless Sensor Network and IoT in the HiG University. Master’s Thesis, Uninversity of Gavly,
Gavle, Sweden, 2019.

47. OECD The Internet of Things—Seizing the Benefits and Addressing the Challenges. OECD Digit. Econ. Pap. 2016, 4–11. [CrossRef]
48. Azar, J.; Makhoul, A.; Couturier, R.; Demerjian, J. Robust IoT time series classification with data compression and deep learning.

Neurocomputing 2020, 398, 222–234. [CrossRef]
49. Alduais, N.A.M.; Abdullah, J.; Jamil, A.; Audah, L. An Efficient Data Collection Algorithms for IoT Sensor Board. In Proceedings

of the 2016 IEEE 7th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver,
BC, Canada, 13–16 October 2016.

50. Abu-Elkheir, M.; Hayajneh, M.; Ali, N.A. Data management for the Internet of Things: Design primitives and solution. Sensors
2013, 13, 15582–15612. [CrossRef]

51. Ma, Y.; Rao, J.; Hu, W.; Meng, X.; Han, X.; Zhang, Y.; Chai, Y.; Liu, C. An efficient index for massive IOT data in cloud
environment. In Proceedings of the 21st ACM International Conference on Information and Knowledge, Maui, HI, USA,
29 October–2 November 2012. [CrossRef]

52. Stojkoska, B.L.R.; Trivodaliev, K. V A review of Internet of Things for smart home: Challenges and solutions. J. Clean. Prod. 2016.
[CrossRef]

53. Motamedi, M.; Fong, D.; Ghiasi, S. Machine Intelligence on Resource-Constrained IoT Devices: The Case of Thread Granularity
Optimization for CNN Inference. ACM Trans. Embed. Comput. Syst. Artic. 2017, 16. [CrossRef]

54. Kitson, S. Giovanni Canestrini’s Models of Leonardo da Vinci’s friction Experiments, Figure 1a. Available online: http://journal.
sciencemuseum.ac.uk/browse/issue-06/giovanni-canestrini-s-models/figure-1a/?print=true (accessed on 24 April 2020).

55. Merello, L.; Mancin, M.; Magli, E. LOW-COMPLEXITY VIDEO COMPRESSION FOR WIRELESS SENSOR NETWORKS
CERCOM—Center for Multimedia Radio Communications. In Proceedings of the 2003 International Conference on Multi-
media and Expo, ICME’03, Proceedings (Cat. No.03TH8698), Baltimore, MD, USA, 6–9 July 2003. [CrossRef]

56. Xu, L.D.; He, W.; Li, S. Internet of things in industries: A survey. IEEE Trans. Ind. Inform. 2014, 10, 2233–2243. [CrossRef]
57. Díaz-Díaz, R.; Muñoz, L.; Pérez-González, D. Business model analysis of public services operating in the smart city ecosystem:

The case of SmartSantander. Futur. Gener. Comput. Syst. 2017, 76, 198–214. [CrossRef]
58. Srinidhi, N.N.; Dilip Kumar, S.M.; Venugopal, K.R. Network optimizations in the Internet of Things: A review. Eng. Sci. Technol.

Int. J. 2018. [CrossRef]
59. Jutila, M. An Adaptive Edge Router Enabling Internet of Things. IEEE Internet Things J. 2016, 3, 1061–1069. [CrossRef]
60. Han, S.; Mao, H.; Dally, W.J. Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and

Huffman Coding. arXiv 2016, arXiv:1510.00149.
61. Sinha, R.S.; Wei, Y.; Hwang, S.H. A survey on LPWA technology: LoRa and NB-IoT. ICT Express 2017, 3, 14–21. [CrossRef]
62. Yasumoto, K.; Yamaguchi, H.; Shigeno, H. Survey of Real-time Processing Technologies of IoT Data Streams. J. Inf. Process. 2016,

24, 195–202. [CrossRef]
63. Shaban, M.; Abdelgawad, A. A study of distributed compressive sensing for the Internet of Things (IoT). In Proceedings of the

2018 IEEE 4th World Forum on Internet of Things (WF-IoT), Singapore, 5–8 February 2018; pp. 173–178. [CrossRef]
64. Kimura, N.; Latifi, S. A survey on data compression in wireless sensor networks. In Proceedings of the International Conference

on Information Technology: Coding and Computing (ITCC’05), Las Vegas, NV, USA, 4–6 April 2005; pp. 8–13.
65. Campobello, G.; Segreto, A.; Zanafi, S.; Serrano, S. RAKE: A simple and efficient lossless compression algorithm for the internet

of things. In Proceedings of the 25th European Signal Processing Conference (EUSIPCO), Kos, Greece, 28 August–2 September
2017; pp. 2581–2585. [CrossRef]

66. Campobello, G.; Giordano, O.; Segreto, A.; Serrano, S. Comparison of local lossless compression algorithms for Wireless Sensor
Networks. J. Netw. Comput. Appl. 2014, 47, 23–31. [CrossRef]

67. Wu, S.; Mao, W.; Hong, T.; Liu, C.; Kadoch, M. Compressed sensing based traffic prediction for 5G HetNet IoT Video streaming.
In Proceedings of the 15th International Wireless Communications & Mobile Computing Conference (IWCMC), Tangier, Morocco,
24–28 June 2019; pp. 1901–1906. [CrossRef]

68. Petrović, D.; Shah, R.C.; Ramchandran, K.; Rabaey, J. Data funneling: Routing with aggregation and compression for wireless
sensor networks. In Proceedings of the First IEEE International Workshop on Sensor Network Protocols and Applications,
Anchorage, AK, USA, 11–11 May 2003; pp. 156–162. [CrossRef]

69. Kusuma, J.; Doherty, L.; Ramchandran, K. Distributed compression for sensor networks. In Proceedings of the 2001 International
Conference on Image Processing (Cat. No.01CH37205), Thessaloniki, Greece, 7–10 October 2001.

