
sensors

Article

Validation of Architecture Effectiveness for the Continuous
Monitoring of File Integrity Stored in the Cloud Using
Blockchain and Smart Contracts

Alexandre Pinheiro 1,*,† , Edna Dias Canedo 2,† , Robson de Oliveira Albuquerque 1,†

and Rafael Timóteo de Sousa Júnior 1,†

����������
�������

Citation: Pinheiro, A.; Canedo, E.D.;

Albuquerque, R.d.O.; de Sousa Júnior,

R.T. Validation of Architecture

Effectiveness for the Continuous

Monitoring of File Integrity Stored in

the Cloud Using Blockchain and

Smart Contracts. Sensors 2021, 21,

4440. https://doi.org/10.3390/

s21134440

Academic Editor: Juan M. Corchado

Received: 25 April 2021

Accepted: 14 June 2021

Published: 29 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Electrical Engineering Department, National Science and Technology Institute on Cybersecurity,
University of Brasília (UnB), P.O. Box 4466, Brasília 70910-900, Brazil; robson@redes.unb.br (R.d.O.A.);
desousa@unb.br (R.T.d.S.J.)

2 Department of Computer Science, University of Brasília (UnB), P.O. Box 4466, Brasília 70910-900, Brazil;
ednacanedo@unb.br

* Correspondence: alexandre.pinheiro@redes.unb.br
† The authors contributed equally to this work.

Abstract: The management practicality and economy offered by the various technological solutions
based on cloud computing have attracted many organizations, which have chosen to migrate services
to the cloud, despite the numerous challenges arising from this migration. Cloud storage services are
emerging as a relevant solution to meet the legal requirements of maintaining custody of electronic
documents for long periods. However, the possibility of losses and the consequent financial damage
require the permanent monitoring of this information. In a previous work named “Monitoring File
Integrity Using Blockchain and Smart Contracts”, the authors proposed an architecture based on
blockchain, smart contract, and computational trust technologies that allows the periodic monitoring
of the integrity of files stored in the cloud. However, the experiments carried out in the initial
studies that validated the architecture included only small- and medium-sized files. As such, this
paper presents a validation of the architecture to determine its effectiveness and efficiency when
storing large files for long periods. The article provides an improved and detailed description of
the proposed processes, followed by a security analysis of the architecture. The results of both the
validation experiments and the implemented defense mechanism analysis confirm the security and
the efficiency of the architecture in identifying corrupted files, regardless of file size and storage time.

Keywords: blockchain; cloud computing; data security; smart contracts; trust

1. Introduction

The large-scale adoption of electronic document management systems (EDMSs) in
public administration agencies and private companies has replaced the elaboration and
processing of documents in a physical medium (paper) with exclusively electronic doc-
uments. Currently, most countries have enacted laws that support the use of electronic
documents, such as [1] in Brazil and [2] in the United States of America, making them
legally equivalent to manually signed documents.

As a result, legislation such as [3] in Brazil and [4] in the United Kingdom, whose
function is to delimit the validity, temporality, and confidentiality classification, also applies
to electronic documents. Temporality, a characteristic that determines the minimum docu-
ment storage and preservation time, may range from 1 to more than 30 years, depending
on the country and the nature and content of the document.

Once a document is processed, the need to access it is rare, especially more than a year
after it is filed. Depending on the flow of documents processed in an organization, the size
of the backup copies of documents for a period of one year can easily exceed ten gigabytes.

Sensors 2021, 21, 4440. https://doi.org/10.3390/s21134440 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-9919-5001
https://orcid.org/0000-0002-2159-339X
https://orcid.org/0000-0002-6717-3374
https://orcid.org/0000-0003-1101-3029
https://doi.org/10.3390/s21134440
https://doi.org/10.3390/s21134440
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21134440
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21134440?type=check_update&version=1

Sensors 2021, 21, 4440 2 of 35

Cloud computing, with its emphasis on storage services, presents as an economical
and easy-to-manage solution for storing data for long periods as required by legislation
regarding electronic documents. However, the outsourcing of storage services faces the
risk of the stored data being leaked, corrupted, or simply deleted by the service provider.

The monitoring of the integrity of files stored in the cloud has been the subject of several
studies [5–9], which adopted different mechanisms and technologies. Pinheiro et al. [10] pre-
sented a protocol designed for the periodic monitoring of the integrity of large stored files based
on computational trust and symmetric cryptography. Aiming to enhance the referred protocol,
improve its efficiency, and increase its security mechanisms, Pinheiro et al. [11] proposed a new
architecture that upgraded the protocol proposed in the previous research integrating it with
a solution based on blockchain and smart contracts technologies. Notably, this architecture
was designed to allow its integration with proprietary solutions adopted by the main cloud
service providers (CSPs), such as Google Cloud [12], AWS [13], and Azure [14]. As can be seen
in the CSP application proposal presented in [11], among the characteristics that facilitate its
integration, we highlight that the architecture requires only well-known software components
and privileges processes whose communication between participants is asynchronous.

Based on the above, this paper presents a detailed step-by-step description of the
process that composes the architecture proposed in [11]; a security analysis; and a validation
of the applicability, effectiveness, and efficiency of this architecture when applied to the
monitoring of the integrity of large files stored in the cloud for long periods.

2. Background

This section presents a brief description of important concepts and technologies
adopted in this research study, such as distributed ledger technology, blockchain, smart
contracts, and the solidity programming language.

2.1. Distributed Ledger Technology

Ledgers have always been the core of commerce, being used to record many things,
mainly assets such as money and properties. Information was initially recorded on clay
tablets, evolving to papyrus and parchment, then to paper, from where it moved to the
computing environment in the form of bytes [15]. According to Hill et al. [16], a ledger is
a record of economic transactions that includes, amongst other things, money, accounts
receivable, inventories, permanent assets, accounts payable, accumulated expenses, debts,
capital holdings, equity, revenue, costs, wages, and depreciation; in other words, it is the
book in which all accounts are recorded and maintained.

A distributed ledger is essentially an asset database that can be shared through a
composite network of multiple sites, countries, or institutions, in which an identical copy
of a ledger is maintained, and any change is reflected in all copies in a few minutes, or
even seconds [15]. Moreover, by assuming the existence of malicious nodes, distributed
ledgers require the application of a consensus mechanism to withstand Byzantine failures
such as incorrect data storage, whose distributed execution across nodes provides multiple
points of authenticity for each transaction that has occurred. The consensus mechanisms
are designed to negotiate and reach an agreement about the state of the replicated data
stored in each node [17].

According to Lange et al. [18], distributed ledger technology (DLT) is the designation
for a database type that is shared through a point-to-point network; whose transaction
data are synchronized between network nodes, stored immutably, and protected using
cryptographic techniques; and where decisions in the network are managed by consensus
algorithms. In Fernando and Ranasinghe [19], a DLT network was described as a collection
of interconnected nodes, where each node maintains a copy of the database, called a ledger.

2.2. Blockchain

According to Maull et al. [20], blockchain technology is a particular type of DLT.
In Lange et al. [18], blockchain was described as a distributed, chronological, immutable,

Sensors 2021, 21, 4440 3 of 35

and synchronized ledger shared over a point-to-point network; based on transactions that
are individually executed and recorded using consensus algorithms; and finally grouped
and stored in sets of transactions called blocks, interconnected with each other through
cryptographic techniques. In another definition, Walport [15] described blockchain as a
type of database in which a set of records are inserted into a block that is chained with
the next block using a cryptographic signature, which can be shared and corroborated by
anyone who has the appropriate permission.

According to Ølnes et al. [21], blockchain technology has the following characteristics:
the same information is stored in different network nodes forming a distributed ledger; new
data are included only when the nodes reach a consensus, preventing any removal after
inserted, allowing each node to track its history. These characteristics reduce the depen-
dence on a central actor, the chance of manipulation, and the risk of system failures since
all nodes have a complete set of information. According to Alharby and van Moorsel [22],
blockchain technology allows transactions to be completed directly between the parties,
without the need for intervention by a trusted third party, and once a new block is inserted
into the blockchain, transactions registered in this block cannot be changed or reversed.

Blockchain technology allows two or more entities, whether they have a previous
relationship of trust or not, to safely exchange values over the internet, without the need for
the participation of a third party [23]. In practice, blockchain technology does not eliminate
the need for trust but minimizes it and distributes it evenly over the network [16].

2.3. Smart Contracts

Smart contracts are digital contracts that are tamper-proof and generally self-enforce
through automated execution [24]. A smart contract is a digital contract that imposes
itself or becomes prohibitively expensive to break [25]. Each smart contract is a computer
program that runs on blockchain in order to enforce the terms of a contract between
untrusted parties [22].

The purpose of a smart contract is to facilitate the exchange of assets, such as goods
and services of any kind, in an automated and conflict-free manner [24]. These assets are
made available to all parties involved or only to certain parties whenever the previously
defined rules are observed [22]. Since blockchain technology can be used as a distributed
state machine without the need for a trusted third party, it provides a wholly suitable
environment to support the execution of smart contracts [25].

A smart contract is developed as a script to be stored within the blockchain and has a
unique access address, whose execution is activated whenever a transaction is assigned to
the respective address. Its execution occurs automatically and independently in each of the
network nodes using the data included in the transaction that triggered as parameters [26].

The behavior of smart contracts is predictable, and each contract operates as an
autonomous actor within the blockchain. Both smart contract installation and execution
are carried out as part of a blockchain transaction [22]. Among the characteristics of smart
contracts, each contract has its own status, it can custody assets on the blockchain in the
same way as users, it must describe all possible results, it must be deterministic (the same
input always produces the same output), and its code can be inspected by any of the
network participants [26].

2.4. Blockchain Platforms

Currently, there are several initiatives to implement blockchain platforms for diverse
purposes, such as: Bitcoin [27,28], Ethereum [29,30], Namecoin [31,32], Multichain [33],
Zcash [34], Monero [35,36], and the Hyperledger Fabric [37,38]. Among the reasons for
these initiatives, we highlight two main obstacles to the adoption of blockchain platforms,
namely high power consumption and the low transaction processing speed.

The efficiency of each platform (processing speed versus power consumption) is
directly related to the adopted consensus mechanism. Platforms such as Bitcoin [27]
and Ethereum [29] adopt the proof-of-work (PoW) consensus mechanism in their public

Sensors 2021, 21, 4440 4 of 35

networks, which is secure but inefficient [17]. Other platforms, such as Hyperledger
Fabric [37], adopt more efficient but less secure consensus mechanisms. For this reason,
these platforms require tighter control over the input and output of network participants, as
well as over which of these participants will or will not participate in the consensus process.

After a preliminary analysis, we chose to detail the Ethereum and Hyperledger Fabric
platforms. The popularity of these platforms [39] and the fact that several blockchain
solution providers highlight them as the most used in the implementation of corporate
solutions [40,41] contributed to this choice. Furthermore, the chosen platforms allowing
the use of smart contracts to control assets with characteristics and operations different
from those traditionally used in cryptocurrency management was key in this decision.

2.4.1. Ethereum

According to Sajana et al. [42], Ethereum is an open platform that allows the construc-
tion and use of decentralized applications that adopt blockchain technology, designed to
be flexible and adaptable, whose focus is the execution of smart contracts (programs) that
move assets, which can each represent the ownership or possession of a good/asset. In
Ethereum networks, miners work to earn cryptographic tokens, “Ether”, which are also
used to pay for performed service fees/transactions.

The core of Ethereum is its virtual machine named Ethereum Virtual Machine (EVM),
which runs on each node in the network and is extremely fault-tolerant. The EVM enables
the decentralized execution of complex algorithms written in a friendly programming
language and is responsible for maintaining consensus on the Ethereum network [42].
These algorithms are high-level abstractions that can be written in a programming language
such as Solidity [43], and are called smart contracts. After the smart contract is compiled
in the form of a bytecode specific to EVM, this bytecode is inserted into the blockchain
network (BN) through a transaction [44].

In Ethereum, the order of transactions is critical to maintaining the consistency of
the ledger, and all participants must reach a consensus on the order of all transactions
that occurred on the network, regardless of whether or not they participated in a partic-
ular transaction. To protect the ledger against fraud attempts such as double-spending,
Ethereum employs consensus mechanisms such as proof-of-work [45].

To avoid problems with abuses of the use of the computational resources of the
network, all programmable calculations in Ethereum are subject to fees, the cost of which
is variable and charged through a computational unit of work called “gas”. To calculate
the fee in Ether (cryptocurrency), the gas system depends on three components: gas usage,
gas price, and gas limit.

Gas usage is the amount of gas consumed in each transaction, which varies according
to the complexity of the method executed in the contract used, the quantity and size of the
input parameters, and the current status of the contract. The gas limit is the maximum
amount of gas that a transaction can consume before being aborted, and the gas price
is the amount in Ether that the transaction requester is willing to pay for each unit of
gas consumed by the transaction, which may or may not arouse the interest of the nodes
responsible for mining new blocks to insert the transaction in the ledger [46].

On the Ethereum public BN, the gas price fluctuates according to the value traded on
the network at the instant each transaction is processed [47]. This feature makes it difficult
to effectively estimate the cost of transactions over time. For this reason, the use of a private
BN for cost optimization purposes should be considered.

2.4.2. Hyperledger Fabric

Hyperledger is a Linux Foundation project that supports collaborative and open-
source distributed ledger solutions based on blockchain. The project’s main objectives are
the improvement in the performance and reliability of these solutions, and the advancement
of collaboration between industries. Among the frameworks hosted by the Hyperledger
project are Fabric, Burrow, Iroha, Sawtooth, and Indy [42].

Sensors 2021, 21, 4440 5 of 35

Androulaki et al. [38] defines Hyperledger as an open-source, modular, and extensible
system for the implementation and operation of licensed blockchain networks. It is an
extensible system that enables distributed applications to run and supports modular
consensus protocols, which can be tailored to particular trust models and use cases. The
system securely records your transaction history through a ledger replicated between the
participating nodes, which accepts only inclusions and has no embedded cryptocurrency.

According to Sajana et al. [42], Hyperledger Fabric is a distributed ledger platform for
the execution of programs called chaincode (smart contracts), with a modular architecture
that delivers a high degree of resilience, confidentiality, and flexibility. A Hyperledger
Fabric network is a licensed network where transactions are private, confidential, and
auditable, and whose participants must be previously registered.

The Hyperledger Fabric introduces a new blockchain architecture to provide resilience,
flexibility, scalability, and confidentiality. Its architecture allows the execution of distributed
applications written in general-purpose programming languages without the systemic
dependence of a native cryptocurrency. In addition, the Fabric architecture separates
the transaction flow into three stages, whose executions can be performed by different
entities: transaction execution and verification of its correctness, ordering of transactions
using a consensus algorithm, and validation of transactions from application-specific trust
assumptions [38].

