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Abstract: Significance and popularity of Role-Based Access Control (RBAC) is inevitable; however, its
application is highly challenging in multi-domain collaborative smart city environments. The reason
is its limitations in adapting the dynamically changing information of users, tasks, access policies
and resources in such applications. It also does not incorporate semantically meaningful business
roles, which could have a diverse impact upon access decisions in such multi-domain collaborative
business environments. We propose an Intelligent Role-based Access Control (I-RBAC) model that
uses intelligent software agents for achieving intelligent access control in such highly dynamic
multi-domain environments. The novelty of this model lies in using a core I-RBAC ontology that
is developed using real-world semantic business roles as occupational roles provided by Standard
Occupational Classification (SOC), USA. It contains around 1400 business roles, from nearly all
domains, along with their detailed task descriptions as well as hierarchical relationships among them.
The semantic role mining process is performed through intelligent agents that use word embedding
and a bidirectional LSTM deep neural network for automated population of organizational ontology
from its unstructured text policy and, subsequently, matching this ontology with core I-RBAC
ontology to extract unified business roles. The experimentation was performed on a large number
of collaboration case scenarios of five multi-domain organizations and promising results were
obtained regarding the accuracy of automatically derived RDF triples (Subject, Predicate, Object)
from organizational text policies as well as the accuracy of extracted semantically meaningful roles.

Keywords: access control; intelligent RBAC; multi-domain collaboration; dynamic environments;
smart city applications; semantic role mining; ontology; multi-agent system; word embedding; LSTM

1. Introduction

Smart city applications need greater collaboration among companies, entrepreneurs
and citizens [1]. These stakeholders can be from multiple domains and the citizens in-
volved can perform multiple roles depending upon their collaborative application and
organizational policy. It creates a dynamic multi-domain collaborative environment, which
needs an effective intelligent access control [2] in order to protect information and resources
from unauthorized entities. Many access control approaches have been proposed in last
couple of decades but the significance of Role-Based Access Control (RBAC) [3] is inevitable
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in this regard. This model assigns permissions to resources based upon their roles and
assigned tasks. However, applying this model in smart city applications’ multi-domain
collaborative scenarios is highly challenging because it fails to adapt the dynamically
changing information of the users and resources as well as being unable to automatically
handle diversity of users’ multiple roles. In such an environment, discovering roles with
business semantics as well as general classification of such business roles are unaddressed
problems [4]. Moreover, smart city applications demand automatic identification of roles,
permissions and objects from collaborating organizational textual policies.

Our proposed I-RBAC model [5–7] is the first effort in finding solutions to these
problems as well as combining the advantages of RBAC model with intelligent agents
and ontology for finding semantically meaningful roles in highly dynamic multi-domain
collaborative environments. These intelligent agents have learning capabilities and are
adaptable to changing environments. This paper is focused on explaining our agent-based
semantic role mining approach in multi-domain collaborative environments using the
I-RBAC model. The main contributions involve derivation of organizational ontology
from its policy text using already trained bi-directional LSTM. Later on, this automatically
populated ontology is matched with our core I-RBAC ontology in order to extract unified
semantic roles with business meaning. Our core I-RBAC ontology is already built based
upon the tasks descriptions of business roles as per the Standard Occupational Classification
(SOC) system [8]. Moreover, the bi-directional LSTM is also trained using this ontology
and SOC system’s textual descriptions of tasks for business roles. The semantic role mining
process is performed through intelligent software agents that utilize knowledge stored
in ontologies.

The rest of the paper is organized as follows: Section 2 briefly introduces the intelli-
gent role-based access control model through defining its main components and system
architecture (interested readers may refer to our earlier published paper [5] for further
detailed description of our proposed I-RBAC model and framework as well as its frame-
work implementation).Section 3 summarizes the related work regarding existing extended
models of RBAC, for multidomain collaboration, and their comparative analysis with our
I-RBAC model to emphasize the importance of our I-RBAC model for multidomain collab-
orations in smart city applications. This section also summarizes existing work regarding
semantic role mining in domain-specific RBAC, automated text to ontology derivation,
ontology matching and alignment as well as the work where agents had been used in
RBAC systems. Section 4 explains our proposed methodology for semantic role mining
using the I-RBAC model. Section 5 explains its implementation through multiple agents.
Section 6 discusses results and, finally, Section 7 concludes the paper and describes its
limitations and future work.

2. Intelligent Role-Based Access Control (I-RBAC)

Our intelligent RBAC (I-RBAC) model is an extended version of the traditional RBAC
model, and it has the capability of mining semantically meaningful business roles through
intelligent software agents that can keep track of the dynamically changing environment,
information sources available to the system and required access methods. These agents
can activate new roles and can also change granted roles according to the new policy. The
role hierarchy concept is bound to assigned tasks according to organizational hierarchy,
which is different from the standard RBAC model. The main components of our proposed
I-RBAC model are user (agent), business role, task role, set of tasks and permissions. These
main components and their relationships are formally defined as given below.

The user (agent) can assimilate and interpret the environment changes independently.
It acts according to the changing environment.

Users(UAg) =
{

UAgi

∣∣i = 1, 2, 3, . . . n
}

(1)

Whereas Uag = {Aid, ontology, communication, action, result
}
∀Uag ∈ UAg (2)
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The role is classified according to tasks assigned to each user. We categorize the Role
as the Business Role (BRi) that is user’s exact job entitlement held in an organization. Task
roles are a subset of the business roles set but are dynamic as per assigned tasks and named
as Task Roles (TR). There is a many-to-many relationship between roles and agents.

BusinessRoles(BR) = {BRi|i = 1, 2, 3, . . . n} (3)

Whereas br =
{

Uag1 , Uag2 , . . . , Uagn

∣∣Uagi ∈ UAg
}
∀br ∈ BR (4)

The permission is an authorization to access system resources. It is the combination of
actions performed on certain objects and is the power set of permissions associated with
different tasks.