70. Lee, S.W.; Kim, H.Y. An energy-efficient low-memory image compression system for multimedia IoT products. EURASIP J. Image
Video Process. 2018, 2018. [CrossRef]

71. Langdon, G.G. Introduction To Arithmetic Coding. IBM J. Res. Dev. 1984, 28, 135–149. [CrossRef]
72. Witten, I.H.; Neal, R.M.; Cleary, J.G. Arithmetic coding for data compression. Commun. ACM 1987, 30, 520–540. [CrossRef]

http://doi.org/10.1016/j.jnca.2011.03.001
http://doi.org/10.1016/j.future.2019.02.005
http://doi.org/10.1787/5jlwvzz8td0n-en
http://doi.org/10.1016/j.neucom.2020.02.097
http://doi.org/10.3390/s131115582
http://doi.org/10.1145/2396761.2398587
http://doi.org/10.1016/j.jclepro.2016.10.006
http://doi.org/10.1145/3126555
http://journal.sciencemuseum.ac.uk/browse/issue-06/giovanni-canestrini-s-models/figure-1a/?print=true
http://journal.sciencemuseum.ac.uk/browse/issue-06/giovanni-canestrini-s-models/figure-1a/?print=true
http://doi.org/10.1109/ICME.2003.1221379
http://doi.org/10.1109/TII.2014.2300753
http://doi.org/10.1016/j.future.2017.01.032
http://doi.org/10.1016/j.jestch.2018.09.003
http://doi.org/10.1109/JIOT.2016.2550561
http://doi.org/10.1016/j.icte.2017.03.004
http://doi.org/10.2197/ipsjjip.24.195
http://doi.org/10.1109/WF-IoT.2018.8355095
http://doi.org/10.23919/EUSIPCO.2017.8081677
http://doi.org/10.1016/j.jnca.2014.09.013
http://doi.org/10.1109/IWCMC.2019.8766662
http://doi.org/10.1109/SNPA.2003.1203366
http://doi.org/10.1186/s13640-018-0333-3
http://doi.org/10.1147/rd.282.0135
http://doi.org/10.1145/214762.214771

Sensors 2021, 21, 4223 23 of 27

73. Khairi, N.A.; Jambek, A.B.; Ismail, R.C. Performance evaluation of arithmetic coding data compression for internet of things
applications. Indones. J. Electr. Eng. Comput. Sci. 2019, 13, 591–597. [CrossRef]

74. Bindu, K.; Ganpati, A.; Sharma, A.K. A Comparative Study of Image Compression Algorithms. Int. J. Res. Comput. Sci. 2012,
2, 37–42. [CrossRef]

75. Gibbons, J. Coding with Asymmetric Numeral Systems. In Proceedings of the Mathematics of Program Construction; Hutton, G., Ed.;
Springer International Publishing: Cham, Switzerland, 2019; pp. 444–465.

76. Konstantinov, F.; Gryzov, G.; Bystrov, K. The Use of Asymmetric Numeral Systems Entropy Encoding in Video Compression.
In Proceedings of the Distributed Computer and Communication Networks, Moscow, Russia, 23–27 September 2019; Vish-
nevskiy, V.M., Samouylov, K.E., Kozyrev, D.V., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 125–139.
[CrossRef]

77. Townsend, J. A tutorial on the range variant of asymmetric numeral systems. arXiv 2020, arXiv:2001.09186.
78. Gallager, G.; Voorhis, C.V.A.N. Optimal Source Codes for Geometrically Distributed Integer Alphabets. IEEE Trans. Inf. Theory

1974, 21, 228–230. [CrossRef]
79. Malvar, H.S. Adaptive run-length/golomb-rice encoding of quantized generalized gaussian sources with unknown statistics. In

Proceedings of the Data Compression Conference (DCC’06), Snowbird, UT, USA, 28–30 March 2006; pp. 23–32. [CrossRef]
80. Fruchtman, A.; Gross, Y.; Klein, S.T.; Shapira, D. Weighted Adaptive Huffman Coding. In Proceedings of the 2020 Data

Compression Conference (DCC), Snowbird, UT, USA, 24–27 March 2020; p. 368. [CrossRef]
81. Vitter, J.S. Design and Analysis of Dynamic Huffman Coding. Annu. Symp. Found. Comput. Sci. 1985, 34, 293–302. [CrossRef]
82. Vitter, J.S. Algorithm 673: Dynamic Huffman coding. ACM Trans. Math. Softw. 1989, 15, 158–167. [CrossRef]
83. Li, L.; Liu, H.; Zhu, Y.; Liang, X.; Liu, L. A Lossless Compression Algorithm Based on Differential and Canonical Huffman

Encoding for Spaceborne Magnetic Data. In Proceedings of the 2020 2nd International Conference on Image, Video and Signal
Processing, Singapore, 20 March 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 115–119.