Obtaining consensus in Hyperledger Fabric is a process that encompasses the transac-
tion flow as a whole, which starts when the transaction is proposed to the network and
completes only when inserted in the ledger. Nodes have different functions and tasks in
the consensus process according to the role they play. These roles are divided into clients,
peers, and orderers. The clients create and invoke the transactions. The peers keep the
ledger and receive messages ordered from the orderers to register new transactions. The
orderers provide the communication channel between the clients and the peers over which
they distribute the messages containing the transactions [45].

2.5. Solidity

Solidity is a high-level, object-oriented programming language designed to implement
smart contracts for the Ethereum platform [43]. Smart contracts developed in Solidity are
compiled and transformed into bytecodes for exclusive execution in Ethereum virtual ma-
chines. The Solidity language provides the tools for smart contracts to exchange messages
with each other, receive and transfer virtual currency (Ether), and to define the fee (amount
of gas) that a contract is willing to pay for processing transactions requested to other smart
contracts [48].

Another resource provided by the Solidity language is the use of events that can be
arbitrarily generated by smart contracts, with each event containing a name, the address of
the source contract, and any number of parameters [49]. The events are recorded in data
structures called transaction logs, which are incorporated into the blockchain. These logs
cannot be accessed by smart contracts, and must be monitored by applications through the
Ethereum client [43].

3. Related Works

This section presents recent research related to the monitoring of the integrity of files
stored in the cloud, and the use of solutions based on blockchain and smart contracts.

3.1. Monitoring the Integrity of Files Stored in the Cloud

In Amaral et al. [5], a new protocol is proposed called Hyper Scalability, Availability,
Integrity Layer (Hy-SAIL), whose purpose is to guarantee the integrity and the ability to
recover files stored in the cloud. Hy-SAIL achieves this purpose by applying a solution
called Online Codes [50], which generates data blocks for error correction and distributes
them among several storage providers.

Sensors 2021, 21, 4440 6 of 35

These data blocks allow the recovery of corrupted parts of a file stored in a provider
from the information stored in others. Hy-SAIL ensures file integrity through a periodic
challenge–response-type checking mechanism based on the algebraic properties of finite
fields (Galois field (GF)) and the generation of homomorphic message authentication codes.

In preparation for submitting the file content, Hy-SAIL divides it into n parts called
message blocks from which the protocol generates the auxiliary blocks necessary for fail
recovery. For challenge preparation, the protocol selects primary polynomials, and for each
polynomial, it generates authentication codes for each message, which are stored by the
file owner (client).

The file content is distributed randomly to storage providers in the form of fixed-
size check blocks, containing the content of one or more message blocks (or auxiliaries),
generated through the homomorphic XOR function, executed bit-by-bit on the content
of each pair of blocks. To verify block integrity, the protocol sends challenges containing
a polynomial and a block identifier. After receiving the challenge response, the proto-
col validates the referred response through the message authentication code stored by
the client.

Zhao et al. [7] proposed a method for the public auditing of files stored in the cloud.
The model adopts a skip list [51] based on classification, originally proposed by [52], as a
data structure through which it supports dynamic operations such as inclusion, alteration,
and exclusion of the stored data. The proposed method allows the owner (client) or a
designated third party (auditor) to check the file integrity without compromising content
privacy. This method also allows cloud storage services (CSSs) to prevent clients from
dishonestly claiming loss of data because it implements a mechanism to issue receipts
signed by both parties.

The method is characterized by storing only private data and verifying metadata on
the client since the skip list is stored in the CSS. The protocol used by the model to verify
file integrity divides the process into three movements called commitment, challenge, and
response, executed respectively by the CSS, the auditor, and the CSS. The technique used is
based on the compact recoverability tests proposed in [53] and its implementation is based
on the homomorphic properties of the adopted algorithms. The method’s safety is directly
related to the difficulty in solving the Diffie–Hellman computational problem [54] and in
the discrete logarithm on bilinear groups.

Wang et al. [8] proposed a scheme for the dynamic verification of cloud-stored data
ownership based on an identity called Identity-Based Non-Repudiable Dynamic Provable
Data Possession (ID-NR-DPDP). This scheme uses a monotonic dynamic structure, i.e.,
ordered and liable, for comparison according to the moment of its generation called an
index logic table (ILT), which allows the inclusion, alteration, and exclusion of blocks in
previously stored files. ID-NR-DPDP defines the interaction among four entities: the file
owner (client), the private key generator (PKG), the judge responsible for resolving possible
differences, and the CSS, where both the PKG and the judge are considered trustworthy by
all clients and the CSSs.

The PKG is responsible for generating the private keys for both the client and the CSS.
The client uses their private key to sign the information generated by the client (block labels
and data list) which, in turn, is sent by the client together with the file data for storage in
the CSS. Meanwhile, the CSS uses its key to sign the receipt that confirms the file storage.
In addition to the file data blocks (fractions), the labels calculated and signed by the client
for each block, the data list containing a copy of the ILT, a name generated for the file, and
a set of randomly chosen values used for calculations and the client signature are stored in
the CSS.

In terms of security, ID-NR-DPDP implements the Diffie–Hellman [55] key exchange
protocol to prevent tampering with the responses from the CSS and ILT to resist ex-
clusion/insertion attacks, as named and demonstrated by the authors. The public key
cryptography implemented in ID-NR-DPDP adopts the identity-based signature method
proposed in [56], which allows authenticating the entities involved without the need to

Sensors 2021, 21, 4440 7 of 35

manage certificates or the use of public key infrastructure. In the proposed scheme, the
client can perform data integrity verification or assign this responsibility to another entity
named an auditor. The ID-NR-DPDP bases its security on the difficulty of solving the
Diffie–Hellman [54] computational problem.

Jeong et al. [9] presented an effective data possession verification scheme based on the
use of the Bloom Filter (BF) [57]. The developed schema imposes a consistency guarantee
on large volumes of data generated by low computational devices (Internet of Things) and
stored in cloud services. The proposed scheme divides the data to be cloud-stored into
blocks, for which BFs are generated. These BFs are stored by the device that generated the
data or by a trusted third party, which, in turn, through a challenge–response-type process,
will be responsible for confirming the effective data possession by the storage service.

The BF is a data structure generated from the execution of hash algorithms on the
content of the blocks applied to confirm whether the cloud-stored data content is compatible
with the data that gave rise to the BF, with a determined error rate (false positives). The
maximum acceptable error rate limit determines both the number of blocks and the BF size.
According to the authors, the proposed solution is suitable for processing large amounts of
data because it requires less processing time since it does not require any key generation
mechanism, although false positives reduce the rate of failure identification. Furthermore,
the proposed solution does not present significant differences concerning the rates obtained
by other solutions based on homomorphic cryptography.

3.2. Blockchain and Smart Contracts

Zhang et al. [58] proposed a scheme for public verification of the integrity of cloud-
stored files resistant to procrastinating auditors, without the use of certificates, named
Certificateless Public Verification scheme against Procrastinating Auditors (CPVPA). The
CPVPA uses a challenge–response model to verify integrity that adopts the aggregate
signature technique based on the Diffie–Hellman [54] computational problem on certain
elliptic and hyperelliptic curves proposed in [59].

The CPVPA provides the possibility of third parties (auditors) carrying out the in-
tegrity check. The resistance to procrastination, or the malicious performance of these
auditors, is implemented using blockchain technology. For this, the auditors securely
(unchangeably) record the information generated by each verification process execution in
the blockchain for subsequent auditing by the file owner.

CPVPA’s cryptographic mechanism uses a third party as the authority responsible
for generating partially private keys for users, a functionality that dispenses with the
use of digital certificates based on public key infrastructure and, consequently, exempts
CPVPA from the problems inherent in managing certificates such as revocation, storage,
distribution, and verification. Since CPVPA was developed based on properties of the
consensus’ algorithms based on PoW, as the maximum number of possible inconsistent
blocks in the chain and the impossibility of predetermining the hash of a future block, the
construction of CPVPA requires the adopted blockchain implementation to exclusively use
PoW as its consensus mechanism.

Rahalkar and Gujar [60] proposed a model that integrates a decentralized file storage
system for use in peer-to-peer (P2P) networks called InterPlanetary File System (IPFS) and
blockchain technology to store and distribute data on the web, preserving data integrity
and security in a reliable and fault-tolerant manner. The proposed model divides file
content into parts and stores the parts on different nodes of the P2P network using IPFS,
which, in turn, uses the Distributed Hash Table (DHT) protocol. To access individual file
content, the model uses a name server called InterPlanetary Naming Server (IPNS), which
maps the file name to the hash generated from its content. The model uses blockchain to
store the metadata of each file, which contain its hash, which, in turn, is used by the model
when the file is retrieved from the web to validate its integrity.

Meroni et al. [61] proposed carrying out continuous and autonomous monitoring
of business processes involving non-automated activities (artifact-driven) performed in

Sensors 2021, 21, 4440 8 of 35

different parts, which adopts blockchain technology as a reliable and auditable means
for exchanging data between business process participants. The authors investigated the
effects generated by the choice between guaranteeing the storage of all data generated by
monitoring and the minimization of these data for registration in the blockchain. Further-
more, they also evaluated the costs, in virtual currency, of the publication of these data
on public blockchain networks. The proposal was validated on a hybrid platform using a
prototype that uses smart contracts on the Ethereum Blockchain platform, integrated with
the distributed file system, IPFS.

4. Architecture for Monitoring the Integrity of Files in the Cloud

This architecture aims to provide a solution option for the secure and monitored
storage of large files for long periods in unreliable cloud service providers (CSPs). To meet
this objective, the roles, responsibilities, processes, and the interactions between these roles
are defined. The description of these roles and the respective responsibilities are presented
in Section 4.1, and the processes and their interactions are detailed in Section 4.3. Figure 1
presents an architecture overview containing a summary of the responsibilities of each role
and the simplified flow of interactions between them.

Architecture overview

B
lo

ck
ch

ai
n

N
et

w
or

k

(7) Request change
in trust level

Trust Management
 Contract

Blockchain Network - BN

Storage and Monitoring
Contract

Cloud Storage Service

Cloud Storage Service - CSS

(6) Submit responses
to challenges

(3) Record acceptance
of the storage contract

Client

Client

(2) Send a file
to be stored
by the CSS

(1) Deploy the
storage contract

(4) Submit the information for
the generation of challenges

Integrity Check Service

Integrity Check Service - ICS

(5) Submit challenges
to the Storage Service

Figure 1. Architecture overview.

4.1. Roles

The formal definition of the roles that comprise this architecture is aimed to group
parts with similar characteristics, to delimit the scope of the attributions and, finally, to
enable the determination of responsibilities. As a result, the following roles were defined:
the client (Section 4.1.1), the cloud storage service (CSS) (Section 4.1.2), the integrity check
service (ICS) (Section 4.1.3), and a blockchain network (BN) (Section 4.1.4).

4.1.1. Client

The client is the role that concentrates the actions defined in the architecture whose
execution occurs in the infrastructure under the responsibility of the owners of files to
be stored in the CSPs. The architecture defines that the client role actively exercise com-
munication with other roles, making requests and obtaining responses directly from the
services they provide. However, all interactions arising from other roles with the client are
asynchronously carried out through the BN.

The main responsibilities of the client role in this architecture are:

Sensors 2021, 21, 4440 9 of 35

• to encrypt the file to be stored in the cloud;
• to generate the information necessary to verify the integrity of the copies of the file

during the storage period;
• to prepare and insert an instance of CFSMC with file information for each stored copy

in the BN;
• to select the CSS and submit copies of the file for storage;
• to generate challenges for audit purposes when requested by the CSS;
• to hire/renew the ICS responsible for monitoring the integrity of the file copy stored

in each CSS, sending the necessary information for this service execution in the
contracted period.

4.1.2. Cloud Storage Service

The CSS is the role that represents providers that offer a file storage service in computa-
tional clouds to a third-party (client). Under this architecture, the CSS is a service provided
on demand and whose functionalities offered to the client are permanently available.

The main responsibilities of the CSS role in this architecture are:

• to receive the requisition for storage and the client’s file contents;
• to check the integrity of the received file;
• to audit the compatibility of the contents of the received file with the integrity verifica-

tion information generated by the client;
• to record the acceptance of both the file storage request and the respective CFSMC;
• to reply to challenges generated by the ICS to verify the integrity of the stored files;
• to allow, at any time, the download of a copy of a stored file exclusively to the client

who submitted it.

4.1.3. Integrity Check Service

The ICS is the role that represents the CSPs that offer a periodic integrity-checking
service of files stored in CSSs to third parties (clients) using the challenge–response method.
Although the client can perform the integrity verification of its files, we strongly recom-
mend contracting a CSP for this purpose to avoid being burdened with the infrastructure
and other costs necessary to keep this service permanently active. Among the characteris-
tics of the ICS role in this architecture, we highlight the absence of a trust relationship, i.e.,
from the client’s point of view, the CSP hired for this role is unreliable.

The main responsibilities of the ICS role in this architecture are:

• to provide functionality that allows the client to contract their services directly and
autonomously;

• after being hired, to receive information to check the integrity of the file stored in the
CSS from the client and store it;

• to generate daily challenges to verify the integrity of files stored in each monitored
CSS, according to the trust level assigned to it;

• to register challenges in the BN using the linked CFSMC instance of each checked file;
• to check daily for the existence and validity of pending challenges;
• to check daily the results obtained by validating the responses received to the challenges;
• to immediately inform the client whenever the ICS identifies a breach of integrity or

failure in the CSS.

4.1.4. Blockchain Network

The BN is the role that represents the implementation of blockchain technology,
the network formed by the nodes that carry out transactions with each other using this
implementation, and the smart contracts registered in it and available to all the nodes of
this network. The responsibilities assigned in the architecture for BN are implemented
and available to other roles through two smart contracts called the Storage Service Trust
Management Contract (SSTMC) (Section 4.2.1) and the Cloud File Storage and Monitoring
Contract (CFSMC) (Section 4.2.2).

Sensors 2021, 21, 4440 10 of 35

Depending on the technologies adopted, the BN is characterized by enabling the
execution of transactions in a decentralized manner, not subject to interference and, mainly,
without requiring a previous relationship of trust between the roles. BN also maintains
a record of stored data, actions taken, and results obtained, which is public, auditable,
non-editable, and resistant to attacks.

The main responsibilities of the BN role in this architecture are:

• to store one or more instances of SSTMCs;
• to store an instance of CFSMC for each file stored by a client on a CSS;
• to maintain a public record of CSPs interested in providing services as a CSS or ICS;
• to store both the storage contract data and information in each CFSMC instance to

validate the answers to the integrity verification challenges;
• to receive, store, and make available to clients the challenge requests for auditing

generated by CSSs;
• to receive, store, and make available to CSSs the challenges of verifying the integrity

of the files stored therein;
• to receive and validate the responses to the challenges, storing them together with the

result of the validation;
• to calculate and store a trust value for each CSS from the results of the challenges

generated by all ICS providers, and share the results with all other roles.