Objects(Obj) = {Obji|i = 1, 2, 3, . . . n} (5)

Operations(Opr) = {Opri|i = 1, 2, 3, . . . n} (6)

Permissions(P) =
{

Pi = Objj ×Oprk
∣∣i = 1, 2, . . . n and j, k ∈ {1, 2, . . . , n}} (7)

The task is a specific predefined set of tasks associated with a specific business role
owned by different organizations.

Tasks(T) =
N

∑
n=1

Tn = T1 ∪ T2 ∪ . . . ∪ TN = {t|∃n : (t ∈ Tn)} (8)

The attribute can be related to users, roles and objects (resources).

UserAttributes(Attruser) = {Attruseri |i = 1, 2, . . . n} (9)

ObjectAttributes(Attrobj) =
{

Attrobji

∣∣∣i = 1, 2, . . . n
}

(10)

RoleAttributes(Attrrole) =
{

Attrrolei

∣∣i = 1, 2, . . . n
}

(11)

Task-Permission-Assignment (TPA) is defined as:

TPA=
{(

P, T, AttrOjb, AttrOpr

)∣∣∣PermissionPisassignedtoTaskT
}
⊆ P× T × AttrObj × AttrOpr (12)

Role-Task-Assignment (RTA) is defined as:

RTA = {(BRi, Ti)| Task Ti is assigned to TaskRole TRi ∈ BRi} ⊆ T × BR (13)

User-Role-Assignment (URA) is defined as:

URA =
{(

BRi, UAgi

)∣∣BusinessRoleBRiassignedtoUser(agent)UAgi ⊆ BR×UAg
}

(14)

The session is the time stamp allocated to a user while working under a certain role.

Session (S) =
{

Srolei
∣∣rolei ∈ Brorrolei → Tj

∣∣ i, j = 1, 2, 3 . . . n
}

(15)

Session−UserAg : S→ UAg (16)

The following, on the other hand, is a function that maps each session Si to a set of
Task Roles

TR(Si) ⊆ {BR|User(Si), BR) ∈ URA } (17)

I-RBAC system architecture is shown in Figure 1. The first layer provides an interface
to the access control layer responsible for the overall security mechanism, based on role
assignment to different users in multiple organizations. This layer consists of multiple
intelligent agents and these agents are equipped with knowledge from the third layer, i.e.,
the knowledge layer. The knowledge, in this layer, is stored in the form of ontologies.
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The generic core I-RBAC ontology is based on real-world semantic business roles whose
description is taken from Standard Occupational Classification (SOC) system, USA [8].
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The organizational ontologies are automatically populated in the form of RDF schemas
through text-based policies of those organizations. The intelligent agents use ontologies to
classify roles, permissions, and objects. The interrelations between concepts and entities
help to keep track of the roles and their assigned permissions on certain objects.

3. Related Work

In this section, some existing extended models of RBAC, for multidomain collabo-
ration, are summarized and their comparative analysis with our I-RBAC model is given.
Additionally, there are four possible dimensions of this research work and the related work
in those dimensions is also summarized in separate subsections.

3.1. Existing RBAC Extended Models for Multidomain Collaborations

At present, different models and architectures of distributed computing over the
internet have been developed for resource sharing and collaboration. The concept of virtual
organizations has been introduced in these open, distributed computing environments
to enable resource sharing and collaboration across different domains. However, these
virtual organizations have to face the great challenge of security due to the dynamic and au-
tonomous characteristics of participating domains [5]. To overcome this security challenge
in multi-domain collaborative environments, access control models play an important role.
The current literature review reveals that the RBAC model is the most adoptable model by
different organizations regardless of their size, due to the simplicity of the model and ease
of administration of relationships among users and permissions [9,10]. Although RBAC
provides many benefits to organizations regarding the mapping of job functions to the
RBAC roles and then encoding these mappings in the form of security policy, these security
policies must align with the organizational structure and business needs [11].

There are limited works that tackle challenges for multidomain collaboration using
an extended RBAC approach. The work in [12] proposed a policy integration frame-
work for global coherent access control policy that is applicable for role-based access
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control in heterogeneous multidomain collaborative environments. The work reported
in [13] employed role mapping for interaction among multidomain collaborative organi-
zations. In [14], the authors proposed a hybrid access control mechanism using common
ontology of the application domain. Similarly, the works in [15–17] used ontology-based
semantic techniques for access control in multidomain collaboration scenarios. In [18],
a fine-grained role-attribute access control is proposed combining the benefits of RBAC and
attribute-based access control (ABAC). A domain-based RBAC model and architecture [19]
is proposed for the adaptability of multidomain security requirements. The work in [20]
presented a dynamic role-based access control in multidomain environments by utilizing
context-based usage control access policies.

The literature reviewed for access control in multidomain collaboration showed that
automated business role mining for access control in multidomain collaboration is an open
research area. Table 1 summarizes several aspects of the above-mentioned existing work
for access control in multidomain collaboration in order to highlight their limitations, and
also gives a comparison with our proposed I-RBAC model.

Table 1. Comparison of our I-RBAC model with existing extended RBAC models for multi-domain collaboration.

Ref. Role
Hierarchy Attributes Semantic Techniques

and Technology
Machine Learning

Techniques
Business

Roles
Intelligent

Agents

[12]
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conducted semantic role mining by handling dynamic access control policies in workflow 
systems particular to the healthcare domain. A genetic algorithm-based approach was 
proposed by [28] for solving the role mining problem in RBAC. 
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techniques for access control in multidomain collaboration scenarios. In [18], a fine-
grained role-attribute access control is proposed combining the benefits of RBAC and 
attribute-based access control (ABAC). A domain-based RBAC model and architecture 
[19] is proposed for the adaptability of multidomain security requirements. The work in 
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3.2. Semantic Role Mining in Domain-Specific RBAC 
Many role mining algorithms were proposed in domain-specific RBAC systems but 