84. Pal, C.; Pankaj, S.; Akram, W.; Acharyya, A.; Biswas, D. Modified Huffman based compression methodology for Deep Neural
Network Implementation on Resource Constrained Mobile Platforms. In Proceedings of the 2018 IEEE International Symposium
on Circuits and Systems (ISCAS), Florence, Italy, 27–30 May 2018; 2018. [CrossRef]

85. He, X.; Peddersen, J.; Parameswaran, S. LOP-RE: Range encoding for low power packet classification. Proc. Conf. Local Comput.
Netw. LCN 2009, 137–144. [CrossRef]

86. Tseng, Y.L.; Chang, G.Y.; Shih, C.C.; Liu, Y.X.; Wu, T.H. Range Encoding-Based Network Verification in SDN. In Proceed-
ings of the 2016 IEEE 14th Intl Conf on Dependable, Autonomic and Secure Computing, 14th Intl Conf on Pervasive Intelli-
gence and Computing, 2nd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress
(DASC/PiCom/DataCom/CyberSciTech), Auckland, New Zealand, 8–12 August 2016; pp. 400–405. [CrossRef]

87. Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 623–656. [CrossRef]
88. Travers, R.M.W. The transmission of information to human receivers. Audio-Video Commun. Rev. 1964, 12, 373–385. [CrossRef]
89. Fathahillah, F.; Zain, S.G.; Rismawati, R. Homogeneous Image Compression Techniques with the Shannon-Fano Algorithm. Int. J.

Environ. Eng. Educ. 2019, 1, 59–66. [CrossRef]
90. Kuswanto, D. Cryptograph Rsa and Compression Shannon Fano Text File Services at Mobile Devices. J. Phys. Conf. Ser. 2020,

1569, 022079. [CrossRef]
91. Reddy, M.R.; Akshaya, K.; Infanta Seles, R.A.; Dhivya, R.A.; Ravichandran, K.S. Image Compression using Shannon-Fano-Elias

Coding and Run Length Encoding. In Proceedings of the 2nd IEEE International Conference on Inventive Communication and
Computational Technologies, Vellimalaipattinam, India, 20–21 April 2018; pp. 1–5. [CrossRef]

92. Tjalkens, T.; Willems, F. Variable-to-fixed length codes: A geometrical approach to low-complexity source codes. In Proceedings
of the DCC 2000, Data Compression Conference, Snowbird, UT, USA, 28–30 March 2000; p. 573.

93. Savari, S.A.; Gallager, R.G. Generalized Tunstall codes for sources with memory. IEEE Trans. Inf. Theory 1997, 43, 658–668.
[CrossRef]

94. Hu, J.; Li, M.; Yang, K.; Ng, S.X.; Wong, K.K. Unary Coding Controlled Simultaneous Wireless Information and Power Transfer.
IEEE Trans. Wirel. Commun. 2020, 19, 637–649. [CrossRef]

95. Hu, J.; Li, M.; Yang, K.; Liu, L. Performance analysis of the unary coding aided SWIPT in a single-user Z-channel. In Proceedings
of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019. [CrossRef]

96. Kak, S. Generalized Unary Coding. Circuits Syst. Signal Process. 2016, 35, 1419–1426. [CrossRef]
97. Song, X.; Liu, B.; Huang, Q.; Hu, R. Design of high-resolution quantization scheme with exp-Golomb code applied to compression

of special images. J. Vis. Commun. Image Represent. 2019, 65, 102684. [CrossRef]
98. Valsesia, D.; Boufounos, P.T. Multispectral image compression using universal vector quantization. In Proceedings of the IEEE

Information Theory Workshop (ITW), Cambridge, UK, 11–14 September 2016; pp. 151–155. [CrossRef]
99. Taş, N.; Uçar, S.; Özgür, N.Y.; Kaymak, Ö.Ö. A new coding/decoding algorithm using Fibonacci numbers. Discret. Math.

Algorithms Appl. 2018, 10, 1–8. [CrossRef]
100. Sergeev, I.S. On the Complexity of Fibonacci Coding. Probl. Inf. Transm. 2018, 54, 343–350. [CrossRef]
101. UÇAR, S.; TAŞ, N.; ÖZGÜR, N.Y. A New Application to Coding Theory via Fibonacci and Lucas Numbers. Math. Sci. Appl.

E-Notes 2019, 7, 62–70. [CrossRef]
102. Elias, P. Universal Codeword Sets and Representations of the Integers. IEEE Trans. Inf. Theory 1975, 21, 194–203. [CrossRef]

http://doi.org/10.11591/ijeecs.v13.i2.pp591-597
http://doi.org/10.7815/ijorcs.25.2012.046
http://doi.org/10.1007/978-3-030-36614-8_10
http://doi.org/10.1109/TIT.1975.1055357
http://doi.org/10.1109/DCC.2006.5
http://doi.org/10.1109/dcc47342.2020.00059
http://doi.org/10.1109/sfcs.1985.18
http://doi.org/10.1145/63522.214390
http://doi.org/10.1109/ISCAS.2018.8351234
http://doi.org/10.1109/LCN.2009.5355199
http://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2016.82
http://doi.org/10.1002/j.1538-7305.1948.tb00917.x
http://doi.org/10.1007/BF02768693
http://doi.org/10.5281/zenodo.3490205
http://doi.org/10.1088/1742-6596/1569/2/022079
http://doi.org/10.1109/ICICCT.2018.8473120
http://doi.org/10.1109/18.556121
http://doi.org/10.1109/TWC.2019.2947491
http://doi.org/10.1109/GLOBECOM38437.2019.9014184
http://doi.org/10.1007/s00034-015-0120-7
http://doi.org/10.1016/j.jvcir.2019.102684
http://doi.org/10.1109/ITW.2016.7606814
http://doi.org/10.1142/S1793830918500283
http://doi.org/10.1134/S0032946018040038
http://doi.org/10.36753/mathenot.559251
http://doi.org/10.1109/TIT.1975.1055349

Sensors 2021, 21, 4223 24 of 27

103. Chu, A. LZAC lossless data compression. In Proceedings of the DCC 2002. Data Compression Conference, Snowbird, UT, USA,
2–4 April 2002.