4.2. Smart Contracts

Smart contracts are adopted as a technological solution to implement the responsibili-
ties attributed by the architecture on the BN to ensure characteristics such as transparency,
independence, and predictability. To allow for some level of flexibility in storage con-
tracts, but also to guarantee the possibility of sharing the behavioral history of CSSs to
manage trust in these services, the architecture divides these responsibilities into two
smart contracts.

This division is necessary because the terms for contracting the storage service depend
exclusively on the agreement between the client and the CSS involved. Therefore, the rules
adopted in a contract for shared management of the trust in storage services must reach an
agreement between all interested parties, that is, who will contribute what information,
who will use the results, and who will be evaluated.

Given the above, in Section 4.2.1, we described the SSTMC, a smart contract designed
to satisfy the responsibilities related to the management of the trust attributed to CSSs. In
Section 4.2.2, we present the CFSMC, a smart contract designed to meet the responsibilities
related to both file storage and monitoring.

4.2.1. Storage Service Trust Management Contract

The Storage Service Trust Management Contract (SSTMC) is a smart contract de-
signed to independently and securely carry out the necessary actions to provide a shared
mechanism for classifying CSSs according to their behavior. The classification mechanism
implements computational trust techniques, through which the trust value attributed to
CSS (TV/CSS) is calculated and maintained. This value, in turn, expresses the expectation,
based on experience, of the respective service faithfully complying with the storage contract
throughout the stipulated period.

In addition to the responsibilities directly related to trust management, the SSTMC is
responsible for receiving from the CSSs and registering the acceptance of a CFSMC instance.
This acceptance serves as proof that the CSS has agreed to the referred storage contract
terms. In addition, it allows the SSTMC to prevent a CFSMC previously unapproved by
the CSS from interfering with the trust management.

Another responsibility of the SSTMC is to manage the CSPs that offer their services
as a CSS or ICS. For this, the SSTMC provides public functionalities so that CSPs can
self-register and self-remove. This register enables clients to consult CSPs available for

Sensors 2021, 21, 4440 11 of 35

each type of service. The self-registration also proves that the CSPs agreed to the rules
defined in the SSTMC instance in which they self-registered.

To fulfill these responsibilities, each SSTMC instance stores three sets of information
in the BN. The first set contains the list with the data of the CSPs that performed the
self-registration to make their services available (attribute “stakeholders”). The second set
contains the list with the CSSs and the respective TV/CSSs (attribute “trust”). Finally, the
third and last set contains the list with the accepted (authorized) CFSMC instances linked
to the CSSs that accepted them (attribute “authorized”). Figure 2 shows the diagram of the
class SSTMC with the signature of its methods and attributes.

n
n

1

StakeholderMap

+ data: mapping(address => Stakeholder)
+ keys: StokeholderKeyFlag[]
+ size: uint

StakeholderKeyFlag

+ key: address
+ deleted: boolean

Stakeholder

+ url: string
+ name: string
+ service: StakeholderService
+ keyIndex: uint

SSTMC

- stakeholders: StakeholderMap
- trust: mapping(address => int)
- authorized: mapping(bytes => uint)

+ registerStakeholder(name: string, url: string, service: StakeholderService): boolean
+ removeStakeholder(): void
+ getStakeholders(service: StakeholderService): address[]
+ getStakeholderName(key: address): string
+ getStakeholderUrl(key: address): string
+ isStakeholderRegistered(key: address, service: StakeholderService): boolean
+ authorizeContract(camanAddress: address): void
+ isAuthorized(storageServiceAddress: address): boolean
+ incrementTrustValue(storageServiceAddress: address): void
+ decrementTrustValue(storageServiceAddress: address): void
+ getTrustValue(storageServiceAddress: address): int
+ getTrustLevel(storageServiceAddress: address): string

<<enumeration>>
StakeholderService

Storage
Checking

Figure 2. Class diagram of the SSTMC.

The responsibilities assigned to the SSTMC are divided into functionalities (methods)
classified into three groups. The first group contains the functionalities related to the
management of the registered CSPs. The functionalities destined to the management of
the authorizations of the CFSMC instances compose the second group. The third group
includes the functionalities related to trust management. Table 1 presents the descriptions
of the function of each method of SSTMC and the roles that can execute them.

The formulas adopted in the calculation processes to increase or decrease the TV/CSS,
executed by the methods incrementTrustValue and decrementTrustValue, respectively, are
described in Section 4.6.4. As for the conversion of TV/CSS to the trust level attributed to
CSS (TL/CSS), the SSTMC uses the trust level classification model shown in Table 2 [11],
which is an adaptation of the classification model proposed in Pinheiro et al. [10]. The
TL/CSS and the other information in Table 2 are used in the process of generating and
submitting challenges (Section 4.6.1).

4.2.2. Cloud File Storage and Monitoring Contract

The Cloud File Storage and Monitoring Contract (CFSMC) is a smart contract designed
to allow the monitoring of the integrity of files stored in CSSs in a transparent, publicly
auditable manner. Furthermore, the CFSMC ensures that the monitoring result is free from
both the third and interested parties’ interferences.

The responsibilities assigned to the CFSMC are: to store information on the contract
and to validate responses to integrity verification challenges; to receive and store infor-
mation on the contract signed with the ICS for integrity verification; to receive and store
challenge requests; to receive and store challenges; and to receive challenge responses,
validating them, and storing both the responses and the validation results. Figure 3 shows
the CFSMC class diagram.

Each CFSMC instance, to meet its responsibilities, stores two groups of data in the BN.
In the first group, each attribute stores a single value with information on the characteristics
of the storage contract. In the second group, each attribute stores a set of information

Sensors 2021, 21, 4440 12 of 35

related to actions carried out to check the integrity of the stored file. Table 3 presents the
description of the attributes present in the CFSMC.

Table 1. Functions of SSTMC methods and the roles that can perform them.

Method Group Function Execution

authorizeContract 2nd Record acceptance of a storage contract
(instance of the CFSMC) CSS registered

decrementTrustValue 3rd Run the calculation process to reduce the TV/CSS CFSMC
getStakeholderName 1st Provide the name of a CSS/ICS Public

getStakeholders 1st Provide a list of registered and available CSSs or ICSs for
hire Public

getStakeholderUrl 1st Provide the URL to access the services of the CSS/ICS Public

getTrustLevel 3rd Provide the trust level assigned to the CSS computed from
the updated TV/CSS Public

getTrustValue 3rd Provide the updated TV/CSS Public
incrementTrustValue 3rd Run the calculation process to increase TV/CSS CFSMC

isAuthorized 2nd Inform if the requesting CFSMC instance
was accepted by the CSS CFSMC

isStakeholderRegistered 1st Inform if a CSS/ICS is registered and available for hire Public

registerStakeholder 1st Allow CSPs to perform their own registration and offer
their services as a CSS or ICS CSSs and ICSs

removeStakeholder 1st Allow a CSP to block its own registration so that clients can
no longer hire it as a CSS/ICS

CSS and ICS
registered

Table 2. Trust level classification [11].

Trust Level Trust Value Range Checked per Day

% from Files % of the File DataBlocks

Very high trust]9× 1019, 1× 1020[15% ∼ 0.4% 1
High trust]7.5× 1019, 9× 1019] 16% ∼ 0.8% 2

Medium-high trust]5× 1019, 7.5× 1019] 17% ∼ 1.2% 3
Low-medium trust]2.5× 1019, 5× 1019] 18% ∼ 1.6% 4

Low trust [0, 2.5× 1019] 19% ∼ 2.0% 5
Low distrust]− 2.5× 1019, 0[20% ∼ 2.4% 6

Low-medium distrust]− 5× 1019, −2.5× 1019] 25% ∼ 3.2% 8
Medium-high distrust]− 7.5× 1019, −5× 1019] 30% ∼ 4.0% 10

High distrust]− 9× 1019, −7.5× 1019] 35% ∼ 4.8% 12
Very high distrust]− 1× 1020, −9× 1019] 50% ∼ 5.6% 14

Sensors 2021, 21, 4440 13 of 35

'
n

n

n

1

BlockMap

+ data: mapping(uint=> BlockData)

+ keys: BlockKeyFlag[]

+ size: type

BlockKeyFlag

+ key: uint
+ deleted: boolean

BlockData

+ hashVerifier: bytes32
+ keyIndex: uint

1

CFSMC

- requestedChallenges: RequestedMap
- trustContract: SSTMC
- blocks: BlockMap
- challenges: ChallengeMap
- cyclesFinalized: mapping(uint => boolean)
- fileId: bytes32
- chunkSize: uint
- storageLimitDate: timestamp
- totalBlocks: uint
- clientAddress: address
- integrityCheckServiceAddress: address
- storageServiceAddress: address
- integrityCheckAgreementDue: timestamp

+ submitChallenge(_id: uint, _addressCodes: bytes, _password: bytes32): void
+ insertBlock(_id: uint, _verifiers: bytes32[]): void
+ replyChallenge(_id: uint, _challengeResponse: bytes32): void
+ requestChallenge(_ids: uint[]): void
+ getRequestedChallenges(): uint[]
+ getChallenge(_id: uint): bytes
+ getChallengeStatus(_id: uint): string
+ getPendingChallenges(): uint[]
+ verifyChallenge(_id: uint): void
+ getTotalFailedChallenges(): uint
+ setIntegrityCheckAgreementDue(_integrityCheckAgreementDue: timestamp): void
+ getIntegrityCheckAgreementDue(): timestamp
+ changeIntegrityCheckService(_integrityCheckServiceAddress: address): void
+ getIntegrityCheckServiceAddress(): address
+ getStorageServiceAddress(): address
+ getClientAddress(): address
+ getStorageLimitDate(): timestamp
+ getFileId(): bytes32
+ getTrustManagementContract(): address
+ getChunkSize(): uint
+ getTotalBlocks(): uint
+ getTotalStoredBlocks(): uint
+ isCycleFinalized(_id : uint): boolean
+ isReady(): boolean
+ isAccepted(): boolean

ChallengeMap

+ data: mapping(uint=> Challenge)
+ keys: RequestKeyFlag[]
+ size: type

insertResponse(key:uint, response: bytes32, valid: boolean): boolean
iterate_getOnlyKey(keyIndex:uint): uint

ChallengeKeyFlag

+ key: uint
+ deleted: boolean
+ answered: boolean

Challenge

+ keyIndex: uint
+ addressCodes: bytes
+ password: bytes32
+ datetime: timestamp
+ response: bytes32
+ responseValid: boolean
+ responseDatetime: timestamp

n

n

RequestKeyFlag

+ key: uint
+ deleted: boolean

RequestedData

+ requested: boolean
+ keyIndex: uint

RequestMap

+ data: mapping(uint=> RequestedData)
+ keys: RequestKeyFlag[]
+ size: type

1

Figure 3. Class diagram of the CFSMC.

Table 3. Description of the attributes present in the CFSMC.

Attribute Group Description

blocks 2nd Associative matrix key/value containing the verification hash (VH) of each
data block generated by the client to verify file integrity through its fractions

challenges 2nd Associative matrix key/value containing the challenges to verify the
integrity of the file

chunkSize 1st Size in bytes of each of the 4096 file fractions.
clientAddress 1st Address that identifies the file owner (client) in the BN

cyclesFinalized 2nd
Associative matrix key/value containing the identifiers of the verification

cycles already completed, that is, those whose 256 challenges that compose
the cycle have already been answered

fileId 1st Hash used to identify the stored file and verify its integrity when uploading
or downloading

integrityCheckAgreementDue 1st End date of the current integrity verification contract
integrityCheckServiceAddress 1st Address that identifies the ICS hired to monitor the file integrity in the BN

requestedChallenges 2nd Associative matrix key/value containing challenge requests
for audit purposes

storageLimitDate 1st End date of the file storage period contracted with the CSS
storageServiceAddress 1st Address that identifies the CSS hired to store the file in the BN

totalBlocks 1st Number of data blocks that will be used to verify the file integrity generated
by the client before storing the file in the cloud

trustContract 1st SSTMC instance responsible for managing trust
in the CSS that stores the file

Sensors 2021, 21, 4440 14 of 35

The responsibilities assigned to the CFSMC are divided into functionalities (methods)
that are classified into three groups. The first group contains functionalities that allow
consulting file information and other characteristics of the storage contract. The second
group gathers the functionalities related to the hiring of the ICS responsible for monitoring
file integrity for a specified period. Finally, the third group comprises the functionalities
associated with the reception, consultation, and validation of challenges generated to verify
the integrity of the stored file. Table 4 describes the function of each CFSMC method and
the roles that can execute them.

Table 4. Functions of CFSMC methods and the roles that can perform them.

Method Group Function Execution

changeIntegrityCheckService 2nd
Receive and replace the address in the BN of the ICS hired

to perform the file integrity monitoring in the attribute
integrityCheckServiceAddress

Client
(file owner)

getChallenge 3rd Return the data for a challenge registered by the ICS/Client
and stored as an element of the attribute challenges Public

getChallengeStatus 3rd

Return the challenge status according to the receipt of the
response and its validation (pending, success, or failure)

obtained from the respective element stored in the
attribute challenges

Public

getPendingChallenges 3rd Return a list containing the identifiers of the pending
challenges stored in the attribute challenges Public

getTotalFailedChallenges 3rd Return the number of challenges registered with the
situation “failed” in the attribute challenges Public

getTotalStoredBlocks 1st
Return the amount of VHs of the data blocks that have

already been inserted by the client in the CFSMC (number
of elements stored in the attribute blocks)

Public

getTrustManagementContract 1st

Return the access address in the BN of the CFSMC instance
chosen by the client to manage the trust in the CSS that

stored the file, whose object is stored in the attribute
trustContract

Public

get{ChunkSize,
ClientAddress, FileId,

StorageLimitDate,
TotalBlocks}

1st
Return the value stored in the respective attribute

(chunkSize, clientAddress, fileId,
storageLimitDate, totalBlocks)

Public

get{IntegrityCheckAgreement-
Due,

IntegrityCheckServiceAd-
dress,

StorageServiceAddress}

2nd
Return the value stored in the respective attribute

(integrityCheckAgreementDue,
integrityCheckServiceAddress, storageServiceAddress)

Public

insertBlock 3rd Receive and store a set of VHs of data blocks in the
attribute blocks

Client
(file owner)

isAccepted 1st Inform if this CFSMC instance has already received
acceptance from the CSS in the chosen SSTMC instance Public

isCycleFinalized 3rd
Inform if a particular verification cycle has already been
completed, i.e., if its identifier is on the list of elements

stored in the attribute cyclesFinalized
Public

isReady 1st

Inform if the CFSMC is ready to be audited, i.e., if the
number of VHs inserted (number of elements in the

attribute blocks) is equal to the number of data blocks
generated by the Client (attribute totalBlocks)

Public

replyChallenge 3rd
Receive and validate the responses to the challenges,

updating the respective element of the attribute challenges
with the response and the result of the validation.