few of them deal with business meaning. A role mining technique was proposed in [21] 
that derived roles based upon weights that were already associated with permissions as 
per their importance. Similarly, role mining algorithms were also proposed in [22] by 
optimizing policy quality metrics considering some primitive metrics, such as policy size 
and role interpretability, or compound metrics, which consist of both of these factors. 
Some role mining algorithms [23,24] were proposed that were based on machine-learning 
models, such as LDA and ATM. The generative RBAC models produced through these 
algorithms helped to resolve certain issues, for example, anomaly detection, identification 
of policy errors and policy reconciliation. These algorithms considered user attributes and 
their entitlements. Several semantic role mining approaches [9–11,25,26] were also 
proposed that created meaningful roles from a business point of view. These approaches 
used available business information in order to produce such roles. The authors of [27] 
conducted semantic role mining by handling dynamic access control policies in workflow 
systems particular to the healthcare domain. A genetic algorithm-based approach was 
proposed by [28] for solving the role mining problem in RBAC. 
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3.2. Semantic Role Mining in Domain-Specific RBAC 
Many role mining algorithms were proposed in domain-specific RBAC systems but 

few of them deal with business meaning. A role mining technique was proposed in [21] 
that derived roles based upon weights that were already associated with permissions as 
per their importance. Similarly, role mining algorithms were also proposed in [22] by 
optimizing policy quality metrics considering some primitive metrics, such as policy size 
and role interpretability, or compound metrics, which consist of both of these factors. 
Some role mining algorithms [23,24] were proposed that were based on machine-learning 
models, such as LDA and ATM. The generative RBAC models produced through these 
algorithms helped to resolve certain issues, for example, anomaly detection, identification 
of policy errors and policy reconciliation. These algorithms considered user attributes and 
their entitlements. Several semantic role mining approaches [9–11,25,26] were also 
proposed that created meaningful roles from a business point of view. These approaches 
used available business information in order to produce such roles. The authors of [27] 
conducted semantic role mining by handling dynamic access control policies in workflow 
systems particular to the healthcare domain. A genetic algorithm-based approach was 
proposed by [28] for solving the role mining problem in RBAC. 
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3.2. Semantic Role Mining in Domain-Specific RBAC 
Many role mining algorithms were proposed in domain-specific RBAC systems but 

few of them deal with business meaning. A role mining technique was proposed in [21] 
that derived roles based upon weights that were already associated with permissions as 
per their importance. Similarly, role mining algorithms were also proposed in [22] by 
optimizing policy quality metrics considering some primitive metrics, such as policy size 
and role interpretability, or compound metrics, which consist of both of these factors. 
Some role mining algorithms [23,24] were proposed that were based on machine-learning 
models, such as LDA and ATM. The generative RBAC models produced through these 
algorithms helped to resolve certain issues, for example, anomaly detection, identification 
of policy errors and policy reconciliation. These algorithms considered user attributes and 
their entitlements. Several semantic role mining approaches [9–11,25,26] were also 
proposed that created meaningful roles from a business point of view. These approaches 
used available business information in order to produce such roles. The authors of [27] 
conducted semantic role mining by handling dynamic access control policies in workflow 
systems particular to the healthcare domain. A genetic algorithm-based approach was 
proposed by [28] for solving the role mining problem in RBAC. 
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3.2. Semantic Role Mining in Domain-Specific RBAC 
Many role mining algorithms were proposed in domain-specific RBAC systems but 

few of them deal with business meaning. A role mining technique was proposed in [21] 
that derived roles based upon weights that were already associated with permissions as 
per their importance. Similarly, role mining algorithms were also proposed in [22] by 
optimizing policy quality metrics considering some primitive metrics, such as policy size 
and role interpretability, or compound metrics, which consist of both of these factors. 
Some role mining algorithms [23,24] were proposed that were based on machine-learning 
models, such as LDA and ATM. The generative RBAC models produced through these 
algorithms helped to resolve certain issues, for example, anomaly detection, identification 
of policy errors and policy reconciliation. These algorithms considered user attributes and 
their entitlements. Several semantic role mining approaches [9–11,25,26] were also 
proposed that created meaningful roles from a business point of view. These approaches 
used available business information in order to produce such roles. The authors of [27] 
conducted semantic role mining by handling dynamic access control policies in workflow 
systems particular to the healthcare domain. A genetic algorithm-based approach was 
proposed by [28] for solving the role mining problem in RBAC. 
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3.2. Semantic Role Mining in Domain-Specific RBAC 
Many role mining algorithms were proposed in domain-specific RBAC systems but 

few of them deal with business meaning. A role mining technique was proposed in [21] 
that derived roles based upon weights that were already associated with permissions as 
per their importance. Similarly, role mining algorithms were also proposed in [22] by 
optimizing policy quality metrics considering some primitive metrics, such as policy size 
and role interpretability, or compound metrics, which consist of both of these factors. 
Some role mining algorithms [23,24] were proposed that were based on machine-learning 
models, such as LDA and ATM. The generative RBAC models produced through these 
algorithms helped to resolve certain issues, for example, anomaly detection, identification 
of policy errors and policy reconciliation. These algorithms considered user attributes and 
their entitlements. Several semantic role mining approaches [9–11,25,26] were also 
proposed that created meaningful roles from a business point of view. These approaches 
used available business information in order to produce such roles. The authors of [27] 
conducted semantic role mining by handling dynamic access control policies in workflow 
systems particular to the healthcare domain. A genetic algorithm-based approach was 
proposed by [28] for solving the role mining problem in RBAC. 

  

Sensors 2021, 21, x FOR PEER REVIEW 5 of 21 
 

 

for global coherent access control policy that is applicable for role-based access control in 
heterogeneous multidomain collaborative environments. The work reported in [13] 
employed role mapping for interaction among multidomain collaborative organizations. 
In [14], the authors proposed a hybrid access control mechanism using common ontology 
of the application domain. Similarly, the works in [15–17] used ontology-based semantic 
techniques for access control in multidomain collaboration scenarios. In [18], a fine-
grained role-attribute access control is proposed combining the benefits of RBAC and 
attribute-based access control (ABAC). A domain-based RBAC model and architecture 
[19] is proposed for the adaptability of multidomain security requirements. The work in 
[20] presented a dynamic role-based access control in multidomain environments by 
utilizing context-based usage control access policies. 

The literature reviewed for access control in multidomain collaboration showed that 
automated business role mining for access control in multidomain collaboration is an 
open research area. Table 1 summarizes several aspects of the above-mentioned existing 
work for access control in multidomain collaboration in order to highlight their 
limitations, and also gives a comparison with our proposed I-RBAC model. 