104. Шевчук, Ю.B. Vbinary: Variable length integer coding revisited. Progr. Syst. Theory Appl. системы теoрия и прилoжения 2019,
9, 477–491. [CrossRef]

105. Grzybowski, P.; Juralewicz, E.; Piasecki, M. Sparse coding in authorship attribution for Polish tweets. In Proceedings of the
International Conference on Recent Advances in Natural Language Processing (RANLP 2019), Varna, Bulgaria, 2–4 September
2019; pp. 409–417. [CrossRef]

106. Cayre, F.; Bihan, N. Le Complexity and Similarity for Sequences using LZ77-based conditional information measure. In
Proceedings of the 2019 IEEE International Symposium on Information Theory (ISIT), Paris, France, 7–12 July 2019; pp. 2454–2458.
[CrossRef]

107. Ziv, J.; Lempel, A. A Universal Algorithm for Sequential Data Compression. IEEE Trans. Inf. Theory 1977, 23, 337–343. [CrossRef]
108. Rathore, Y.; Ahirwar, M.K.; Pandey, R. A Brief Study of Data Compression Algorithms. Int. J. Comput. Sci. Inf. Secur. 2013,

11, 86–94.
109. Storer, J.A.; Szymanski, T.G. Data Compression via Textual Substitution. J. ACM 1982, 29, 928–951. [CrossRef]
110. Wang, G.; Peng, H.; Tang, Y. Repair and Restoration of Corrupted LZSS Files. IEEE Access 2019, 7, 9558–9565. [CrossRef]
111. Abu-Taieh, E. The Pillars of Lossless Compression Algorithms a Road Map and Genealogy Tree. Int. J. Appl. Eng. Res. ISSN 2018,

13, 973–4562.
112. Friend, R.; Monsour, R. IP Payload Compression Using LZS. RFC 1998, 2395, 1–9.
113. Kane, J.; Yang, Q. Compression speed enhancements to LZO for multi-core systems. Proc. Symp. Comput. Archit. High Perform.

Comput. 2012, 108–115. [CrossRef]
114. Krintz, C.; Sucu, S. Adaptive On-the-Fly Compression. IEEE Trans. PARALLEL Distrib. Syst. 2006, 17, 15–24. [CrossRef]
115. Rattanaopas, K.; Kaewkeeree, S. Improving Hadoop MapReduce performance with data compression: A study using wordcount

job. In Proceedings of the 14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications
and Information Technology (ECTI-CON), Phuket, Thailand, 27–30 June 2017; pp. 564–567. [CrossRef]

116. Lenhardt, R.; Alakuijala, J. Gipfeli—High speed compression algorithm. Data Compress. Conf. Proc. 2012, 109–118. [CrossRef]
117. Alakuijala, J.; Kliuchnikov, E.; Szabadka, Z.; Vandevenne, L. Comparison of brotli, deflate, zopfli, lzma, lzham and bzip2

compression algorithms. Google Inc. 2015, 1–6.
118. Alakuijala, J.; Farruggia, A.; Ferragina, P.; Kliuchnikov, E.; Obryk, R.; Szabadka, Z.; Vandevenne, L. Brotli: A general-purpose

data compressor. ACM Trans. Inf. Syst. 2019, 37, 1–30. [CrossRef]
119. Tahghighi, M.; Mousavi, M.; Khadivi, P. Hardware implementation of a novel adaptive version of deflate compression algorithm.

In Proceedings of the 18th Iranian Conference on Electrical Engineering, Isfahan, Iran, 11–13 May 2010; pp. 566–569. [CrossRef]
120. Akoguz, A.; Bozkurt, S.; Gozutok, A.A.; Alp, G.; Turan, E.G.; Bogaz, M.; Kent, S. Comparison of open source compression

algorithms on VHR remote sensing images for efficient storage hierarchy. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS
Arch. 2016, 41, 3–9. [CrossRef]

121. Bartik, M.; Ubik, S.; Kubalik, P. LZ4 compression algorithm on FPGA. Proc. IEEE Int. Conf. Electron. Circuits Syst. 2016, 179–182.
[CrossRef]

122. Liu, W.; Mei, F.; Wang, C.; O’Neill, M.; Swartzlander, E.E. Data Compression Device Based on Modified LZ4 Algorithm. IEEE
Trans. Consum. Electron. 2018, 64, 110–117. [CrossRef]

123. Chakraborty, S.; Bandyopadhyay, A.; Yechangunja, R. A two stage data compression and decompression technique for point
cloud data. In Proceedings of the 2018 World Symposium on Digital Intelligence for Systems and Machines (DISA), Košice,
Slovakia, 23–25 August 2018; Volume 1, p. 364. [CrossRef]

124. Duda, J.; Niemiec, M. Lightweight compression with encryption based on Asymmetric Numeral Systems. arXiv 2016,
arXiv:1612.04662.