CSS hired

Sensors 2021, 21, 4440 15 of 35

Table 4. Cont.

Method Group Function Execution

requestChallenge 3rd Receive and store an audit challenge request in the attribute
requestedChallenges CSS hired

setIntegrityCheckAgreementDue 2nd Receive and store the end date of the current integrity verification
contract in the attribute integrityCheckAgreementDue

Client
(file owner)

submitChallenge 3rd Receive and store the challenges for verifying the file integrity in
the attribute challenges

Client and ICS
hired

verifyChallenge 3rd

Perform the validity check of the pending challenge stored as an
element of the attribute challenges, changing its situation to
failure if the challenge exceeded the maximum waiting for a

response period (expired).

ICS hired

4.3. Architecture Processes

The processes defined in the architecture are distributed in three phases. This distribu-
tion occurs according to the moment, the role that started its execution, and the dependence
between them. The first phase, called the preparation phase (Section 4.4), describes the
stages of the preparation of the BN used to make it suitable for the execution of the other
phases, with emphasis on the insertion of an instance of the SSTMC in the BN.

The second phase, called the storage phase (Section 4.5), details the processes carried
out by the client. The main processes in this phase are the preparation of the file (encryp-
tion), the generation of the information to monitor the integrity of file during the storage
period, and the submission of the file for storage in the CSS. For each file copy stored in the
cloud, the storage phase describes the actions performed for the preparation and insertion
in the BN of the respective instance of the CFSMC.

Finally, the third phase, named the integrity verification phase (Section 4.6), presents
the processes responsible for monitoring the integrity of files stored in the cloud. Among
these processes, we highlight challenge generation by the ICSs, response production by the
CSSs, and the response validation by the CFSMC instances.

4.4. Preparation Phase

For the execution of the processes of the proposed architecture, we developed a reference
implementation composed of three applications, each designed to meet the responsibilities
assigned to one of the following roles: client, CSS, and ICS. These applications trigger the
processes under the responsibility of the BN role through requests to instances of the SSTMC or
CFSMC. To enable execution of the processes related to the storage and monitoring of files in
the cloud, at least one instance of the SSTMC must be available in the BN and configured in the
applications. Figure 4 presents an overview of the preparation phase.

The architecture preparation process begins with the BN administrator inserting
an instance of the SSTMC into the BN (Step 1 in Figure 4). Each smart contract, when
inserted into the BN, receives a unique access address, which is the only way to execute its
functionality. For this reason, the BN administrator makes public the address of the newly
inserted SSTMC instance so that interested CSPs can offer their services (Step 2 in Figure 4).

The administrators of the CSPs (CSSs or ICSs) must choose the SSTMC instance, obtain
its address from the website of the BN administrator, and configure the respective applica-
tions with the SSTMC address obtained previously (Steps 3 and 5 in Figure 4). Likewise, the
administrators of each client application must choose and register the respective addresses
of the SSTMC instances that they wish to use (Step 7 in Figure 4).

Sensors 2021, 21, 4440 16 of 35

Preparation Phase

B
lo

ck
ch

ai
n

N
et

w
or

k
(1) Insert an instance of the Smart Contract

"Storage Service Trust Management
Contract (SSTMC)".

Blockchain Network - BN

BN administrator
website (2) Publish the Smart Contract SSTMC's

 instance access address generated by BN.

Network
 administrator

Cloud Storage Service

Cloud Storage Service (CCS)

(3) Get the SSTMC's address
and configure it in the application.

(4) Register itself as
CSS in the SSTMC

instance.

Client

(7) Get the SSTMC's address
and configure it in the application.

Client

(8) Get the address of each
CSS and ICS registered
in the SSTMC instance

and insert them into
the application.

Integrity Check Service

(5) Get the SSTMC's address
and configure it in the application.

Integrity Check Service (ICS)

(6) Register itself as
 ICS in the SSTMC

 instance.

Action is performed by the respective application administrator
Action is performed by the respective application when it is started

Figure 4. Preparation phase overview.

Subsequently, at least two CSPs must offer their services through the SSTMC instance
inserted in the BN: one as a CSS and the other as a ICS. To this end, the applications
CSS and ICS should, on the first start-up after being configured with the address of the
chosen SSTMC instance, perform self-registration in the referred contract (Steps 4 and 6 in
Figure 4). The client application, in turn, obtains the list of registered CSSs and ICSs from
the chosen SSTMC instance (Step 8 in Figure 4).

4.5. Storage Phase

The storage phase begins with the client with the process of selecting, preparing, and
submitting copies of the file for storage in the cloud (Section 4.5.1). Then, once the file is
received, the CSS executes the file storage request audit process (Section 4.5.2). Finally,
after the CSS accepts the storage request, the client performs the hiring process of the ICS
responsible for monitoring the file integrity (Section 4.5.3). Figure 5 provides a storage
phase overview with the responsibility indications of each role.

4.5.1. Selection, Preparation, and Submission of Files for Storage in the Cloud

The execution of the processes of selection, preparation, and submission of files for
storage in the cloud (P1 in Figure 5) comprises 11 stages. In the first stage (P1.S1 in Figure 5),
the client user makes the following selections: (i) the file whose copies will be stored in the
cloud; (ii) the storage time (number of years); (iii) the SSTMC instance; (iv) the initial ICS;
(v) one or more CSSs; (vi) the cryptographic key used in the encryption of the file; (vii) a
unique numerical value used to ensure arbitrariness called the seed of randomness.

Still in the first stage, the selected file is then encrypted using a symmetric crypto-
graphic algorithm and the cryptographic key (password). From the encrypted file, the
client generates a hash that will serve as the file identifier. The CSS, in turn, will use this
file identifier to validate the file’s integrity.

Aiming to permit the periodic checking of the integrity of the file stored in the cloud,
the client assembles data blocks formed by concatenating the content of 16 file fractions
chosen randomly. The collection containing the 16 integer values from 0 to 4095 (addresses)
that identify each fraction content in the data block is called the fraction address set

Sensors 2021, 21, 4440 17 of 35

(FAS). Each address, after multiplied by the fraction size, indicates the start position of the
respective fraction content.

Storage Phase

B
lo

ck
ch

ai
n

N
et

w
or

k
P1.S7-Process the Smart

Contract insertion
transaction and return the
CFSMC instance address.

P1.S9-Process the VHs'
insertion transactions in

the CFSMC.

P2.S4-Process the transaction
with the record in the Smart

Contract SSTMC of the CFSMC
acceptance by the CSS.

Cloud Storage Service

P2.S3-Register in the
SSTMC that the

CFSMC linked to the
file was accepted.

P2.S1-Receive the
file, verify its

integrity, and audit
the verification data.

P2.S2-Write the file
into the file system.

P2.S5-Send a message
to the Client informing
him that his file and its
CFSMC were rejected.

File
rejected

File
accepted

Client

P1.S3-Calculate the
number of Fraction
Address Sets (FASs)
required to assemble

the data blocks used in
the challenges during
the storage period.

P1.S2-Divide the
encrypted file into
4,096 fractions.

P1.S1-Select the file,
encrypt it, and

generate a hash for
its identification.

P1.S12-Send the
encrypted file and its

CFSMC address.

P1.S10-Store the CFSMC address,
the FASs that make up each data
block, and other information to

retrieve the file in the local DBMS.

P1.S11-Wait for the
registration of CFSMC's

acceptance in the
Storage Service Trust
Management Contract

(SSTMC).

P1.S5-For each generated
FAS, read the contents of

the file fractions,
concatenate them into the

data block, generate a
hash for each data block,

concatenate this hash with
a pseudo-random

password, and on the
result, generate the Hash

Verification (VH).

P1.S4-Generate the file
FASs, each containing 16
fraction addresses chosen
randomly between 0 and

4095, grouped in "Cycles" of
256 FASs that encompass all

file fractions.

P3.S2-Submit the CFSMC
address, the first ICS

contracting period, and the
information for generating
challenges for that period.

CFSMC
rejected

P1.S8-Insert in the CFSMC
the VHs of each one of the
data blocks generated for

file verification.

Integrity Check Service

P3.S3-Store in the local
DBMS the CFSMC

address of the file to be
verified and the
information for

challenges' generating.

P1.S6-Submit an instance
of the Cloud File Storage
and Monitoring Contract
(CFSMC) indicating the

ICS and CSS that will be
contracted.

CFSMC
accepted

P3.S1-Delete the
original file.

Figure 5. Storage phase overview.

For this, in the second stage (P1.S2 in Figure 5), based on the total size of the selected
file, the client calculates the file fraction size so that the referred file can be divided into
4096 equal size fractions. Next, in the third stage (P1.S3 in Figure 5), according to file
storage time and the lowest trust level defined in Table 2, the client computes the number
of FASs and data blocks needed to validate the file integrity during the entire storage
period without reusing the same data block.

Then, the fourth stage begins (P1.S4 in Figure 5) with the generation of the FASs
according to the result calculated in the third stage. For this, the client uses the seed of
randomness to arbitrarily choose 16 numbers without repetition, between 0 and 4095. Each
address only can be selected again after all other 4095 addresses have been chosen. The
set containing the 256 FASs and all 4096 fraction addresses of the file is called a cycle. To
ensure that every FAS used in the generation of data blocks belongs to a cycle, the result of
calculating the number of FASs/data blocks is always rounded to the next multiple of 256.

In the fifth stage (P1.S5 in Figure 5), the client creates a data block for each generated
FAS, reading and concatenating the 16 fraction contents from the encrypted file. From
each data block content, the client generates a hash, concatenates it with an exclusive
password called the challenge password (CP) and from the resulting content creates a
new hash named the verification hash (VH). The CP, in turn, is a hash generated from the

Sensors 2021, 21, 4440 18 of 35

cryptographic key and an arbitrary integer value generated by a pseudo-random algorithm,
which uses the seed of randomness to guarantee its randomness.

For each chosen CSS, in the sixth stage (P1.S6 in Figure 5), the client submits a new
instance of the CFSMC to the BN. To increase the overall process efficiency, this stage is
started in parallel with the fourth stage. When created, each CFSMC instance receives
and stores the following parameters: the file identification hash; the file fraction size; the
deadline for storage; the total number of data blocks generated by the client; the address
that identifies the CSS; the address that identifies the chosen ICS; the address of the adopted
SSTMC instance.

The BN treats the receipt of a smart contract as a transaction that will only be persisted
and made available on the blockchain after a mining node inserts it into a block in the
chain and obtains the consensus of other nodes participating in the BN. The seventh stage
(P1.E7 in Figure 5) is the processing of the insertion transaction of one or more CFSMC
instances within the scope of the BN and the generation of the access address for each of
these instances.

After waiting for the completion of the fifth and seventh stages, the Client performs
the eighth stage (P1.S8 in Figure 5) with the storage of the generated VHs in the respective
CFSMC instances inserted in the BN. To improve performance, the client groups 64 or
more VHs to insert them into a BN in a single submission, where this number depends
on the maximum limit of bytes that can be processed in a single transaction, a condition
that varies according to the characteristics of each BN. The ninth stage (P1.S9 in Figure 5)
represents the processing in the BN of the transactions generated by the requests for the
insertion of the VHs into the CFSMC instances.

Parallel to the beginning of the eighth stage, the client executes the 10th stage (P1.S10
in Figure 5), saving the information on the file stored in the CSS in its local DBMS for
monitoring and future recovery. From this information, the following are included: the
file name and place of origin; the address of the respective CFSMC instance in the BN; the
cryptographic key; the file verification table (FVT). The FVT contains a record for each data
block generated, comprising the FAS that gave rise to it, the CP used in the VH generation,
and an integer that identifies the data block and links it to the VH stored in the CFSMC.
In the 11th stage (P1.S11 in Figure 5), the client monitors the SSTMC instance to identify
the record that confirms whether the CSS has accepted the file storage request and the
respective CFSMC instance.

The client initiates and executes the 12th stage (P1.S12 in Figure 5) in parallel with
the 8th, 9th, 10th, and 11th stages. In this stage, the client performs the submission of the
file copy storage request for each CSS. Attached to each storage request, the client sends
the address of the respective CFSMC instance and the encrypted copy of the file to the
CSS. Upon receiving the referred storage request and the file content, the CSS initiates
the process of auditing and accepting the storage request for the file according to the
description in Section 4.5.2.

4.5.2. File Storage Request Audit and Acceptance

The execution of the file storage request audit and acceptance process comprises five
stages (P2 in Figure 5). The first stage begins with the CSS receiving both the file content
and the respective CFSMC instance address (P2.S1 in Figure 5). After confirming that
the smart contract stored in the BN at the received address is an instance of the standard
implementation of the CFSMC, the CSS obtains the file identification hash from the CFSMC.
Then, to verify the received file integrity, the CSS generates a hash of its content and
compares it with the referred identification hash. If the compared hashes are different, or if
the received address does not point to an instance of CFSMC, the CSS rejects the file.

If the received file is complete, the CSS performs an audit to verify whether the
data were generated by the client to verify the file integrity during its storage period are
compatible with the received file. This audit consists of 17 steps, as shown in Figure 6.

Sensors 2021, 21, 4440 19 of 35

Audit Steps of Client-Generated Data for Integrity Check

B
lo

ck
ch

ai
n

N
et

w
or

k

S4-Process the transaction with
the challenge requests by

storing them in the CFSMC.

S13-The CFSMC validates the
received response by confirming if
the data block that gave rise to the

challenge maintains its integrity.

S14-Process the transaction
with the response by storing in
the CFSMC both that response

and its validation result.

S9-Process the transaction
with the challenge record by
storing it in the CFSMC and
removing it from pending

requests.

Client

S6-Get from CFSMC the list
of data blocks with pending

audit challenges.

S5-Start monitoring the CFSMC
waiting for the processing of

audit challenge requests.

S7-Read the File Verification Table
(FVT) in the local DBMS and, for
each data block whose challenge

was requested, obtain the Fraction
Address Set (FAS) that makes up
that data block and the respective

Challenge Password (CP).

S8-Submit to the CFSMC the
record of each of the requested

challenges, passing as
parameters the data block

identifier and both the
respective FAS and CP.

Integrity Check Service

S10-Get from CAMAN
the challenges

registered by the Client.

S16-Record in the local
DBMS that the audit was
carried out successfully.

S17-Record in the
local DBMS that
the audit failed.

The verified data
blocks' entireness
 was confirmed

CFSMC has identified
an integrity violation

S15-After the
challenge responses'
validation, verifying if

the CFSMC has
identified any

integrity violation in
the verified data

blocks.

Cloud Storage Service

S2-Randomly choose data
block identifiers between
1 and the total of data

blocks.

S1-Get from the Cloud File
Storage and Monitoring
Contract (CFSMC) the
total number of data
blocks for verification

generated by the Client.

S3-Register in the CFSMC
the request for audit

challenges for the chosen
data blocks and start

monitoring the challenges
registered by the Client.