Table 1. Comparison of our I-RBAC model with existing extended RBAC models for multi-domain collaboration. 

Ref. 
Role 

Hierarchy Attributes 
Semantic 

Techniques and 
Technology 

Machine 
Learning 

Techniques 
Business Roles  

Intelligent 
Agents 

[12]       
[13]       
[14]       
[15]      

[16]       
[17]       
[18]       
[19]      

[20]       
Our Model       

3.2. Semantic Role Mining in Domain-Specific RBAC 
Many role mining algorithms were proposed in domain-specific RBAC systems but 

few of them deal with business meaning. A role mining technique was proposed in [21] 
that derived roles based upon weights that were already associated with permissions as 
per their importance. Similarly, role mining algorithms were also proposed in [22] by 
optimizing policy quality metrics considering some primitive metrics, such as policy size 
and role interpretability, or compound metrics, which consist of both of these factors. 
Some role mining algorithms [23,24] were proposed that were based on machine-learning 
models, such as LDA and ATM. The generative RBAC models produced through these 
algorithms helped to resolve certain issues, for example, anomaly detection, identification 
of policy errors and policy reconciliation. These algorithms considered user attributes and 
their entitlements. Several semantic role mining approaches [9–11,25,26] were also 
proposed that created meaningful roles from a business point of view. These approaches 
used available business information in order to produce such roles. The authors of [27] 
conducted semantic role mining by handling dynamic access control policies in workflow 
systems particular to the healthcare domain. A genetic algorithm-based approach was 
proposed by [28] for solving the role mining problem in RBAC. 
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3.2. Semantic Role Mining in Domain-Specific RBAC 
Many role mining algorithms were proposed in domain-specific RBAC systems but 

few of them deal with business meaning. A role mining technique was proposed in [21] 
that derived roles based upon weights that were already associated with permissions as 
per their importance. Similarly, role mining algorithms were also proposed in [22] by 
optimizing policy quality metrics considering some primitive metrics, such as policy size 
and role interpretability, or compound metrics, which consist of both of these factors. 
Some role mining algorithms [23,24] were proposed that were based on machine-learning 
models, such as LDA and ATM. The generative RBAC models produced through these 
algorithms helped to resolve certain issues, for example, anomaly detection, identification 
of policy errors and policy reconciliation. These algorithms considered user attributes and 
their entitlements. Several semantic role mining approaches [9–11,25,26] were also 
proposed that created meaningful roles from a business point of view. These approaches 
used available business information in order to produce such roles. The authors of [27] 
conducted semantic role mining by handling dynamic access control policies in workflow 
systems particular to the healthcare domain. A genetic algorithm-based approach was 
proposed by [28] for solving the role mining problem in RBAC. 
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3.2. Semantic Role Mining in Domain-Specific RBAC 
Many role mining algorithms were proposed in domain-specific RBAC systems but 

few of them deal with business meaning. A role mining technique was proposed in [21] 
that derived roles based upon weights that were already associated with permissions as 
per their importance. Similarly, role mining algorithms were also proposed in [22] by 
optimizing policy quality metrics considering some primitive metrics, such as policy size 
and role interpretability, or compound metrics, which consist of both of these factors. 
Some role mining algorithms [23,24] were proposed that were based on machine-learning 
models, such as LDA and ATM. The generative RBAC models produced through these 
algorithms helped to resolve certain issues, for example, anomaly detection, identification 
of policy errors and policy reconciliation. These algorithms considered user attributes and 
their entitlements. Several semantic role mining approaches [9–11,25,26] were also 
proposed that created meaningful roles from a business point of view. These approaches 
used available business information in order to produce such roles. The authors of [27] 
conducted semantic role mining by handling dynamic access control policies in workflow 
systems particular to the healthcare domain. A genetic algorithm-based approach was 
proposed by [28] for solving the role mining problem in RBAC. 
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3.2. Semantic Role Mining in Domain-Specific RBAC 
Many role mining algorithms were proposed in domain-specific RBAC systems but 

few of them deal with business meaning. A role mining technique was proposed in [21] 
that derived roles based upon weights that were already associated with permissions as 
per their importance. Similarly, role mining algorithms were also proposed in [22] by 
optimizing policy quality metrics considering some primitive metrics, such as policy size 
and role interpretability, or compound metrics, which consist of both of these factors. 
Some role mining algorithms [23,24] were proposed that were based on machine-learning 
models, such as LDA and ATM. The generative RBAC models produced through these 
algorithms helped to resolve certain issues, for example, anomaly detection, identification 
of policy errors and policy reconciliation. These algorithms considered user attributes and 
their entitlements. Several semantic role mining approaches [9–11,25,26] were also 
proposed that created meaningful roles from a business point of view. These approaches 
used available business information in order to produce such roles. The authors of [27] 
conducted semantic role mining by handling dynamic access control policies in workflow 
systems particular to the healthcare domain. A genetic algorithm-based approach was 
proposed by [28] for solving the role mining problem in RBAC. 
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3.2. Semantic Role Mining in Domain-Specific RBAC 
Many role mining algorithms were proposed in domain-specific RBAC systems but 