125. Hron, M. Compression Method LZFSE Martin, Katedra Teoretické Informatiky. Bachelor’s Thesis, Information Technology CTU
in Prague, Prague, Czech Republic, 17 January 2018.

126. Reznik, Y.A. LZRW1 without hashing. Data Compress. Conf. Proc. 1998, 569. [CrossRef]
127. Compression of small text files using syllables. In Proceedings of the 8th ACM SIGPLAN International Conference on Principles

and Practice of Declarative Programming, New York, NY, USA, 10–12 July 2006.
128. Galambos, L.; Lansky, J. Compression of Semistructured Documents. Int. J. Inf. Technol. 2008, 4, 1056–1061.
129. Rahman, Z. Data Compression, 4th ed.; Springer: London, UK, 2004; ISBN 9780203494455.
130. Rovnyagin, M.M.; Varykhanov, S.S.; Sinelnikov, D.M.; Odintsev, V.V. Burrows—Wheeler Transform in lossless Data compression

Problems on hybrid Computing Systems. In Proceedings of the IEEE Conference of Russian Young Researchers in Electrical and
Electronic Engineering (EIConRus), St. Petersburg and Moscow, Russia, 27–30 January 2020; pp. 472–476. [CrossRef]

131. Willems, F.M.J.; Shtarkov, Y.M.; Tjalkens, T.J. The Context-Tree Weighting Method: Basic Properties. IEEE Trans. Inf. Theory 1995,
41, 653–664. [CrossRef]

132. Mogul, J.C.; Douglis, F.; Feldmann, A.; Krishnamurthy, B. Potential benefits of delta encoding and data compression for HTTP.
Comput. Commun. Rev. 1997, 27, 181–184. [CrossRef]

133. Samteladze, N.; Christensen, K. DELTA: Delta encoding for less traffic for apps. Proc. Conf. Local Comput. Netw. LCN 2012, 212–215.
[CrossRef]

http://doi.org/10.25209/2079-3316-2018-9-4-477-491
http://doi.org/10.26615/978-954-452-056-4_048
http://doi.org/10.1109/ISIT.2019.8849610
http://doi.org/10.1109/TIT.1977.1055714
http://doi.org/10.1145/322344.322346
http://doi.org/10.1109/ACCESS.2019.2891764
http://doi.org/10.1109/SBAC-PAD.2012.29
http://doi.org/10.1109/TPDS.2006.3
http://doi.org/10.1109/ECTICon.2017.8096300
http://doi.org/10.1109/DCC.2012.19
http://doi.org/10.1145/3231935
http://doi.org/10.1109/IRANIANCEE.2010.5507007
http://doi.org/10.5194/isprs-archives-XLI-B4-3-2016
http://doi.org/10.1109/ICECS.2015.7440278
http://doi.org/10.1109/TCE.2018.2810480
http://doi.org/10.1109/DISA.2018.8490525
http://doi.org/10.1109/dcc.1998.672311
http://doi.org/10.1109/EIConRus49466.2020.9039028
http://doi.org/10.1109/18.382012
http://doi.org/10.1145/263109.263162
http://doi.org/10.1109/LCN.2012.6423611

Sensors 2021, 21, 4223 25 of 27

134. Adouane, W.; Semmar, N.; Johansson, R. Romanized Arabic and Berber detection using prediction by partial matching and
dictionary methods. In Proceedings of the 2016 IEEE/ACS 13th International Conference of Computer Systems and Applications
(AICCSA), Agadir, Morocco, 29 November–2 December 2016. [CrossRef]

135. Rǎdescu, R.; Paşca, S. Experimental results in Prediction by Partial Matching and Star transformation applied in lossless
compression of text files. In Proceedings of the 10th International Symposium on Advanced Topics in Electrical Engineering
(ATEE), Bucharest, Romania, 23–25 March 2017; pp. 17–22. [CrossRef]

136. Cormack, G.V.; Horspool, R.N.S. Data compression using dynamic markov modelling. Comput. J. 1987, 30, 541–550. [CrossRef]
137. Bunton, S. The structure of DMC [dynamic Markov compression]. In Proceedings of the Proceedings DCC’95 Data Compression

Conference, Snowbird, UT, USA, 28–30 March 1995. [CrossRef]
138. Žalik, B.; Lukač, N. Chain code lossless compression using move-to-front transform and adaptive run-length encoding. Signal

Process. Image Commun. 2014, 29, 96–106. [CrossRef]
139. Knoll, B.; De Freitas, N. A machine learning perspective on predictive coding with PAQ8. Data Compress. Conf. Proc. 2012, 377–386.

[CrossRef]
140. Al-nuaimi, A.; Al-Juboori, S.; Mohammed, R. Image Compression Using Proposed Enhanced Run Length Encoding Algorithm.