S11-For each challenge, generating
the respective hash response from the

concatenation of the file fraction
contents indicated in the FAS.

S12-Record in the
CFSMC the responses
to the challenges and
start monitoring the
respective responses'

validation results.

Figure 6. Audit steps of the data for integrity verification.

The first step of the audit (S1 in Figure 6) begins with the CSS obtaining the total
number of data blocks generated by the client from the CFSMC. Then, in the second step
(S2 in Figure 6), using a pseudo-random algorithm, the CSS performs a draw to choose
which of the client-generated data blocks will be audited.

In the third step of the audit (S3 in Figure 6), the CSS submits the challenge requests
to the client through the CFSMC. Each challenge request receives as a parameter a list with
the identifiers of the data blocks, the contents of which the CSS has chosen to verify the
integrity. The total number of challenges requested is equal to one-tenth of the number of
verification cycles generated by the client. As the client generates 256 data blocks in each
cycle, for every 2560 data blocks generated by the client, the CSS will require the client to
submit a challenge for auditing purposes.

In the fourth phase of the audit, the BN node, when receiving the submission with
the challenge requests (S4 in Figure 6), inserts a new transaction in the BN and waits for
a mining node to include it in a new block in the blockchain and replicate it to the other
participating nodes. Upon completion of the transaction processing, information on the
requested challenges will be available to the client.

If the file submitted for storage is not accepted by the CSS or receives a message
indicating its rejection, the client, in turn, performs the fifth stage of the audit (S5 in
Figure 6), in which the client monitors the CFSMC until the CSS records the audit challenge
requests. In the sixth step (S6 in Figure 6), the client obtains a list with the identifiers of the
data blocks whose challenges were requested from the CFSMC. Then, in the seventh step
(S7 in Figure 6), the client reads the file verification table (FVT) in the local DBMS and, for
each data block identifier of the requested challenges, obtains both the respective fraction
address set (FAS) and challenge password (CP).

Sensors 2021, 21, 4440 20 of 35

Then, the eighth step of the audit (S8 in Figure 6) begins when the client submits the
requested challenges for registration in the CFSMC, providing as parameters the data block
identifier, the FAS that gave rise to this data block, and the CP used in the generation of the
respective verification hash (VH). The ninth step (S9 in Figure 6) represents the processing
of transactions generated in the BN by the client node when registering challenges. In
this step, the CFSMC stores the received challenges in the blockchain and automatically
removes the respective requests from the pending challenge requisition list.

The CSS, in turn, while there are pending requests, periodically monitors the chal-
lenges registered in the CFSMC. In the 10th audit step (S10 in Figure 6), the CSS obtains
the FAS of each pending challenge from the CFSMC. Then, in the 11th audit step (S11
in Figure 6), the CSS reads the contents of the fractions indicated by the FAS from the
received file and concatenates these contents, forming the data block. From each of these
data blocks, the CSS generates a response hash to the respective challenge. Next, in the
12th audit step (S12 in Figure 6), the CSS answers the challenges registered by the client by
submitting the respective response hashes to the CFSMC.

Upon receiving these responses, the CFSMC initiates the 13th audit step (S13 in Figure 6), in
which it validates the answer to each challenge and removes them from the pending challenges
list. For this, the CFSMC firstly concatenates the response hash with the CP registered in the
respective challenge, builds a hash from this content, and compares this generated hash with the
VH of the respective data block stored in the CFSMC. The 14th step of the audit (S14 in Figure 6)
represents the process of reaching a consensus from the BN to the transaction generated by the
response submission. This consensus results in the storage and distribution of a new block in
the blockchain to all BN nodes containing both the hash response and its validation result.

In sequence, the CSS performs the 15th step of the audit (S15 in Figure 6), verifying in
the CFSMC if the validation of the responses to the challenges has confirmed that all data
blocks verified have maintained their integrity. In this case, in the 16th step of the audit
(S16 in Figure 6), the CSS records in the local DBMS that the audit confirmed that the data
integrity verification generated by the client is compatible with the file received. Otherwise,
the CSS performs the 17th step of the audit (S17 in Figure 6), recording that the audit
failed in the local DBMS and that the received file is incompatible with the client-generated
verification data.

If the audit was successful, the CSS starts the second stage of the process (P2.S2 in
Figure 5), moving the received client file from the temporary storage area to a definitive
area. The information on file, such as the CFSMC instance address and the storage location,
are saved in the local DBMS. Then, in the third stage (P2.S3 in Figure 5), the CSS records
the acceptance of both the file and the CFSMC instance linked to it in the SSTMC instance.

The fourth stage (P2.S4 in Figure 5) represents the processing in the BN of the transac-
tion resulting from the registration of the CFSMC acceptance by the CSS. In this processing,
the SSTMC checks whether the address registered by the client in the referred CFSMC as
the smart contract responsible for managing trust in the CSS is equal to its access address.
The SSTMC also checks whether the request source address is a registered CSS, is active,
and is the same address registered by the CSS in the CFSMC. Upon identifying the referred
acceptance, the client starts the process of hiring the service for monitoring file integrity
(P3 in Figure 5) described in Section 4.5.3.

If the audit failed or the received file integrity was not confirmed, the CSS ignores
the second, third, and fourth stages and performs the fifth stage (P2.S5 in Figure 5). In
this stage, the CSS deletes the received file and sends a message to the client stating the
rejection of the storage request.

4.5.3. Hiring Service for Monitoring File Integrity

After identifying the acceptance of the storage request by the CSS, the client begins
the process of hiring the monitoring file integrity service (P3 in Figure 5). In the first stage
(P3.S1 in Figure 5), the client registers the CSS acceptance of the file storage request in its

Sensors 2021, 21, 4440 21 of 35

local DBMS. Following confirmation that the respective CSSs accepted the storage request
of all file copies, the client deletes the original file.

Then, the client performs the second stage of this process (P3.S2 in Figure 5), cal-
culating and submitting the necessary information for the challenge generation to the
ICS. Based on the lowest trust level defined in Table 2, the client calculates the number
of verification cycles necessary to generate challenges during the contracted time, whose
renewal periodicity must be previously defined by the client. Next, the client extracts
(reads and deletes) the information on the data blocks necessary from the FVT in the local
DBMS and submits them to the ICS together with the CFSMC instance address and the
monitoring contract end date. The data block identifier and both the respective FAS and
CP compose the referred data block information for each predicted challenge.

At the end of the storage phase, in the third stage of this process (P3.S3 in Figure 5),
the ICS stores the address of the CFSMC instance linked to the monitoring object file, the
deadline of the monitoring contract, and the information to generate the challenges in the
local DBMS. At the end of the monitoring contract period, after analysis and confirmation
of the ICS correctness for the referred period, the client renews the hiring by re-executing
the second and third stages of this process.

4.6. Integrity Verification Phase

The integrity verification phase describes the processes conducted by the ICSs and
CSSs to periodically confirm the integrity maintenance of files stored in the cloud. To this
end, the ICSs generate daily challenges to the CSSs and register them in the CFSMC linked
to the monitored files. In parallel, each CSS monitors the pending challenges registered
in the CFSMC instances of the files that it stores, generates the respective responses, and
records them in the original CFSMC. Finally, each CFSMC validates and stores the received
responses and, when necessary, triggers the SSTMC to update the trust attributed to the
respective CSS. Figure 7 presents an overview of the integrity verification phase.

The execution of the integrity verification phase is divided into four processes.
Section 4.6.1 presents the challenge generation and submission process (P1 in Figure 7).
The previous challenge verification process (P2 in Figure 7) is described in Section 4.6.2.
Section 4.6.3 describes the challenge response generation, submission, and verification
process (P3 in Figure 7). Finally, the trust value calculation process (P4 in Figure 7) is
presented in Section 4.6.4.

4.6.1. Challenge Generation and Submission

The execution of the challenge generation and submission process (P1 in Figure 7)
comprises eight stages. The first stage (P1.E1 in Figure 7) starts in the ICS with the reading
of the active integrity verification contracts in the local DBMS. The ICS executes this reading
once a day, ordering the read contracts according to both the SSTMC and CSS instances.

Then, in the second stage (P1.S2 in Figure 7), the ICS obtains the updated value of
trust level assigned to CSS (TL/CSS) from the SSTMC for each CSS present in at least
one active verification contract. Parallel to the execution of this stage, the ICS starts the
previous challenge verification process (Section 4.6.2).

Starting the third stage (P1.S3 in Figure 7), the ICS sums the number of files with
active verification contracts by CSS. Next, for each CSS, using the percentages defined
in Table 2 and according to TL/CSS, the ICS calculates how many files will have their
integrity checked for that day and how many challenges to generate for each file. Then, the
ICS performs the fourth stage of this process (P1.S4 in Figure 7), selecting the verification
contracts whose monitored files in each CSS will receive challenges on that day following
the ascending date and time order of the last submitted challenge.

Sensors 2021, 21, 4440 22 of 35

Integrity Verification Phase

B
lo

ck
ch

ai
n

N
et

w
or

k

P3.S6-Update the status of the
challenge on CFSMC to "success"

or "failed" according to the
hashes' comparison result. If they
are equal, then the challenge was
successfully answered, else the

challenge failed.

P3.S5-Concatenate the received
response hash with the CP registered in
the challenge, generate a hash of the

result, and compare it with the
Verification Hash (VH) of the respective

data block stored in the CFSMC.

P1.S8-Process the transactions
generated by the challenges'

registering, storing them in the
CFSMC, and assigning them the

"pending" situation.

P2.S5/P3.S8-Request the
SSTMC to reduce the trust

value attributed to the CSS.

P3.S7-Request the SSTMC to increase the
trust value attributed to the CSS if the

evaluated challenge is the last successfully
answered of its Cycle (set with 256

challenges that cover all file fractions).

P2.S3-Check if the challenge
expiration date has expired.

P2.S6/P3.S9-Process the generated
transactions, inserting in the

Blockchain the updates made on the
data stored in the CFSMC and SSTMC.

Challenge failed
Challenge successfully

answered

Valid challenge Expired challenge

P2.S4-Change the
challenge record in

CFSMC by assigning it
the "failed" situation.

P4-Calculate the new trust
value assigned to the CSS
and store it in the SSTMC.

Cloud Storage Service

P3.S1-Obtain daily the
pending challenges

registered in the CFSMC
linked to each of the

stored files.

P3.S2-Regenerate the data
blocks from the reading and

concatenation of the
contents of the file fractions

indicated in the FAS
registered in each challenge.

P3.S4-Submit the
response hash of each

challenge to the
respective CFSMCs.

P3.S3-Generate the
response hash of

each challenge from
the content of the

respective data block
regenerated.

Client

P2.S9-Download the
file stored in the CSS

in an attempt to
recover it or confirm
the violation of its

integrity.

Integrity Check Service

P2.S8-Send a
message to the Client
informing him about
the identified failure.

P2.S1-Obtain, in the CFSMC
instance of each active

verification contract, the list
of pending challenges and
the total of challenges that
have expired or received

invalid responses (failures).

P1.S2-Obtain the
Trust Level

assigned to each
CSS (TL/CSS) from
the Smart Contract

SSTMC.

P1.S1-Read active
verification contracts daily

at local DBMS, sorting
them by both the Storage
Service Trust Management
Contract (SSTMC) and the

Cloud Storage Service
(CSS).

P2.S2-Request the CFSMC to
verify the validity of each

pending challenge.

There are
pending

challenges

P2.S7-Freeze the
integrity

verification
contract.

There are
identified
failures

P1.S4-Select the verification
contracts to be checked on the day,
looking for them in ascending order

from the last check date.

P1.S3-According to
TL/CSS, calculate both

the number of contracts
to be checked by CSS

and the number of
challenges to be

submitted per contract.

P1.S5-Choose the challenges by
selecting data blocks not yet

verified in the files whose
verification contract has been

selected.

P1.S7-Submit the challenges (data
block identifiers, FASs, and CPs) to the

Cloud File Storage and Monitoring
Contract (CFSMC) linked to the

selected files/verification contracts.

P1.S6-Read from local DBMS the
Fraction Address Set (FAS) and
the Challenge Password (CP) for

each selected data block.

Figure 7. Integrity verification phase overview.

In the fifth stage (P1.S5 in Figure 7), for each verification contract selected, the ICS
chooses which data blocks to check on that day from amongst the data blocks not yet used
in previous challenges, following the ascending order of the data block identifier belonging
to the last-used verification cycle, or selects a new cycle if the last has already been finalized.
Next, in the sixth stage (P1.S6 in Figure 7), the ICS reads the FAS and CP in the local DBMS
for each chosen data block in the verification contracts selected to receive challenges. Then,
the ICS executes the seventh stage (P1.S7 of Figure 7), submitting the challenges to the
respective CFSMC using the identifier, FAS, and CP of one of the chosen data blocks to
generate each one.

To complete this process, the BN performs the eighth and final stage of this process
(P1.S8 in Figure 7), which represents the processing of transactions generated by the CFSMC
when receiving the challenges submitted by the ICS, assigning to them the situation
“pending”, and storing them. After the processing the referred transactions, with the
insertion of one or more new blocks in the chain, followed by the distribution and obtaining
of a consensus with the other BN nodes, the registered challenges will then be available
for the generation, submission, and verification of the responses to the challenges process
(Section 4.6.3).

4.6.2. Verification of Previous Challenges

The execution of the verification process of the previous challenges (P2 in Figure 7)
comprises nine stages. In the first stage (P2.S1 in Figure 7), for each active verification
contract, from the respective CFSMC, the ICS obtains a list of all challenges registered with
the situation of “pending” and the total of challenges with the situation of “failed”, i.e.,
challenges that expired without receiving a response or whose response was considered in-

Sensors 2021, 21, 4440 23 of 35

valid. Then, the ICS performs the second stage of this process (P2.S2 in Figure 7), requiring
the CFSMC with one or more pending challenges to verify the validity of these challenges.

Upon receiving the referred request, in the third stage (P2.S3 in Figure 7), the CFSMC
verifies each pending challenge and checks whether the period waiting for a response
exceeded 72 h. In this case, the CFSMC executes the fourth stage (P2.S4 in Figure 7),
changing the challenge situation to “expired”. Next, in the fifth stage (P2.S5 in Figure 7),
the CFSMC requests the SSTMC instance to reduce the TV/CSS. The receipt by the SSTMC
of the referred request starts the trust value calculation process (P4 in Figure 7) described
in Section 4.6.4. After the SSTMC concludes this calculation, the BN performs the sixth
stage (P2.S6 in Figure 7), which represents the processing of the transaction generated by
the CFSMC to update the challenge situation, as well as the transaction generated by the
SSTMC to update the TV/CSS.

In parallel with the execution of the second stage (P2.S2 in Figure 7), the ICS starts the
execution of the seventh stage (P2.S7 in Figure 7). In this stage, for each CFSMC where the
query to the total challenges registered with the situation “failed” resulted in a value other
than zero, the ICS changes the respective file verification contract status from “active” to
“frozen”. Notably, the referred contract will remain in frozen status until the client requests
reactivation or definitive cancellation.