few of them deal with business meaning. A role mining technique was proposed in [21] 
that derived roles based upon weights that were already associated with permissions as 
per their importance. Similarly, role mining algorithms were also proposed in [22] by 
optimizing policy quality metrics considering some primitive metrics, such as policy size 
and role interpretability, or compound metrics, which consist of both of these factors. 
Some role mining algorithms [23,24] were proposed that were based on machine-learning 
models, such as LDA and ATM. The generative RBAC models produced through these 
algorithms helped to resolve certain issues, for example, anomaly detection, identification 
of policy errors and policy reconciliation. These algorithms considered user attributes and 
their entitlements. Several semantic role mining approaches [9–11,25,26] were also 
proposed that created meaningful roles from a business point of view. These approaches 
used available business information in order to produce such roles. The authors of [27] 
conducted semantic role mining by handling dynamic access control policies in workflow 
systems particular to the healthcare domain. A genetic algorithm-based approach was 
proposed by [28] for solving the role mining problem in RBAC. 
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Many role mining algorithms were proposed in domain-specific RBAC systems but
few of them deal with business meaning. A role mining technique was proposed in [21]
that derived roles based upon weights that were already associated with permissions
as per their importance. Similarly, role mining algorithms were also proposed in [22]
by optimizing policy quality metrics considering some primitive metrics, such as policy
size and role interpretability, or compound metrics, which consist of both of these factors.
Some role mining algorithms [23,24] were proposed that were based on machine-learning
models, such as LDA and ATM. The generative RBAC models produced through these
algorithms helped to resolve certain issues, for example, anomaly detection, identification
of policy errors and policy reconciliation. These algorithms considered user attributes
and their entitlements. Several semantic role mining approaches [9–11,25,26] were also
proposed that created meaningful roles from a business point of view. These approaches
used available business information in order to produce such roles. The authors of [27]
conducted semantic role mining by handling dynamic access control policies in workflow
systems particular to the healthcare domain. A genetic algorithm-based approach was
proposed by [28] for solving the role mining problem in RBAC.

3.3. Automated Ontology Derivation from Text

Ontology derivation from text is proposed, by many researchers, using the LSTM
deep neural network. The technique proposed by [29] used LSTM to create RDF schema
from simple text using DBpedia ontology. In [30], LSTM was again used to create on-
tology for the physics domain by converting the text of a physics book. The research
in [31] used bidirectional LSTM for proper word choice, based on its sentential context, in
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a domain-specific scientific writing task as well as a general-purpose writing task. In [32],
stock market trend classification is conducted through text data by using LSTM, which
automatically populates ontologies from text data of the stock market.

3.4. Ontology Matching and Alignment

In [33], ontology matching techniques are categorized as classical and advanced
techniques. Both of these techniques have been already applied in multiple applications
including e-learning [34], natural language processing [35], biomedical data [36], etc.
Classical techniques, such as those described in [35–37], employ old matching mechanisms
to perform ontology matching based on prior results. Such techniques are unable to
deal with a large number of data properties (i.e., large-scale data) and are less efficient in
accuracy but have the advantage of less time consumption. Advanced techniques such as
those described in [38,39] employ advanced algorithms, for example, hybrid evolutionary
algorithms. Such techniques are complex and more time consuming but have greater
accuracy and work better on large scale data.

3.5. Agents Used in RBAC

To the best of our knowledge, no work has been found in the literature that used
intelligent agents in any extended RBAC model for multidomain collaboration. However,
a few research works found where agents were used for domain-specific RBAC applications.
The research conducted in [40] proposed a method for role assignment to mobile agents for
distributed environments. They proposed a simple public key infrastructure with RBAC for
trust management. A multi-agent system was proposed by [41] to access distributed health
care data using middle facilitator agent. The main contribution of [42] was to guarantee
a secure communication channel between health institutions by means of a strong access
control for mobile agents. The work of [43] proposed ontology for task representation to
enhance agent coordination and collaboration through reasoning over tasks. An approach
based on agent coordination context was proposed in [44] for RBAC-MAS infrastructure.
Dynamic role adaptation by the mobile agent was proposed in [45], introducing adaptive
mobile agents for fault tolerance in the running system.

4. Proposed Methodology of Semantic Role Mining

Our semantic role mining methodology consists of following three modules:

1. Automated population of organizational ontology from policy text;
2. Matching organizational ontology with core I-RBAC ontology;
3. Ontology-based semantic role mining through intelligent agents.

4.1. Policy Text to Ontology Derivation

The recent successes of neural language machine translations used by [29–32,46] con-
vinced us to use Word Embedding (Word2Vec) and LSTM for the solution of our problem
of converting textual policies into structural knowledge. The automated population of
organizational ontology and its matching is shown in Figure 2.

First, organizational textual policy is preprocessed through POS (Part-of-Speech)
tagging using the “CoreNLP API”, then word sense disambiguation is performed on this
text using Wordnet 3.0, which is a lexical database of words, and it contains semantic
relations between words. Word embedding is also performed on POS tagged text using
the Word2Vec technique. Here, cosine similarity is measured among all words and their
synonyms. After that, the output is fed to bi-directional LSTM (Bi-LSTM) [47] for extracting
structured knowledge in the form of triples (subject, predicate, object). The reason for
choosing Bi-LSTM is that it outperforms other models in such problems as it uses two
LSTMs that increase the information to network about each sentential word’s context. It
helps in finding the context of each word more effectively by knowing the words that
immediately follow and precede it in the sentence. Figure 2 illustrates the whole process of
automated population of organizational ontology from policy text.
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Initially, we made our core I-RBAC ontology in Protégé. This ontology is made
through real-world semantic business roles whose task description is taken from the
Standard Occupational Classification (SOC), USA [8]. In addition to describing the tasks
by each occupational role, this dataset also provides the hierarchical relationships among
roles which make it ideal for building ontology from this textual description.

Later in the process, we trained a bidirectional LSTM deep neural network with the
help of our core I-RBAC ontology’s concepts and word embedded vectors of corresponding
textual description in a SOC dataset of around 1400 business roles from nearly all domains.
The dataset is split into an 80/20 (train/test) data ratio.

In addition to roles and tasks, we also added general concepts of resources (objects),
permissions, policies, agents and actions. This ontology also describes the interrelations
among these entities and concepts. One of the snapshots of a part of our core I-RBAC
ontology is shown in Figure 3.

Our bidirectional LSTM has 128 hidden layers. It is trained through our core I-RBAC
ontology and textual data in the form of sentences. The textual data of the SOC list describes
real world business roles, including their tasks and the hierarchical relationships among
them. During training, the Bi-LSTM learned the sentential context of roles in the provided
text and mapped textual descriptions with corresponding concepts provided through core
I-RBAC ontology. First, the textual description is passed on to Word2Vec, which embeds
words in vector form and, later on, those vectors are passed to Bi-LSTM as input, whereas
the corresponding business role and its hierarchical relationships with other roles and
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objects are also passed to Bi-LSTM for training purposes. Such information is obtained from
core I-RBAC ontology. Our Bi-LSTM worked best with the Adam Optimizer, with training
parameters as given in Table 2. It attains an accuracy of around 83% in 200 epochs. The
performance of the Bi-LSTM model is explained through Figure 4 with the help obtained
graphs of accuracy and error loss along with increasing epochs.
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Table 2. Hyperparameter values for training of our Bi-LSTM.