IBN AL Haitham J. Pure Appl. Sci. 2019, 24, 14.
141. Zhao, T.; Zhou, X. A novel RLE & LZW for bit-stream compression. In Proceedings of the 2016 13th IEEE International Conference

on Solid-State and Integrated Circuit Technology (ICSICT), Hangzhou, China, 25–28 October 2016; pp. 6–8.
142. Brownlee Jason Deep Learning with Python 2018. Available online: http://silverio.net.br/heitor/disciplinas/eeica/papers/

Livros/[Chollet]-Deep_Learning_with_Python.pdf (accessed on 18 May 2021).
143. Yunoh, M.F.M.; Abdullah, S.; Singh, S.S.K. Artificial neural network classification for fatigue feature extraction parameters based

on road surface response. Int. J. Adv. Sci. Eng. Inf. Technol. 2018, 8, 1480–1485. [CrossRef]
144. Dong, S.; Xu, H.; Zhu, X.; Guo, X.F.; Liu, X.; Wang, X. Multi-view deep clustering based on autoencoder. J. Phys. Conf. Ser. 2020,

1684, 9. [CrossRef]
145. Li, X.; Zhang, T.; Zhao, X.; Yi, Z. Guided autoencoder for dimensionality reduction of pedestrian features. Appl. Intell. 2020,

50, 4557–4567. [CrossRef]
146. Pirmoradi, S.; Teshnehlab, M.; Zarghami, N.; Sharifi, A. The Self-Organizing Restricted Boltzmann Machine for Deep Representa-

tion with the Application on Classification Problems. Expert Syst. Appl. 2020, 149, 113286. [CrossRef]
147. Patel, A.A. Hands-On Unsupervised Learning Using Python; O’Reilly Media: Newton, MA, USA, 2019; ISBN 9781492035640.
148. Zeroual, A.; Harrou, F.; Dairi, A.; Sun, Y. Deep learning methods for forecasting COVID-19 time-Series data: A Comparative

study. Chaos Solitons Fractals 2020, 140. [CrossRef]
149. Pouransari, H. Deep learning for sentiment analysis of movie reviews. CS224N Proj. 2014, 1–8.
150. Legrand, J.; Collobert, R. Joint RNN-based greedy parsing and word composition. In Proceedings of the 3rd International

Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015; 2015; pp. 1–11.
151. Zhong, Y.; He, Z.; Zhao, L.; Jiang, C.; Luo, X. Entity relationship extraction optimization based on entity recognition. In 2019

International Conference on Image and Video Processing, and Artificial Intelligence; International Society for Optics and Photonics:
Bellingham, WA, USA, 2019; p. 66. [CrossRef]

152. Zhong, P.; Gong, Z.; Li, S.; Schonlieb, C.B. Learning to Diversify Deep Belief Networks for Hyperspectral Image Classification.
IEEE Trans. Geosci. Remote Sens. 2017, 55, 3516–3530. [CrossRef]

153. Krizhevsky, A.; Hinton, G. Convolutional deep belief networks on cifar-10. Unpubl. Manuscr. 2010, 40, 1–9.
154. Chauhan, R.; Ghanshala, K.K.; Joshi, R.C. Convolutional Neural Network (CNN) for Image Detection and Recognition. In

Proceedings of the 2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC), Jalandhar,
India, 15–17 December 2018; pp. 278–282. [CrossRef]

155. Liao, X.; Sahran, S.; Abdul Shukor, S. An experimental study of vehicle detection on aerial imagery using deep learning-based
detection approaches. J. Phys. Conf. Ser. 2020, 1550. [CrossRef]

156. Sun, C.; Shi, Z.; Jiang, F. A Machine Learning Approach for Beamforming in Ultra Dense Network Considering Selfish and
Altruistic Strategy. IEEE Access 2020, 8, 6304–6315. [CrossRef]

157. Shewalkar, A.; Nyavanandi, D.; Ludwig, S.A. Performance Evaluation of Deep neural networks Applied to Speech Recognition:
Rnn, LSTM and GRU. J. Artif. Intell. Soft Comput. Res. 2019, 9, 235–245. [CrossRef]

158. Karita, S.; Order, A.; Chen, N.; Hayashi, T.; Hori, T.; Inaguma, H.; Jiang, Z.; Someki, M.; Enrique, N.; Soplin, Y.; et al. A
COMPARATIVE STUDY ON TRANSFORMER VS RNN IN SPEECH APPLICATIONS NTT Communication Science Laboratories,
2 Waseda University, 3 Johns Hopkins University, LINE Corporation, 5 Nagoya University, 6 Human Dataware Lab. Co., Ltd.,
Mitsubishi Electric R. IEEE Xplore 2019, 9, 449–456.

159. Lyu, C.; Chen, B.; Ren, Y.; Ji, D. Long short-term memory RNN for biomedical named entity recognition. BMC Bioinform. 2017,
18, 1–11. [CrossRef] [PubMed]

160. Madan, R.; Sarathimangipudi, P. Predicting Computer Network Traffic: A Time Series Forecasting Approach Using DWT, ARIMA
and RNN. In Proceedings of the 2018 Eleventh International Conference on Contemporary Computing (IC3), Noida, India, 2–4
August 2018. [CrossRef]

161. ÖZTÜRK, E. Prevent the Transmission of Useless/Repeated Data To the Network in Internet of Things. Turk. J. Eng. 2018, 4, 39–42.
[CrossRef]

http://doi.org/10.1109/AICCSA.2016.7945668
http://doi.org/10.1109/ATEE.2017.7905127
http://doi.org/10.1093/comjnl/30.6.541
http://doi.org/10.1109/DCC.1995.515497
http://doi.org/10.1016/j.image.2013.09.002
http://doi.org/10.1109/DCC.2012.44
http://silverio.net.br/heitor/disciplinas/eeica/papers/Livros/[Chollet]-Deep_Learning_with_Python.pdf
http://silverio.net.br/heitor/disciplinas/eeica/papers/Livros/[Chollet]-Deep_Learning_with_Python.pdf
http://doi.org/10.18517/ijaseit.8.4-2.6805
http://doi.org/10.1088/1742-6596/1684/1/012059
http://doi.org/10.1007/s10489-020-01813-1
http://doi.org/10.1016/j.eswa.2020.113286
http://doi.org/10.1016/j.chaos.2020.110121
http://doi.org/10.1117/12.2541712
http://doi.org/10.1109/TGRS.2017.2675902
http://doi.org/10.1109/ICSCCC.2018.8703316
http://doi.org/10.1088/1742-6596/1550/3/032005
http://doi.org/10.1109/ACCESS.2019.2963468
http://doi.org/10.2478/jaiscr-2019-0006
http://doi.org/10.1186/s12859-017-1868-5
http://www.ncbi.nlm.nih.gov/pubmed/29084508
http://doi.org/10.1109/IC3.2018.8530608
http://doi.org/10.31127/tuje.443482