Subsequently, in the eighth stage (P2.S8 in Figure 7), the ICS sends a message (e-mail)
informing each client whose file checking contract was frozen of the failure. The client, in
turn, when informed of the identified fail, starts the execution of the ninth and last stage
of this process (P2.S9 in Figure 7), requiring the download of the copy of the respective
file from the CSS. If the download is successful, the client confirms file integrity by com-
paring the hash of the downloaded content with the identification hash obtained from the
respective CFSMC. Once file integrity is proven, the client requests the ICS to reactivate the
verification contract or, in the event file integrity violation is proven, the client requests the
definitive cancellation of the contract.

4.6.3. Generation, Submission and Verification of the Responses to the Challenges

The execution of the generation, submission, and verification of the responses to the
challenges process (P3 in Figure 7) comprises nine stages. The ICS starts and executes the
first stage (P3.E1 in Figure 7) in parallel with the first stage of the challenge generation
and submission process (P1.S1 in Figure 7). In this stage, the CSS reads daily the instance
address of all stored files in the CFSMC and obtains the pending challenges from each
CFSMC instance.

In the second stage of this process (P3.E2 in Figure 7), for each storage contract with
pending challenges, the CSS obtains the hash identifier and fraction size from the respective
CFSMC instance. Next, for each pending challenge, the CSS obtains the FAS from the
CFSMC, accesses the file through the hash identifier, and reads the contents of 16 file
fractions according to addresses indicated in the FAS. For this, the CSS calculates the initial
position of each file fraction by multiplying its address by the fraction size. Then, the
CSS concatenates the read fraction contents to regenerate the data block that produced
the challenge.

After completing the generation of the data blocks indicated in the challenges, the
CSS performs the third stage (P3.S3 in Figure 7), generating a response hash from each
regenerated data block content. Then, in the fourth stage (P3.S4 in Figure 7), for each challenge,
the CSS submits the respective hash response to the challenge-origin CFSMC instance.

In the fifth stage of this process (P3.S5 in Figure 7), the CFSMC validates each received
response hash. For this, the CFSMC concatenates the received hash response with the CP
registered in the respective challenge, generates a hash from this concatenated content, and
compares this hash with the respective stored VH. When the compared hashes are equal,
the challenge is successfully answered. According to the result obtained in the validation of
each response hash, in the sixth stage (P3.S6 in Figure 7), the CFSMC updates the respective
challenge, changing its pending status to success or failed.

Sensors 2021, 21, 4440 24 of 35

Next, if the challenge is successfully answered, the CFSMC performs the seventh stage
(P3.S7 in Figure 7), checking whether the referred challenge is the last in the verification
cycle to which it belongs and whether all other 255 challenges in this cycle have also been
successfully answered. In this case, the CFSMC requests the SSTMC instance to increase
the TV/CSS. Otherwise, if the challenge fails, the CFSMC performs the eighth stage (P3.S8
in Figure 7), requesting the SSTMC instance to reduce the TV/CSS.

If the TV/CSS update is requested, the SSTMC performs the trust value calculation
process (P4 in Figure 7) described in Section 4.6.4. Then, the CFSMC executes the ninth
and final stage of this process (P3.S9 in Figure 7), which represents the processing of the
transaction generated by the CFSMC to store the challenge response and the challenge
status update, as well as the transaction generated by the SSTMC to update the TV/CSS
when requested.

4.6.4. Trust Value Calculation

The trust value calculation process (P4 in Figure 7) uses the trust calculation model
proposed by Pinheiro et al. [10] and adapted by [11] to allow its implementation in smart
contracts and to accelerate the penalization of services that present recurrent failures with
the progression of their classification through the various levels of distrust. Conversely, the
trust model should also ensure that the CSPs, which maintain their history free from the
integrity violation records and strictly comply with the deadlines for generating responses
to challenges, are gradually reclassified from the lowest to the highest trust level.

Upon receiving a request to update the trust value attributed to a CSS, the SSTMC
starts the calculation process, obtaining the current trust value assigned to the referred
CSS. Next, according to the type of request, the SSTMC executes Algorithm 1, to reduce the
TV/CSS; or Algorithm 2, to increase the TV/CSS. In both algorithms, trustValue represents
the current TV/CSS and newTrustValue receives the updated TV/CSS.

Algorithm 1. Reduction in the trust value.

if trustValue > 0 then
newTrustValue← 0

else
if trustValue = 0 then

newTrustValue← −1.5× 1019

else
if trustValue ≥ −5× 1019 then

newTrustValue← trustValue− (trustValue×−0.15)
else

newTrustValue← trustValue− ((−1× 1020 − trustValue)×−0.025)
end if

end if
end if

5. Architecture Validation

This section presents the validation of the applicability, effectiveness, and efficiency of
the architecture proposed in [11] when applied to large files and for a long storage period.
For this validation, we used nine files with sizes varying between 50 MB and 10 GB, and
with an estimated storage time in the cloud ranging between 1 and 25 years.

Sensors 2021, 21, 4440 25 of 35

Algorithm 2. Increase in the trust value.

if trustValue < 0 then
newTrustValue← trustValue + ((−1× 1020 − trustValue)×−0.025)

else
if trustValue = 0 then

newTrustValue← 1.5× 1019

else
if trustValue ≥ 5× 1019 then

newTrustValue← trustValue + (trustValue× 0.025)
else

newTrustValue← trustValue + ((1× 1020 − trustValue)× 0.005)
end if

end if
end if

5.1. Infrastructure

To perform this validation, we used a laboratory with configurations similar to that
used in the tests presented in [11], to allow a better comparison of the obtained results.
However, we increased the storage capacity and standardized the amount of RAM used
due to the number, size, and estimated cloud-storage time of the files used. This laboratory
had six equal virtual machines (VMs) with Intel(R) Xeon(R) CPU E5-2660 v3 @ 2.60 GHz
processors, 64 bits, one core, 300 GB HD, a Linux Operating System, kernel version 4.15.0-
55-generic, distribution Ubuntu 18.04.4 LTS, and 12 GB of RAM.

As in [11], we installed the application that implements the CSS role features in three
VMs, and in the other three VMs, we installed the application that implements the ICS role
features. To execute the tests, due to the limitation of the available laboratory, one of the
VMs destined for the role of ICS had its processing capacity shared with the application
destined to the client role. We used Postgresql software as the DBMS for all applications,
and for the CSS and ICS applications, we used Glassfish Server Open software as the
application server.

In each of these VMs, in addition to the specific applications for each role, we installed
a node of the private Ethereum BN created exclusively to perform this validation. We
configured this network to use proof-of-authority as a consensus algorithm, five-second
intervals between the creation of each block, 7.5× 106 as the ideal sum of the gas consump-
tion of the transactions inserted in the same block, 1.0× 107 as the maximum consumption,
and 100 wei as the price of each gas unit.

5.2. File Submission

To start the validation process, we inserted a single instance of the SSTMC for trust
management in the BN, for which we configured three CSSs and three ICSs to self-register.
Using the client application, we submitted a copy of each of the nine files available for
storage in each of the three accessible CSSs, with different storage times, selecting the first
ICS as the verification service for the 27 copies. Subsequently, we repeated this process of
submitting files for storage two times, choosing the second and third ICS in each, totaling
81 stored files. Table 5 summarizes the average time spent preparing the files according to
the file size and the expected storage time.

Sensors 2021, 21, 4440 26 of 35

Table 5. Summary of time period spent preparing files for storage.

Size of Storage Time Average of Time Spent to

File (Years) Encrypt File Hash File Hash Data Blocks Save Database

52 MB 1 00 : 00 : 02.807 00 : 00 : 00.395 00 : 00 : 05.733 00 : 00 : 07.988
196 MB 2 00 : 00 : 11.796 00 : 00 : 01.213 00 : 00 : 41.569 00 : 00 : 11.670
243 MB 3 00 : 00 : 14.159 00 : 00 : 01.317 00 : 01 : 16.001 00 : 00 : 12.999
593 MB 4 00 : 00 : 29.728 00 : 00 : 03.715 00 : 04 : 07.053 00 : 00 : 15.737
750 MB 5 00 : 00 : 38.259 00 : 00 : 03.829 00 : 06 : 32.848 00 : 00 : 17.567

1 GB 10 00 : 00 : 52.907 00 : 00 : 05.564 00 : 19 : 10.344 00 : 00 : 27.924
2 GB 15 00 : 01 : 54.326 00 : 00 : 11.250 00 : 54 : 08.700 00 : 00 : 36.470
5 GB 20 00 : 05 : 16.666 00 : 00 : 48.958 03 : 50 : 55.159 00 : 00 : 43.656
10 GB 25 00 : 08 : 11.177 00 : 01 : 11.778 11 : 00 : 34.356 00 : 00 : 53.099

5.3. Effectiveness and Efficiency Validation

To validate the architecture’s effectiveness in monitoring the integrity of large files
stored in the cloud for long periods, we used the same tool applied in the validations
presented in [11]. This tool allowed simulating the passing of a day, forcing the ICS to
perform its daily process of checking the results of previous challenges and generating new
challenges every n minutes. In addition, the tool recorded the results obtained monitoring
each file and the variations in the trust level assigned to each CSS. Due to the size and
quantity of files used in this validation, the interval time used to simulate the passage of a
day was 3 min.

To determine if the architecture is effective in identifying the simplest flaws, both in
small and large files, we replaced the content of one randomly chosen byte in each of the file
copies stored in the three CSSs. After completing the validation environment preparation,
we started the integrity checking process of the stored files using the simulation tool. Next,
over fewer than 100 days of execution, the faults, previously inserted in the 81 files, were
already identified. Table 6 shows the day of execution when the architecture found each
implanted failure, and a comparative graph of the time spent to find the flaws in the files
stored in each CSS is shown in Figure 8.

Figure 8. Comparison of the periods required to identify corrupted files in each of the CSSs.

Sensors 2021, 21, 4440 27 of 35

Table 6. Results of validation session per CSS.

File Corrupted
Failure Identification Day

CSS 1 CSS 2 CSS 3

1st 7th 8th 1st
2nd 15th 9th 16th
3rd 24th 9th 43th
4th 27th 15th 45th
5th 31th 17th 45th
6th 36th 23th 52th
7th 40th 24th 52th
8th 40th 28th 57th
9th 45th 38th 60th

10th 48th 43th 61th
11th 49th 45th 63th
12th 52th 47th 63th
13th 56th 51th 63th
14th 56th 52th 64th
15th 65th 62th 66th
16th 66th 63th 70th
17th 68th 66th 71th
18th 69th 69th 78th
19th 69th 69th 82th
20th 74th 73th 85th
21th 75th 74th 87th
22th 78th 76th 88th
23th 81th 76th 89th
24th 82th 81th 89th
25th 88th 82th 92th
26th 88th 84th 95th
27th 92th 86th 98th

The results obtained in this validation process confirmed the effectiveness of the
architecture, regardless of file size and expected storage time. After grouping the validation
results according to file size and respective storage time, we observed that the average
time to identify a failure in a file varied between 46.8 and 66.8 days and that this variation
in the average time was not directly related to the increase in storage time or file size.
Table 7 presents a summary of the results obtained according to file size and storage time
in ascending order of average time to identify the failure in a file. Figure 9 depicts a
comparative graph of when the architecture found the flaws in each file according to file
size and storage time.

Table 7. Summary of results by file size and storage time.

Size of File Storage Time
Days to Identify the Integrity Violation

Minimum Maximum Average

50 MB 1 year 1 74 46.8
5 GB 20 years 15 98 47.6

750 MB 5 years 7 81 48.8
200 MB 2 years 15 92 55.7

1 GB 10 years 24 82 60.4
600 MB 4 years 8 88 63.0
250 MB 3 years 9 88 63.7

2 GB 15 years 24 95 65.0
10 GB 25 years 45 92 66.8

Sensors 2021, 21, 4440 28 of 35

Figure 9. Comparison of the periods required to identify corrupted files by file size and storage time.

To conclude the analysis, we compared the results obtained in this architecture valida-
tion process with the test results presented in [11], where the predicted storage time was
the same for all files (one year), the largest tested file was 1 GB, and the total number of
monitored files was 54. The comparison result confirms the efficiency of the architecture
regardless of quantity, size, and expected storage time of the files used because the average
time to identify a failure varied only from 57.07 to 57.4 days.

Although the performed tests increased the number of monitored files by 50%, the
largest file size by 1000%, and up to 2500% in storage time, the identified time variation
represented an increase of only 0.57% in the average time spent finding failures. Figure 10
compares the results obtained by each CSS in this validation to the results of the tests
published in [11], and Table 8 summarizes the results obtained in this validation.

Figure 10. Comparison of results obtained using large files and long storage periods with the results
published in Pinheiro et al. [11].

Sensors 2021, 21, 4440 29 of 35

Table 8. Summary of the results of this validation.

CSS Checked Files
Days to Identify the Integrity Violation

Minimum Maximum Average

1 27 7 92 55.1
2 27 8 86 50.7
3 27 1 98 66.5

General 81 1 98 57.4

6. Security Analysis

From a security perspective, we defined the processes executed in the architecture
proposed in this research considering that the roles client, ICS, and CSS would act according
to the malicious adversarial model concept. In this model, it is assumed that the parties
involved in a process are unreliable. That is, they can send invalid data, obtain sensitive
information, leak information, fail to follow the steps provided, or act in collusion to harm
other parties [62].

The BN role is considered trustworthy by all other roles because its responsibilities
are implemented through smart contracts, a technology characterized by being difficult
to be violated, as described in Section 2.3. In sequence, we describe the limitations of the
research conducted in Section 6.1; in Section 6.2, we present the main attack scenarios on
the proposed architecture whose sources are the client, ICS, and CSS roles. For each attack
scenario, we present the defense mechanisms adopted in the architecture to prevent or
reduce the probability of success of an attack.

6.1. Research Limitations

Smart contracts are an emerging technology for which it is assumed that there are
still undiscovered vulnerabilities [63]. Once deployed in BN, smart contracts are difficult
to modify, and if there are security vulnerabilities, it would be hard to prevent or contain
any attacks. To minimize the risks of becoming vulnerable, we performed the encoding of
smart contracts SSTMC and CFSMC following the best security practices described in [64].

As the reasons for insecurity are the limitations of the adopted technology, which may
or may not be effective, we assumed that the blockchain platform and the smart contracts
used in the environment are safe. We also think that an opponent would not gain control
of more than 49% of the BN nodes, which means an attacker would neither be able to
modify the information stored in the blockchain nor interfere with the behavior of the
smart contracts during their execution.