Parameter Value

No. of layers 128

No. of neurons in LSTM layer 100

Dropout rate 0.2

Batch size 64

No. of epochs (for minimum loss error) 200

Initial learning rate 0.005

Optimization Method ADAM
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The encoder–decoder functionality in our Bi-LSTM works best for identifying the
triples because Bi-LSTM is capable of remembering past and future observations and,
hence, remembering fine sentential context for concepts present in the text. The accuracy
of extracted RDF triples subsequently enhances accuracy for identifying correct semantic
roles from the dynamically available policy text. This bidirectional LSTM consists of two
different LSTMs, forward and backward: one for encoding the input into embedded vector
and the other for decoding the embedded vector to an output sequence. This model helps
in preserving information both from previous and subsequent sequential contexts. In
addition, such encoder–decoder architecture is useful in scenarios, like ours’, where the
lengths of input and output sequences are not equal. Moreover, as our task is to label each
word with subject/object/predicate tag so it is the best choice for our problem. Figure 5
shows this encoder–decoder functionality of our bidirectional LSTM.
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Each LSTM network uses multiple sigmoid gates that control the information flow
within the model. Our model also employed layer normalization (i.e., Lnorm) to prevent
neurons from saturation via keeping their inputs centered. This is achieved by calculating
the mean and standard deviation of the inputs and normalizing them accordingly at each
time step. The complete LSTM equations that computed at each time instance t can be
represented as follows.

i(t) = σ[Lnorm(Wix X(t);αi,βi+Lnorm(Wih O(t− 1); αi, βi)] (18)

F(t) = σ[Lnorm(WFx X(t);αF,βF+Lnorm(WFh O(t− 1); αF, βF)] (19)

g(t) = tan h[Lnorm(Wgx X(t);αg,βg+Lnorm

(
Wgh O(t− 1); αg, βg)

]
(20)

ρ(t) = σ[Lnorm(Wρx X(t);αρ,βρ+Lnorm

(
Wρh O(t− 1); αρ, βρ)

]
(21)

where input i(t) is the input gate, F(t) is forget gate, g(t) is modulation gate and σ is
the function, whose output within interval [0, 1], helps in remembering or forgetting as
its 0 value will cause complete forgetting and its 1 value will cause complete retention
of the information. Hence, with the help of this σ function, the forget gate F(t) filters
the current information in the cell state. We have not included bias in all four gates (i.e.,
Equations (18)–(21) because we have already used layer normalization. Finally, with the
help of Equations (22) and (23), the output of each LSTM layer at time step t (i.e., O(t)) is
calculated as:

s(t) = g(t)~ i(t) + s(t− 1)~ F(t) (22)
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O(t) = tanh[Lnorm(s(t);αs,βs]~ ρ(t) (23)

where ~ denotes element-wise multiplication, W*x represents input weight matrices, W*h
represents recurrent weight matrices and α∗, β∗, are trainable vectors used to fit the output
distribution in order to normalize layers. Moreover, tanh is the hyperbolic tangent function,
σ is the sigmoid function, and Lnorm is the layer normalization function. These three
functions are represented by Equations (24)–(26), respectively.

tanh(x) =
ex−e−x

ex+e−x (24)

σ(x) =
1

1+e−x (25)

Lnorm(z; α, β) =
z− µ

σ
⊗ α + β (26)

where, the sybmol µ in Equation (26) represents the mean value. The output gate O passes
information to the next hidden states and hence, at each time step t, each hidden layer’s
input i.e., i(t) gets the previous layer’s output, i.e., O(t− 1). The encoder and decoder LSTM
networks shown above in Figure 5 are used to extract the features; the encoder identifies
the general features and the decoder identifies the more specific features. For example,
the encoder finds the word CEO and File as nouns in the encoder layer and distinguishes
them as Subject and Object in the decoder layer. The output of the encoder-LSTM is fed to
the decoder-LSTM and then this output is passed through the distributed softmax layer
that calculates the raw output as probabilities. Then, the model is trained through the
cross-entropy loss function that measures the divergence of probability estimates (output of
softmax layer with respect to the true labels). The final output of our trained bidirectional
LSTM is RDF schema in the form of set of triples (subject, predicate and object) from
dynamically loaded organizational policy text. The algorithm of triple extraction from
LSTM is given as Algorithm 1.

Algorithm 1: Triple Extraction.

1: Input: policy text corpus (CPT)
2: Output: RDF
3: begin
4: load (text, onto)
5: cleantxt = preprocess(txt)
6: cleanOnto = preprocess(onto)
7: textDictionary = Word2Vec(cleantxt)
8: ontoDictionary = Word2Vec(cleanOnto)
9: encoder LSTM (sequenceClassifier)
10: decoder LSTM (sequenceClassifer)
11: new_rules{ } = infer(data);
12: end

4.2. Ontology Matching

After extraction of the organizational schema (i.e., RDF) by LSTM, this schema au-
tomatically populates the organizational ontology, which will be further matched with
core I-RBAC ontology in order to extract unified business roles through agents. Therefore,
ontology matching and mapping are very important tasks during the semantic role mining
process. Sometimes, the ontology matching term is alternatively used as semantic matching,
which refers to computing relationships between the nodes of two different graphs.

To find the equivalence between two ontologies, there is a need to understand the
semantics of relations between concepts of those two ontologies. The equivalence relations
are synonym relationships showing semantic similarity between two concepts. It is a binary
relation between two terms. Two terms may be syntactically equal; however, their semantic
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equality depends upon the context in which they are used. For example, there are different
roles named “manager” either in a bank or in any other company. The term “manager”
refers to a role in an access control policy scenario, but, to identify its equivalence with
some role in I-RBAC, it is necessary to find its semantic equivalence based upon its tasks.