Sensors 2021, 21, 4223 26 of 27

162. Karic, A.; Loncar, I. Battery Sensory Data Compression for Ultra Narrow Bandwidth Iot Protocols. Master’s Thesis, Mälardalen
University, Västerås, Sweden, 31 May 2018.

163. Rourse, M. What is Brontobyte?—Definition from WhatIs.com. Available online: https://searchstorage.techtarget.com/
definition/brontobyte?fbclid=IwAR0R__pcP1EQzdxniH1v4OhW_wO9NBRSzjyXrxwHSbrbHTE-oBTe0OW01XM (accessed on
25 November 2018).

164. Papageorgiou, A.; Cheng, B.; Kovacs, E. Real-time data reduction at the network edge of Internet-of-Things systems. In
Proceedings of the 11th International Conference on Network and Service Management (CNSM), Barcelona, Spain, 9–13
November 2015; pp. 284–291. [CrossRef]

165. Consultancy, T. Adaptive sensor data compression in iot systems: Sensor data analytics based approach. In Proceedings of the
2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane, QLD, Australia, 19–24
April 2015; pp. 5515–5519.

166. Othman, Z.A.; Ismail, N.; Hamdan, A.R.; Sammour, M.A. Klang vally rainfall forecasting model using time series data mining
technique. J. Theor. Appl. Inf. Technol. 2016, 92, 372–379.

167. Zeng, X.; Yang, J.; Li, Z.; Li, X. A Method of Mining Spatial High Utility Co-location Patterns Based on Feature Actual Participation
Weight. J. Phys. Conf. Ser. 2019, 1168, 032064. [CrossRef]

168. Shi, W.; Hou, Y.; Zhou, S.; Niu, Z.; Zhang, Y.; Geng, L. Improving Device-Edge Cooperative Inference of Deep Learning via 2-Step
Pruning. In Proceedings of the IEEE INFOCOM 2019—IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), Paris, France, 29 April–2 May 2019.

169. Namik, A.F.; Othman, Z.A. Reducing network intrusion detection association rules using Chi-Squared pruning technique. Conf.
Data Min. Optim. 2011, 122–127. [CrossRef]

170. Abdullah, A.; En Ting, W. Orientation and Scale Based Weights Initialization Scheme for Deep Convolutional Neural Networks.
Asia-Pac. J. Inf. Technol. Multimed. 2020, 09, 103–112. [CrossRef]

171. Nagi, J.; Ducatelle, F.; Di Caro, G.A.; Cireşan, D.; Meier, U.; Giusti, A.; Nagi, F.; Schmidhuber, J.; Gambardella, L.M. Max-
pooling convolutional neural networks for vision-based hand gesture recognition. In Proceedings of the 2011 IEEE International
Conference on Signal and Image Processing Applications (ICSIPA), Kuala Lumpur, Malaysia, 16–18 November 2011; pp. 342–347.
[CrossRef]

172. Blot, M.; Matthieu, C.; Thome, N. MAX-MIN CONVOLUTIONAL NEURAL NETWORKS FOR IMAGE CLASSIFICATION
Michael Blot, Matthieu Cord, Nicolas Thome Sorbonne Universites, UPMC Univ Paris 06, CNRS, LIP6 UMR 7606, 4 place Jussieu
75005 Paris. IEEE Xplore 2016, ICIP 2016, 5. [CrossRef]

173. Yao, S.; Zhao, Y.; Zhang, A.; Su, L.; Abdelzaher, T. DeepIoT: Compressing Deep Neural Network Structures for Sensing Systems
with a Compressor-Critic Framework. In Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems, Delft,
The Netherlands, 6–8 November 2017. [CrossRef]

174. Alsheikh, M.A.; Lin, S.; Niyato, D.; Tan, H.P. Machine learning in wireless sensor networks: Algorithms, strategies, and
applications. IEEE Commun. Surv. Tutor. 2014, 16, 1996–2018. [CrossRef]

175. Hinton, G.; Vinyals, O.; Dean, J. Distilling the Knowledge in a Neural Network. arXiv 2015, arXiv:1503.02531.
176. Guo, Y.; Yao, A.; Chen, Y. Dynamic network surgery for efficient DNNs. Adv. Neural Inf. Process. Syst. 2016, 1387–1395.
177. Yao, S.; Zhao, Y.; Zhang, A.; Hu, S.; Shao, H.; Zhang, C.; Su, L.; Abdelzaher, T. Deep Learning for the Internet of Things. Computer