Likewise, it is expected that at any given moment, with the evolution in current
computers and the consequent growth in computational power available to users, the
cryptographic mechanisms currently available would become inefficient. However, this
risk is another technological limitation that was not covered within the scope of this
research and, because of this, we assumed that both the cryptographic algorithms and hash
sizes used are safe and will remain so throughout the period of file storage in the cloud.

6.2. Resistance Against Attacks

Attack 1.

The client sends a corrupted file to the CSS.
Defense mechanism: The client generates and inserts the file hash in an instance of

the CFSMC and stores it in the BN. When receiving the file together with the address of the
respective CFSMC instance, the CSS generates the hash of this file and compares it with
the hash stored in the respective CFSMC, rejecting the received file if the compared hashes
are different.

Sensors 2021, 21, 4440 30 of 35

Attack 2.

In the CFSMC instance linked to its file, the client stores the hashes to verify the
responses to the challenges with content incompatible with the file/challenge.

Defense mechanism: After receiving the file, the CSS randomly chooses a percentage of
the challenge verification hashes registered in the respective CFSMC and requires the client
to submit the corresponding challenges, which are answered by the CSS and validated
independently by the CFSMC. The CSS rejects the file received if the CFSMC does not
consider all responses to these challenges valid.

Attack 3.

The ICS does not comply with the rules provided in the architecture and fails to submit
the daily amount of challenges to the CSS.

Defense Mechanism: The client periodically chooses an ICS, a CSS, and an audit date,
after which the client obtains instances from the CFSMC, linked to the stored files and
monitored by the chosen CSS and ICS, respectively, and the total number of challenges
registered for each file on the chosen date. Next, the client obtains the TL/CSS from the
SSTMC on the audited date. Using the obtained TL/CSS, the client computes the number
of challenges that should have been submitted to the CSS on the referred date. If the client
identifies any discrepancy between the number of challenges submitted by the ICS and
the amount calculated according to the TL/CSS on the audited date, the client begins the
process of replacing the contracted ICS.

Attack 4.

The CSS creates the hash responses for all challenges previously generated by the
client from information on these challenges improperly made available by the ICS, stores
these responses, and deletes the stored file.

Defense mechanism: The client only sends the information to the ICS to generate
challenges for the contract validity period between the ICS and the client. This period
must be shorter than the period established for storing the file in the CSS. For this reason,
even if the CSS receives information about the challenges in advance from the ICS and it
pre-calculates the responses to the challenges of that period, the CSS would not be able to
delete the client file as it would not be able to predict for what challenges the client will
submit information to the ICS after the renewal of the contract between them.

Attack 5.

After receiving the file for storage, the CSS pre-calculates and stores the responses for
all possible challenges and deletes the received file.

Defense mechanism: The Client generates the challenges before submitting the file
for storage based on the concatenation of the content of the randomly chosen file fractions.
For this, the client divides the file into 4096 fractions and, for each challenge, randomly
chooses 16 non-repeated fractions (simple arrangement). Since the possible number of
combinations of these fractions (C(4096,16)) is approximately 6.09× 1057 and the length of
the answer for each challenge is 32 bytes, the CSS would need to store almost 1.5× 1047 TB
of data to ensure that it has all the answers to the possible challenges generated for a single
file, which makes the attack impracticable because it surpasses the cost of storing the file.

Attack 6.

The CSS uses the information used by CFSMC to validate the responses to the chal-
lenges, which are publicly stored in the BN to identify the challenges generated by the
Client, stores the responses, and deletes the stored file.

Defense mechanism: For the validation of the response generated by the CSS and
registered in the CFSMC instance linked to the file, the referred smart contract needs to
concatenate the CSS response with a 256 bit hash generated by the client from a pseudo-
random and exclusive password for each challenge, which is only made available to the

Sensors 2021, 21, 4440 31 of 35

CFSMC when the ICS records the challenge. Therefore, to find only one challenge, it
would be necessary, on average, to compare the response of half of the 6.09× 1057 possible
combinations of fractions that produce the challenge concatenated with half of each of the
1.15× 1077 possible password combinations.

Attack 7.

The CSS repeats the challenge response that has already been answered and validated
successfully to artificially improve its trust level.

Defense mechanism: The CFSMC, when receiving the answer to a challenge, verifies
whether there is a recorded response for the referred challenge and, in this case, it simply
disregards the answer. Additionally, the CFSMC implements a mechanism that ensures
that the TV/CSS increase/decrease can be requested only once for each cycle of challenges.

Attack 8.

The client inserts a smart contract with a different implementation than the one
established for the CFSMC in the BN, intending to simulate integrity violations and reduce
the TV/CSS, consequently compromising the CSS reputation.

Defense mechanism: The SSTMC implements a routine in the methods responsible for
receiving the requests to increase/decrease the TV/CSS that verifies whether the address
of the smart contract from which the request originates is on the list of smart contracts
previously authorized by the respective CSS, discarding the request when not found.
The CSS recognizes a CFSMC through the CFSMC acceptance registration in the SSTMC
instance as the final result of the storage request audit and acceptance process. In this
process, among other actions, the CSS checks whether the smart contract address, received
with the storage request, points to an instance of the standard implementation of the
CFSMC stored in the BN. Otherwise, the CSS immediately rejects the file.

7. Limitations

The number of files simultaneously submitted for storage in the CSPs is limited to the
BN’s capacity to process the transactions that store the CFSMC instance linked to each file
and information for validating the challenges. This limitation occurs because the proposed
architecture requires the client to provide the address on the BN of the CFSMC instance
linked to the file before submitting its content for storage in the CSP. However, the client
will only obtain the referred address after the BN processes the transaction containing the
client’s request for the CFSMC instance insertion in the blockchain.

The maximum storage time with the security monitoring guaranteed by the architec-
ture is limited to the validity period of the security provided by the encryption and hashing
algorithms adopted in the architecture implementation. The current security can be broken
in the future due to the discovery of vulnerabilities in the adopted cryptographic solution
implementations or an exponential increase in the available computational power that will
make the brute force attacks on them efficient.

Although the architecture proposed in this work predicts the possibility of being used
in public BNs, as it was beyond the scope of the current research phase, the costs related to
fees charged by the nodes responsible for inserting new transaction blocks in the blockchain
were not analyzed. Furthermore, the possible impacts of the flow of transactions generated
by the architecture on the fluctuation in the value of fees charged by the BN to process the
transactions were also not evaluated.

8. Conclusions

The use of solutions based on cloud computing was presented as a viable alternative
to reducing the costs and the complexity of managing institutions’ information technology
resources. Pinheiro et al. [11] proposed a software architecture that allows the storage of
files in cloud services, with guaranteed information privacy and permanent monitoring of

Sensors 2021, 21, 4440 32 of 35

the integrity of the files, based on technologies such as blockchain, smart contracts, and
computational trust.

Among the possible applications for the proposed architecture, we highlight the
storage of backups of the database of electronic document management systems, which, in
most cases, are large files and, due to legal issues, need to be stored for long periods. In this
sense, this article presented a validation of the effectiveness and efficiency of the referred
architecture when used for the storage and monitoring of large files for long periods. The
article also presented an analysis of the security of this architecture.

From the results obtained in that validation process, it was initially possible to verify
that the average time spent in the steps that comprise the process of preparing the files
for submission to the cloud grew in proportion to the file size and the expected storage
time, as shown in Table 5. Most of this time spent is the client generating the challenge
verification hashes for the content of each data block.

The changed byte detection in each of the 81 monitored files up to 10 GB in size and
expected storage time of up to 25 years occurred in an average period of 57.4 days, as shown
in Table 8. This result confirmed that the architecture maintained its efficiency when used
with large files and longer periods of storage, and proved the architecture’s effectiveness in
identifying flaws in files regardless of file size or storage time. The confirmation occurred
because even with a 50% increase in the number of files, up to a 1000% increase in file size,
and up to a 2500% increase in storage time, the average time to identify an adulterated file
increased only 0.57% (0.33 day) compared to the results obtained in Pinheiro et al. [11].

To conclude, we presented an analysis of the main attacks expected against the
functioning of the proposed architecture. For each described attack, we showed the defense
mechanism that guarantees the architecture’s security against the attack, and explained
how the executed actions nullify the possibility of the attack’s success.

8.1. Future Works

For future research, we intend to propose an improved version of this architecture
that implements a dynamic mechanism to define the number of fractions by file and the
number of these fractions that compose each challenge, both varying according to the file
size. This change aims to improve the performance of the process of preparing files larger
than 10 GB while maintaining the efficiency of the adulterated file identification process.

Given the existence of several blockchain platforms with different characteristics and
applications, we plan to implement and test the proposed architecture on some of these
platforms, such as Hyperledger Fabric. The aim is to measure the architecture’s efficiency
gain or loss in each of these platforms, identifying the advantages, disadvantages, and
limitations of the architecture. For each tested platform, based on its implementation
characteristics and obtained results, we hope to identify, propose, and test improvements
in the architecture processes that help to increase the overall architecture efficiency.

For this research sequence, another objective is to analyze the costs and the feasibility
of adopting the proposed architecture using a public BN. For this purpose, we intend to
conduct a set of tests to determine the expected costs concerning the processing fees of
the transactions generated by each of the process phases defined in the architecture. In
addition, based on the results obtained, we intend to identify opportunities to suggest
improvements in the proposed architecture to reduce transaction costs, focusing on the
phases that represent the largest share of the total cost of operation.

We also propose in future work to determine the applicability of artificial intelligence
(AI) techniques to allow the architecture processes to self-adapt to changes in the environ-
ment (e.g., the increase in network latency or unexpected growth in demand for a particular
CSP). Among the possible improvements through the adoption of AI, we highlight the
implementation of intelligent load balancing for the challenge generation process. This load
balancing must consider scheduling its execution during the periods of the day with less
network traffic and the least amount of pending processing processes in the BN. We also
highlight the use of dynamic rules in the calculation of TL/CSS that consider, in addition

Sensors 2021, 21, 4440 33 of 35

to the number of challenges answered correctly, the number of files stored by each CSS,
minimizing differences in the speed of the evolution of the TL/CSS between large and
small providers.

Author Contributions: A.P., E.D.C., and R.T.d.S.J. conceived the architecture; A.P. developed the
corresponding prototype for validation purposes; R.d.O.A. conceived the experiments and specified
the data collection requirements for the validation of results. All authors contributed equally to the
performing of the experiments, to the resulting data analysis, and to writing the paper. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was developed in a laboratory with computational and staff resources supported
in part by CNPq—Brazilian National Research Council, grant 312180/2019-5 PQ-2, grant BRICS 2017-
591 LargEWiN, and grant 465741/2014-2 INCT in Cybersecurity; in part by CAPES—Brazilian Higher
Education Personnel Improvement Coordination, grant 23038.007604/2014-69 FORTE and grant
88887.144009/2017-00 PROBRAL; in part by the Brazilian Ministry of the Economy, grant 005/2016
DIPLA and grant 083/2016 ENAP; in part by the Institutional Security Office of the Presidency of
Brazil, grant ABIN 002/2017; in part by the Administrative Council for Economic Defense, grant
CADE 08700.000047/2019-14; in part by the General Attorney of the Union, grant AGU 697.935/2019;
in part by the Ministry of Citizenship, grant MC 01/2019; in part by the Ministry of Justice and Public
Security, grant MJSP 01/2019; and in part by the University of Brasília through the Research and
Innovation Dean grant DPI/DPG 01/2021.

Acknowledgments: The authors would like to thank the Brazilian Army’s Department of Science
and Technology for his support during the execution of this research study.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Brazil. Medida Provisória nº 2.200-2, de 24 de agosto de 2001. In Diário Oficial [da] República Federativa do Brasil; Section 1; Poder

Executivo: Brasília, Brazil, 2001.
2. United States of America. Public Law 106-229: Electronic Signatures in Global and National Commerce Act. Available online:

https://www.govinfo.gov/content/pkg/PLAW-106publ229/pdf/PLAW-106publ229.pdf (accessed on 27 May 2021).
3. Brazil. Arquivo Nacional. Conselho Nacional de Arquivos. Classificação, Temporalidade e Destinação de Documento de Arquivo;

Arquivo Nacional: Rio de Janeiro, Brazil, 2001.
4. United Kingdom. The Money Laundering, Terrorist Financing and Transfer of Funds (Information on the Payer) Regulations.

Available online: https://www.legislation.gov.uk/uksi/2017/692 (accessed on 27 May 2021).
5. Amaral, D.M.; Gondim, J.J.; Albuquerque, R.D.O.; Orozco, A.L.S.; Villalba, L.J.G. Hy-SAIL. IEEE Access 2019, 7, 90082–90093.

[CrossRef]
6. Tang, X.; Huang, Y.; Chang, C.C.; Zhou, L. Efficient Real-Time Integrity Auditing With Privacy-Preserving Arbitration for Images

in Cloud Storage System. IEEE Access 2019, 7, 33009–33023. [CrossRef]
7. Zhao, H.; Yao, X.; Zheng, X.; Qiu, T.; Ning, H. User stateless privacy-preserving TPA auditing scheme for cloud storage. J. Netw.

Comput. Appl. 2019, 129, 62–70. [CrossRef]
8. Wang, F.; Xu, L.; Wang, H.; Chen, Z. Identity-based non-repudiable dynamic provable data possession in cloud storage. Comput.

Electr. Eng. 2018, 69, 521–533. [CrossRef]
9. Jeong, J.; Joo, J.W.J.; Lee, Y.; Son, Y. Secure cloud storage service using bloom filters for the internet of things. IEEE Access 2019,

7, 60897–60907. [CrossRef]
10. Pinheiro, A.; Dias Canedo, E.; de Sousa Junior, R.; de Oliveira Albuquerque, R.; García Villalba, L.; Kim, T.H. Security Architecture

and Protocol for Trust Verifications Regarding the Integrity of Files Stored in Cloud Services. Sensors 2018, 18, 753. [CrossRef]
11. Pinheiro, A.; Canedo, E.D.; De Sousa, R.T.; Albuquerque, R.d.O. Monitoring File Integrity Using Blockchain and Smart Contracts.