In distributed heterogeneous systems, there is a need for automation in order to ensure
effective interoperability. Therefore, we proposed a multi-agent based ontology mapping
technique to achieve dynamicity, adaptability and scalability in our I-RBAC framework.
We have used word embedding equivalence, which finds semantic similarity between
two concepts and, in our approach, one-to-one cosine similarity (given in Equation (27))
is measured for all pairs of concepts, whereas, in that pair, the one concept is taken from
the first ontology and the other concept is taken from the second ontology. The ontology
matching paradigm is visually illustrated in Figure 6.

cos(a, b) =
a.b
|a| |b| (27)
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Another task is to find semantic similarity among object properties (relations). It
is relatively difficult because there may be combinations of different words with some
prefixes, such as is-a, has-a, etc. Thus, the core concept is considered in this case and tries to
find the first verb by applying POS tagging using CoreNLP API and, at the end, synonyms
are found from WordNet and Jaccard similarity (given in Equation(28)), which is calculated
to find the semantic similarity between two object properties.

jaccardSim(s, t) =
s ∩ t
s ∩ t

(28)
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4.3. Semantic Role Mining

The core I-RBAC ontology is the backbone of the whole I-RBAC model as well as being
of utmost importance in the semantic role mining process through agents. A snapshot of the
partial core I-RBAC ontology is shown in Figure 3. The basic components of this ontology
are roles, task, objects and permissions. Roles are the owners of the resources, objects
are resources, and permissions are access rules to perform certain actions on a specified
resource to accomplish a given task. The following tuple represents the general form of the
access rule.

AccessRule ≡< Ri, Tj, Ok, Pr > (29)

where Ri is the target role, Tj represents the task to be performed, Ok represents a certain
resource (object) to be accessed and Pr is the type of permission (e.g., read, write etc.)
along with the states of the permissions. The interrelations among all these concepts
determine the role of the user. In our I-RBAC architecture, semantic business roles are
mined through JADE agents. These agents are capable of understanding ontology and
ontological information is stored and communicated among agents in the form of java
objects. For communication among agents, our I-RBAC architecture used FIPA-ACL, which
provides a common language (sharing common vocabulary) for communication among
agents. Our utilized Jena framework provides support for RDF and OWL, and it proved
best in mining roles through the Jena Inference Engine (JIE) or Pellet reasoner. JIE also
supports ontology population through additional RDF assertions based upon certain SWRL
rules. Finally, the Jena reasoner leads the semantic role mining agent to infer business roles
from the knowledge graph with the maximum number of permissions based upon SWRL
rules and SPARQL queries. This whole mechanism is described below in Algorithm 2.

Algorithm 2: Semantic Role Mining.

1: Input: rdf_graph, pre_rules{ }, environment E
2: Output: R={t{ }p{ }, rdf_graph
3: begin
4: model M=loadOnto (rdf_graph)
5: while (!EOM) do
6: concepts{ } = M.retrieveClass( )

resources{ } = M.retrieveDataProperty( )
relations{ } = M.retreivePredicate( )

7: end while
8: data{{},{},{}} = combine (concept, resources, relations)
9: new_rules{ } = infer (data)
10: agent_onto = learn (pre_rules{ }+ new_rules{ })
11: updated_rule = infer (agent-onto)
12: rdf-graph = construct (updated_rule, concepts{ }, resources{ }, relations{ })
13: role = getRole (agent-onto)
14: user = setRole (t{ }, p{ })
15: return rdf-graph
16: end

5. Agent-Based Implementation

As already described above, the I-RBAC framework uses a multi-agent paradigm for
implementation of the whole role mining process. Such implementation helps to mine
meaningful business roles in an automated way and is also applicable in highly dynamic
collaborative environments consisting of organizations from heterogeneous/multiple do-
mains. Hence, our implementation achieves the goals of dynamicity, adaptability and
scalability in such environments.

Software agents are autonomous in classifying, analyzing and searching knowledge
from various sources. As stated above, the knowledge is stored in the form of ontologies in
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the I-RBAC framework. Agents utilize this knowledge to fulfill their responsibilities. The
multi-agent paradigm for role assignment is shown in Figure 7.
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It consists of the “Admin”, who is responsible for fetching the organizational text policy
from the organizational repository and, finally, assigning roles to users (at the end of the
role mining process); the “RoleDecider” agent is responsible for deciding roles based upon
the information it retrieved; the “InformationInterpreter” agent is responsible for inferring
rules in order to mine roles; and the “InformationFinder” agent is responsible for searching
knowledge from several ontologies. This multi agent paradigm is implemented through
JADE agents and agents communicate through FIPA-ACL, which functions as a common
language among them. Our utilized JENA framework provides enough support to search,
retrieve or augment knowledge in ontologies that are utilized by the “InformationFinder”
agent. Lastly, the “InformationInterpreter” and “RoleDecider” agents use the Jena Inference
Engine (JIE)/Pellet reasoner for reasoning, inferring and deciding the best possible business
role for the user.

6. Results and Discussion

The multi agent simulations of I-RBAC architecture are implemented on a standard
desktop PC with an Intel core i3-6100 CPU, NVIDIA GeForce GTX-1070 GPU, 16 GB RAM
and 1TB hard disk. This system has a 64-bit Windows10 operating system. All simulations
are performed in the Eclipse IDE for the Java Development Environment (JADE, JENA with
Alignment API, Neo4J database). The Protégé environment is used for ontology modeling.
The SOC [8] dataset of task description is used for the construction of I-RBAC ontology.
Evaluation results are obtained by providing different organizations’ policy texts. The
SPARQL query language is used to run different queries. The performance is based on the
OntoClean [48] recommendations, i.e., consistency and completeness of ontologies. The
consistency and completeness of the ontologies are evaluated using Pellet and the JENA
Inference Engine (JIE). Pellet and JIE, alone as well in combination, were used for reasoning
on ontology knowledge using pre-defined SWRL rules.