(Long Beach Calif.) 2018, 51, 32–41. [CrossRef]
178. Denton, E.; Zaremba, W.; Bruna, J.; LeCun, Y.; Fergus, R. Exploiting linear structure within convolutional networks for efficient

evaluation. Adv. Neural Inf. Process. Syst. 2014, 2, 1269–1277.
179. Vanhoucke, V.; Senior, A.; Mao, M. Improving the speed of neural networks on CPUs. Proc. Deep Learn. 2011, 1–8.
180. Mathieu, M.; Henaff, M.; LeCun, Y. Fast training of convolutional networks through FFTS. arXiv 2014, arXiv:1312.5851.
181. Denil, M.; Shakibi, B.; Dinh, L.; Ranzato, M.; De Freitas, N. Predicting parameters in deep learning. arXiv 2013, arXiv:1306.0543.
182. Lin, M.; Chen, Q.; Yan, S. Network in network. arXiv 2014, arXiv:1312.4400v3.
183. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA,
7–12 June 2015; pp. 1–9. [CrossRef]

184. Le, C. Optimal brain damage. Adv. Neural Inf. Process. Syst. 1990, 2, 598–605.
185. Courbariaux, M.; Hubara, I.; Soudry, D.; El-Yaniv, R.; Bengio, Y. Binarized Neural Networks: Training Deep Neural Networks

with Weights and Activations Constrained to +1 or −1. arXiv 2016, arXiv:1602.02830.
186. Toro Icarte, R.; Illanes, L.; Castro, M.P.; Cire, A.A.; McIlraith, S.A.; Beck, J.C. Training Binarized Neural Networks Using MIP and

CP. Int. Conf. Princ. Pract. Constraint Program. 2019, 11802, 401–417. [CrossRef]
187. Courbariaux, M.; Bengio, Y.; David, J.P. Binaryconnect: Training deep neural networks with binary weights during propagations.

arXiv 2015, arXiv:1511.00363.
188. Chen, W.; Wilson, J.T.; Tyree, S.; Weinberger, K.Q.; Chen, Y. Compressing neural networks with the hashing trick. In Proceedings

of the 32nd International Conference on Machine Learning (ICML 2015), Lille, France, 6–11 July 2015.
189. Gong, Y.; Liu, L.; Yang, M.; Bourdev, L. Compressing Deep Convolutional Networks using Vector Quantization. arXiv 2014,

arXiv:1412.6115.

https://searchstorage.techtarget.com/definition/brontobyte?fbclid=IwAR0R__pcP1EQzdxniH1v4OhW_wO9NBRSzjyXrxwHSbrbHTE-oBTe0OW01XM
https://searchstorage.techtarget.com/definition/brontobyte?fbclid=IwAR0R__pcP1EQzdxniH1v4OhW_wO9NBRSzjyXrxwHSbrbHTE-oBTe0OW01XM
http://doi.org/10.1109/CNSM.2015.7367373
http://doi.org/10.1088/1742-6596/1168/3/032064
http://doi.org/10.1109/DMO.2011.5976515
http://doi.org/10.17576/apjitm-2020-0902-08
http://doi.org/10.1109/ICSIPA.2011.6144164
http://doi.org/10.1109/ICIP.2016.7533046
http://doi.org/10.1145/3131672.3131675
http://doi.org/10.1109/COMST.2014.2320099
http://doi.org/10.1109/MC.2018.2381131
http://doi.org/10.1109/CVPR.2015.7298594
http://doi.org/10.1007/978-3-030-30048-7_24

Sensors 2021, 21, 4223 27 of 27

190. Kaggle Time Series Datasets|Kaggle. Available online: https://www.kaggle.com/shenba/time-series-datasets/version/1
(accessed on 18 May 2021).

191. UCI 7 Time Series Datasets for Machine Learning. Available online: https://machinelearningmastery.com/time-series-datasets-
for-machine-learning/ (accessed on 18 May 2021).

192. AMPDs AMPds2: The Almanac of Minutely Power dataset (Version 2)—Harvard Dataverse. Available online: https://dataverse.
harvard.edu/dataverse/harvard/?q= (accessed on 18 May 2021). [CrossRef]

193. Makonin, S.; Ellert, B.; Bajić, I.V.; Popowich, F. Electricity, water, and natural gas consumption of a residential house in Canada
from 2012 to 2014. Sci. Data 2016, 3. [CrossRef]

194. Corpus The Canterbury Corpus. Available online: https://corpus.canterbury.ac.nz/descriptions/#calgary (accessed on 18
May 2021).

https://www.kaggle.com/shenba/time-series-datasets/version/1
https://machinelearningmastery.com/time-series-datasets-for-machine-learning/
https://machinelearningmastery.com/time-series-datasets-for-machine-learning/
https://dataverse.harvard.edu/dataverse/harvard/?q=
https://dataverse.harvard.edu/dataverse/harvard/?q=
http://doi.org/10.7910/DVN/FIE0S4
http://doi.org/10.1038/sdata.2016.37
https://corpus.canterbury.ac.nz/descriptions/#calgary

	Introduction
	Internet of Things
	IoT Memory
	The IoT Memory Challenge
	The IoT Data Traffic Reduction Motivations
	The IoT Data Compression State of Art

	Compression
	Lossless Data Compression
	Lossless Entropy Algorithms
	Lossless Dictionary Based Algorithms
	Lossless General Compression Algorithms

	Deep Learning
	Deep Learning Architectures
	Dimensionality Reduction Techniques
	Pruning
	Pooling

	Deep Learning Solutions for IoT Data Compression
	Experiments and Results
	Discussion
	Conclusions, Challenges and Future Work
	References