IEEE Access 2020, 8, 198548–198579. [CrossRef]
12. Google. Google Cloud Platform—Cloud Storage. Available online: https://cloud.google.com/storage (accessed on 2 June 2021).
13. Amazon. Amazon Simple Storage Service (Amazon S3). Available online: http://aws.amazon.com/pt/s3 (accessed on 2 June 2021).
14. Microsoft. Microsoft Azure—Storage. Available online: https://azure.microsoft.com/en-us/services/storage (accessed on 2 June 2021).
15. Walport, M. Distributed Ledger Technology; Technical Report; UK Government Office Science: London, UK, 2016.
16. Hill, B.; Chopra, S.; Valencourt, P.; Prusty, N. Blockchain Developer’s Guide; Packt Publishing: Birmingham, UK, 2018.

https://www.govinfo.gov/content/pkg/PLAW-106publ229/pdf/PLAW-106publ229.pdf
https://www.legislation.gov.uk/uksi/2017/692
http://doi.org/10.1109/ACCESS.2019.2925735
http://dx.doi.org/10.1109/ACCESS.2019.2904040
http://dx.doi.org/10.1016/j.jnca.2019.01.005
http://dx.doi.org/10.1016/j.compeleceng.2017.09.025
http://dx.doi.org/10.1109/ACCESS.2019.2915576
http://dx.doi.org/10.3390/s18030753
http://dx.doi.org/10.1109/ACCESS.2020.3035271
https://cloud.google.com/storage
http://aws.amazon.com/pt/s3
https://azure.microsoft.com/en-us/services/storage

Sensors 2021, 21, 4440 34 of 35

17. Sunyaev, A. Distributed ledger technology. In Internet Computing; Springer: Cham, Switzerland, 2020; pp. 265–299. [CrossRef]
18. Lange, M.; Leiter, S.C.; Alt, R. Defining and Delimitating Distributed Ledger Technology. In Business Process Management:

Blockchain and Central and Eastern Europe Forum. BPM 2019; Lecture Notes in Business Information Processing; Di Ciccio,
C., Gabryelczyk, R., García-Bañuelos, L., Hernaus, T., Hull, R., Štemberger, M.I., Kő, A., Staples, M., Eds.; Springer: Cham,
Switzerland, 2019; Volume 361, pp. 43–54. [CrossRef]

19. Fernando, D.; Ranasinghe, N. Permissioned Distributed Ledgers for Land Transactions; A Case Study. In Business Process
Management: Blockchain and Central and Eastern Europe Forum. BPM 2019; Lecture Notes in Business Information Processing;
Di Ciccio, C., Gabryelczyk, R., García-Bañuelos, L., Hernaus, T., Hull, R., Štemberger, M.I., Kő, A., Staples, M., Eds.; Springer:
Cham, Switzerland, 2019; Volume 361, pp. 136–150. [CrossRef]

20. Maull, R.; Godsiff, P.; Mulligan, C.; Brown, A.; Kewell, B. Distributed ledger technology. Strateg. Chang. 2017, 26, 481–489.
[CrossRef]

21. Ølnes, S.; Ubacht, J.; Janssen, M. Blockchain in government. Gov. Inf. Q. 2017, 34, 355–364. [CrossRef]
22. Alharby, M.; van Moorsel, A. Blockchain-based smart contracts. Comput. Sci. Inf. Technol. 2017, 7, 125–140. [CrossRef]
23. Abeyratne, S.A.; Monfared, R.P. Blockchain ready manufacturing supply chain using distributed ledger. Int. J. Res. Eng. Technol.

2016, 5, 1–10. [CrossRef]
24. Cong, L.W.; He, Z. Blockchain disruption and smart contracts. Rev. Financ. Stud. 2019, 32, 1754–1797. [CrossRef]
25. Wüst, K.; Gervais, A. Do you need a blockchain? In Proceedings of the 2018 Crypto Valley Conference on Blockchain Technology

(CVCBT), Zug, Switzerland, 20–22 June 2018; pp. 45–54. [CrossRef]
26. Christidis, K.; Devetsikiotis, M. Blockchains and smart contracts for the internet of things. IEEE Access 2016, 4, 2292–2303.

[CrossRef]
27. Bitcoin.org. Bitcoin. Available online: https://bitcoin.org/ (accessed on 28 May 2021).
28. Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. Available online: https://bitcoin.org/bitcoin.pdf (accessed on

20 January 2020).
29. Ethereum Foundation. Ethereum. Available online: https://ethereum.org/ (accessed on 28 May 2021).
30. Buterin, V. Ethereum White Paper: A Next Generation Smart Contract & Decentralized Application Platform. 2013. Available

online: http://bitpaper.info/paper/5634472569470976 (accessed on 2 April 2020).
31. Kraft, D.; Castellucci, R.; Rand, J.; Roberts, B.; Bisch, J.; Colosimo, A.; Conrad, P.; Bodiwala, A.; Dam, L. Namecoin: Decentralize

All the Things. Available online: https://www.namecoin.org/ (accessed on 30 May 2021).
32. Kalodner, H.A.; Carlsten, M.; Ellenbogen, P.; Bonneau, J.; Narayanan, A. An Empirical Study of Namecoin and Lessons for

Decentralized Namespace Design. In Proceedings of the Workshop on the Economics of Information Security (WEIS), Delft,
The Netherlands, 22–23 June 2015.

33. Coin Sciences Ltd. Multichain: Enterprise Blockchain. That Actually Works. Available online: https://www.multichain.com/
(accessed on 30 May 2021).

34. Electric Coin Co. Zcash. Available online: https://z.cash/ (accessed on 30 May 2021).
35. The Monero Project. Monero: A Private Digital Currency. Available online: https://www.getmonero.org/ (accessed on 28 May 2021).
36. Noether, S.; Noether, S. Monero Is Not That Mysterious. 2014. Available online: https://web.getmonero.org/ru/resources/

research-lab/pubs/MRL-0003.pdf (accessed on 1 Jun 2021).
37. The Linux Foundation. Hyperledger: Advancing Business Blockchain Adoption through Global Open Source Collaboration.

Available online: https://www.hyperledger.org/ (accessed on 2 June 2021).
38. Androulaki, E.; Barger, A.; Bortnikov, V.; Cachin, C.; Christidis, K.; De Caro, A.; Enyeart, D.; Ferris, C.; Laventman, G.; Manevich,

Y.; et al. Hyperledger fabric: a distributed operating system for permissioned blockchains. In Proceedings of the European
Conference on Computer Systems (EuroSys), Porto, Portugal, 23–26 April 2018; pp. 1–15. [CrossRef]

39. Maltseva, D. 10 Most Popular & Promising Blockchain Platforms. Available online: https://dev.to/dianamaltseva8/10-most-
popular--promising-blockchain-platforms-djo (accessed on 26 May 2021).

40. Subramanian, B. Top 5 Use Cases and Platforms of Blockchain Technology; Technical Report; Data Science Foundation: Altrincham, UK, 2019.
41. Sonee, S. 5 Best Platform for Building Blockchain-Based Applications; Technical Report; Hash Studioz: HQ-Noida, India, 2020.
42. Sajana, P.; Sindhu, M.; Sethumadhavan, M. On blockchain applications. Int. J. Pure Appl. Math. 2018, 118, 2965–2970.
43. Ethereum Foundation. Solidity. Available online: https://solidity.readthedocs.io/ (accessed on 10 May 2020).
44. Yuan, R.; Xia, Y.B.; Chen, H.B.; Zang, B.Y.; Xie, J. Shadoweth: Private smart contract on public blockchain. J. Comput. Sci. Technol.

2018, 33, 542–556. [CrossRef]
45. Valenta, M.; Sandner, P. Comparison of Ethereum, Hyperledger Fabric and Corda; Frankfurt School Blockchain Center: Frank-

furt am Main, Germany, 2017.
46. Wood, G. Ethereum: A Secure Decentralised Generalised Transaction Ledger. Available online: https://files.gitter.im/ethereum/

yellowpaper/VIyt/Paper.pdf accessed on 25 April 2020).
47. Vo-Cao-Thuy, L.; Cao-Minh, K.; Dang-Le-Bao, C.; Nguyen, T.A. Votereum: An Ethereum-Based E-Voting System. In Proceedings

of the 2019 IEEE-RIVF International Conference on Computing and Communication Technologies (RIVF), Danang, Vietnam,
20–22 March 2019; pp. 1–6.

48. Crafa, S.; Di Pirro, M.; Zucca, E. Is solidity solid enough? In Financial Cryptography and Data Security; Springer: Cham, Switzerland,
2019; pp. 138–153. [CrossRef]

http://dx.doi.org/10.1007/978-3-030-34957-8_9
http://dx.doi.org/10.1007/978-3-030-30429-4_4
http://dx.doi.org/10.1007/978-3-030-30429-4_10
http://dx.doi.org/10.1002/jsc.2148
http://dx.doi.org/10.1016/j.giq.2017.09.007
http://dx.doi.org/10.5121/csit.2017.71011
http://dx.doi.org/10.15623/ijret.2016.0509001
http://dx.doi.org/10.1093/rfs/hhz007
http://dx.doi.org/10.1109/CVCBT.2018.00011
http://dx.doi.org/10.1109/ACCESS.2016.2566339
https://bitcoin.org/
https://bitcoin.org/bitcoin.pdf
https://ethereum.org/
http://bitpaper.info/paper/5634472569470976
https://www.namecoin.org/
https://www.multichain.com/
https://z.cash/
https://www.getmonero.org/
https://web.getmonero.org/ru/resources/research-lab/pubs/MRL-0003.pdf
https://web.getmonero.org/ru/resources/research-lab/pubs/MRL-0003.pdf
https://www.hyperledger.org/
http://dx.doi.org/10.1145/3190508.3190538
https://dev.to/dianamaltseva8/10-most-popular--promising-blockchain-platforms-djo
https://dev.to/dianamaltseva8/10-most-popular--promising-blockchain-platforms-djo
https://solidity.readthedocs.io/
http://dx.doi.org/10.1007/s11390-018-1839-y
https://files.gitter.im/ethereum/yellowpaper/VIyt/Paper.pdf
https://files.gitter.im/ethereum/yellowpaper/VIyt/Paper.pdf
http://dx.doi.org/10.1007/978-3-030-43725-1_11

Sensors 2021, 21, 4440 35 of 35

49. Kiayias, A.; Zindros, D. Proof-of-work sidechains. In Financial Cryptography and Data Security; Springer: Cham, Switzerland, 2019;
pp. 21–34. [CrossRef]

50. Maymounkov, P. Online Codes; Technical Report; New York University: New York, NY, USA, 2002.
51. Pugh, W. Skip lists. Commun. ACM 1990, 33, 668–676. [CrossRef]
52. Erway, C.C.; Küpçü, A.; Papamanthou, C.; Tamassia, R. Dynamic provable data possession. ACM Trans. Inf. Syst. Secur. 2015,

17, 1–29. [CrossRef]
53. Shacham, H.; Waters, B. Compact proofs of retrievability. In Advances in Cryptology. ASIACRYPT 2008; Lecture Notes in Computer

Science; Pieprzyk, J., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5350, pp. 90–107. [CrossRef]
54. Boneh, D. The decision diffie-hellman problem. In Algorithmic Number Theory. ANTS 1998; Lecture Notes in Computer Science;

Buhler, J.P., Ed.; Springer: Berlin/Heidelberg, Germany, 1998; Volume 1423, pp. 48–63. [CrossRef]
55. Diffie, W.; Hellman, M. New directions in cryptography. IEEE Trans. Inf. Theory 1976, 22, 644–654. [CrossRef]
56. Galindo, D.; Garcia, F.D. A Schnorr-like lightweight identity-based signature scheme. In Progress in Cryptology. AFRICACRYPT

2009; Lecture Notes in Computer Science; Preneel, B., Ed.; Springer: Berlin, Heidelberg, 2009; Volume 5580, pp. 135–148.
[CrossRef]

57. Bloom, B.H. Space/time trade-offs in hash coding with allowable errors. Commun. ACM 1970, 13, 422–426. [CrossRef]
58. Zhang, Y.; Xu, C.; Lin, X.; Shen, X.S. Blockchain-based public integrity verification for cloud storage against procrastinating

auditors. IEEE Trans. Cloud Comput. 2019. [CrossRef]
59. Boneh, D.; Lynn, B.; Shacham, H. Short signatures from the Weil pairing. J. Cryptol. 2004, 17, 297–319. [CrossRef]
60. Rahalkar, C.; Gujar, D. Content Addressed P2P File System for the Web with Blockchain-Based Meta-Data Integrity. In

Proceedings of the 2019 International Conference on Advances in Computing, Communication and Control (ICAC3), Mumbai,
India, 20–21 December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–4. [CrossRef]

61. Meroni, G.; Plebani, P.; Vona, F. Trusted artifact-driven process monitoring of multi-party business processes with blockchain. In
Business Process Management: Blockchain and Central and Eastern Europe Forum. BPM 2019; Lecture Notes in Business Information
Processing; Hildebrandt, T., van Dongen, B., Rolinger, M., Mendling, J., Eds.; Springer: Cham, Switzerland, 2019; Volume 361,
pp. 55–70. [CrossRef]

62. Christen, P.; Ranbaduge, T.; Schnell, R. Linking Sensitive Data; Springer Nature: Cham, Switzerland, 2020. [CrossRef]
63. Wang, S.; Tang, X.; Zhang, Y.; Chen, J. Auditable Protocols for Fair Payment and Physical Asset Delivery Based on Smart

Contracts. IEEE Access 2019, 7, 109439–109453. [CrossRef]
64. Consensys. Ethereum Smart Contract Security Best Practices. Available online: https://consensys.github.io/smart-contract-best-

practices/ (accessed on 10 December 2020).

http://dx.doi.org/10.1007/978-3-030-43725-1_3
http://dx.doi.org/10.1145/78973.78977
http://dx.doi.org/10.1145/2699909
http://dx.doi.org/10.1007/978-3-540-89255-7_7
http://dx.doi.org/10.1007/BFb0054851
http://dx.doi.org/10.1109/TIT.1976.1055638
http://dx.doi.org/10.1007/978-3-642-02384-2_9
http://dx.doi.org/10.1145/362686.362692
http://dx.doi.org/10.1109/TCC.2019.2908400
http://dx.doi.org/10.1007/s00145-004-0314-9
http://dx.doi.org/10.1109/ICAC347590.2019.9036792
http://dx.doi.org/10.1007/978-3-030-30429-4_5
http://dx.doi.org/10.1007/978-3-030-59706-1
http://dx.doi.org/10.1109/ACCESS.2019.2933860
https://consensys.github.io/smart-contract-best-practices/
https://consensys.github.io/smart-contract-best-practices/

	Introduction
	Background
	Distributed Technology
	Blockchain
	Smart Contracts
	
	Ethereum
	

	Solidity

	Related Works
	Monitoring the Integrity of Files Stored in the Cloud
	Blockchain and Smart Contracts

	Architecture for Monitoring the Integrity of Files in the Cloud
	Roles
	Client
	Cloud Storage Service
	Integrity Check Service
	Blockchain Network

	Smart Contracts
	Storage Service Trust Management Contract
	Cloud File Storage and Monitoring Contract

	Architecture Processes
	Preparation Phase
	Storage Phase
	Selection, Preparation, and Submission of Files for Storage in the Cloud
	File Storage Request Audit and Acceptance
	Hiring Service for Monitoring File Integrity

	Integrity Verification Phase
	Challenge Generation and Submission
	Verification of Previous Challenges
	Generation, Submission and Verification of the Responses to the Challenges
	Trust Value Calculation

	Architecture Validation
	Infrastructure
	File Submission
	Effectiveness and Efficiency Validation

	Security Analysis
	Research Limitations
	Resistance Against Attacks

	Limitations
	Conclusions
	

	References