The experiments were run through simulating collaborative case scenarios of informa-
tion sharing among five organizations belonging to three different domains (two Universities,
two Banks and a Taxation department). Overall, 113 roles were created from these organi-
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zations. The same user could be assigned different roles at different stages depending on
collaborative tasks at that particular time, and his/her organizational policy text defining
tasks and permissions for each role. One of the collaboration scenarios is illustrated in
Figure 8. For example, in this illustrated scenario, a Tax Calculating Officer (TCO) has
an account in the Bank and his children are in the University, and he also has a tax account
in the taxation office where he works. So, this person wanted access to different resources
at different time intervals and he was assigned different roles as per predefined rules and
structured knowledge stored in ontologies.
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Figure 8. Collaborative environment used in experimental scenarios.

We created 175 different collaboration case scenarios among 113 possible semantic
business roles in the above-mentioned five organizations. The participating organizations
shared their text policies defining tasks and permissions for business roles. These text
policies were given to our trained Bi-LSTM, which returned structured knowledge as triples
(subject, predicate, object). There was a total of 9238 returned triples. The correctness of
each entity (i.e., subject, predicate, and object) in every triple is checked, and the number
of actual and Bi-LSTM predicted entities are recorded in the confusion matrix given in
Figure 9 and their accuracies are illustrated in Figure 10.
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Furthermore, there were 7963 triples (out of 9238 returned triples) where all three entities
(i.e., subject, predicate and object) were accurately predicted. This gives an overall predic-
tion accuracy of 86.2% for Bi-LSTM returned triples.

In each collaborative scenario, different access control requests were made by users. In
total, 3260 access control requests were made for role assignment. Collaboration scenarios
are designed in a way that concurrent access control requests are gradually increased
from 5 to 70 and the average response time of system, for assigning roles, is recorded.
It was observed that our system responded within 2 s for a maximum of 70 concurrent
access control requests, as illustrated in Figure 11. Hence, it proves the high scalability of
our system.
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Figure 11. System response time in assigning roles for concurrent access control requests.

For every access control request, the verification of results is performed in order to
measure the correctness of the semantic role mining process. The correctness is measured
in terms of the true identification of roles. This measurement is represented through
a confusion matrix given in Figure 12. In this confusion matrix, each Ri.j represents the
number of predictions of role as Ri, whereas it was actually Rj.
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The three metrics used are precision, Recall and F1 measure. Precision tells us how
sure we are about the roles of our identified “true positives”, and recall gives us an idea
of how sure we are about not missing any positives. The F1 measure gives the harmonic
mean of precision and recall. All these three metrices are calculated for each role as follows:

Precision of Ri (i.e., PRi) =
Ri.i

∑TR
j=1 Ri.j

(30)

where TR represents Total no. of Roles (which is 113 in our case)

Recall of Ri (i.e., RRi) =
Ri.i

∑TR
j=1 Rj.i

(31)

F1 of Ri(i.e., F1Ri) =
2∗ PRi∗ RRi

(PRi + RRi)
(32)

Their average scores are calculated as follows:

Average Precision (i.e., AP) =
∑TR

i=1 PRi

TR
(33)

Average Recall (i.e., AR) =
∑TR

i=1 RRi

TR
(34)

Average F1 (i.e., AF1) =
∑TR

i=1 F1Ri

TR
(35)

Since the 3260 access control requests do not include a balanced number of actual
roles and predicted (mined) roles so the best metric to calculate is the “weighted average”
for all three metrices, which are calculated as follows:

Weighted Average Precision (i.e., WAP) =
∑TR

i=1

((
∑TR

j=1 Rj.i

)
∗PRi

)
TACR

(36)

where TACR represents Total no. of Access Control Requests (which is 3260 here)

Weighted Average Recall (i.e., WAR) =
∑TR

i=1

((
∑TR

j=1 Rj.i

)
∗RRi

)
TACR

(37)

Weighted Average F1 (i.e., WAF1) =
∑TR

i=1

((
∑TR

j=1 Rj.i

)
∗F1Ri

)
TACR

(38)

Average and weighted average results for precision, recall and F1 are shared in
Tables 3 and 4 and are graphically illustrated in Figures 13 and 14, respectively.

Table 3. Predicted roles evaluation (average values for precision, recall and F1).

Reasoner Average Precision Average Recall Average F1

Pellet 0.775 0.775 0.772

Jena (JIE) 0.768 0.767 0.764

Pellet + Jena (JIE) 0.811 0.81 0.808
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Table 4. Predicted roles evaluation (weighted average values for precision, recall and F1).

Reasoner Weighted Average
Precision

Weighted Average
Recall Weighted Average F1

Pellet 0.777 0.769 0.769

Jena (JIE) 0.77 0.761 0.762

Pellet + Jena (JIE) 0.813 0.806 0.806
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The obtained results show good accuracy of mined roles as well as reasonable system
response time in assigning roles while handling a sufficient number of concurrent access
control requests. Hence, overall, it proved the effectiveness and scalability of our method-
ology as the first attempt at automated business role mining for access control in dynamic
multidomain collaborative applications.

7. Conclusions and Future Work

In this paper, a novel agent-based semantic role mining approach is proposed that
is workable in highly dynamic multi-domain collaborative scenarios of smart cities and
discovers roles with business semantics. Its implementation involves automatic derivation
of organizational ontology from its policy text with the help of a bi-directional LSTM that
is already trained through our core I-RBAC ontology of real-world semantic business roles,
whereas the core ontology was built based upon the tasks descriptions of business roles
as per Standard Occupational Classification (SOC) system [8]. The proposed approach
achieves the ideal goals of dynamicity, adaptability and scalability as it is adaptable to
new organizational policies as well as being able to mine business roles in highly dynamic
multi-domain collaborative environments. The promising experimentation results were
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obtained regarding accuracy of automated derived RDF triples (Subject, Predicate, Object)
from text policies as well as predicted semantic business roles for users.

In the future, we intend to implement and test this model on further large-scale practi-
cal scenarios and for more access control requests. Moreover, the Standard Occupational
Classification (SOC) system covers around 1400 business roles at the moment and these
roles may increase in future; resulting more fine-tuned core I-RBAC ontology which will
ultimately increase the accuracy of automatically mined semantic business roles.
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