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Abstract: We discuss two methods to detect the presence and location of a person in an acousti-
cally small-scale room and compare the performances for a simulated person in distances between
1 and 2 m. The first method is Direct Intersection, which determines a coordinate point based on
the intersection of spheroids defined by observed distances of high-intensity reverberations. The
second method, Sonogram analysis, overlays all channels’ room impulse responses to generate an
intensity map for the observed environment. We demonstrate that the former method has lower
computational complexity that almost halves the execution time in the best observed case, but about
7 times slower in the worst case compared to the Sonogram method while using 2.4 times less
memory. Both approaches yield similar mean absolute localization errors between 0.3 and 0.9 m.
The Direct Intersection method performs more precise in the best case, while the Sonogram method
performs more robustly.

Keywords: presence detection; passive localization; room impulse response; acoustic localization;
indoor localization

1. Introduction

Acoustic localization systems can provide, partly due to the comparably slower wave
propagation, a high accuracy indoors similar to radio-based solutions, which are not
covered by ubiquitous satellite signals of Global Navigation Satellite Systems (GNSS) [1–3].
For some applications, it may not be desirable to equip persons or objects with additional
hardware as trackers due to inconvenience and privacy reasons. Previously, we reported
coarsely about indoor localization by Direct Intersection in [4]. In this work, we report
in detail on two algorithms for this application and their performances. The proposed
system is categorized as a passive localization system [5] and is implemented solely with
commercial off-the-shelf (COTS) hardware components.

Echolocation, such as the method used by bats to locate their prey, is a phenomenon
where the reflected sound waves are used to determine the location of objects or surfaces
that reflect the sound waves due to a change in acoustic impedance. This concept has been
extensively used for various investigations in the physics and engineering fields, such as
sound navigation and ranging (Sonar) [6,7] and even using only a single transducer for
transmission and reception [8].
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We draw the approach from bats, which can perceive the incoming reflected wave’s
direction due to its precise awareness of head angle, body motion, and timing. While the
exhaustive echolocation method of bats is not completely understood, one of the more
obvious aspects is the back-scattered signals’ difference of arrival in time between left
and right ears, which can be used to calculate the incoming sound wave’s direction [9].
This approach differs from approaches that more generally detect changes in the systems
response of a medium, where the responses act like fingerprints. However, in application,
insignificant changes in a room may lead to distortions in the response. This makes a better
knowledge of the specific room necessary. In contrast, determining times-of-arrival of
back-scattered waves is less dependent on the complete impulse response; we therefore
chose this approach. We investigate two different algorithms based on the time difference
of arrival of the first-order reflection to interpret the returned signals in a small office room
of approximately 3 m× 4 m× 3 m similar to [10], which are characteristic for the strong
multipath fading effects that partially overlap and interfere with the line-of-sight rever-
berations [11]. The signal frequency employed in our experiment is significantly higher
than the Schroeder frequency; therefore, we can assume the sound wave behaves much
like rays of light [12]. The physiological structure and the shape of the binaural hearing
conformation of bats, together with the natural and instinctive ability to perform head
movements to eliminate ambiguities, enhances the echolocation and therefore guarantees
excellent objects spatial localization [13]. Our system setup is a fixed structure, and we
compensate the adaptive bats head movements by adding two additional microphones to
the system. Furthermore, we raise the question of the performance of two approaches and
compare the memory consumption and execution time.

The detection of more than one person or object is not investigated in this work.

2. Related Work

Indoor presence detection may be achieved through a variety of different technologies
and techniques. For one, radio-frequency (RF)-based approaches have been implemented.
In general, these may be classified into two different employed techniques: received signal
strength indicator (RSSI)- and radio detection and ranging (Radar)-based approaches. The
former offers low-complexity systems with cheap hardware [14,15], whereas with the
latter one, higher accuracy may be achieved [16]. The other main concept employed in
indoor presence detection is using ultrasonic waves, which are applied in active trackers
indoors [17,18] and even underwater [19,20]. An entirely passive approach, as in [21],
generally analyzes audible frequencies, which can include speech and potentially violate
privacy regulations, similar to vision-based approaches. Acoustic solutions, which operate
close to or in the audible range, can be perceived by persons and animals alike, which may
cause irritation and in the worst case harm [22]. Therefore, special care has to be invested
in designing acoustic location systems. While radio-based solutions are less critical in this
concern, due to the fact that most organisms lack sensitivity to radio frequency signals,
the frequency allocation is much more restrictive due to licensing and regulations. While
LIDAR systems are highly accurate, but comparably costly, other light-based systems have
gathered interest again, due to their high accuracy potential, with low systems costs and
power consumption [23].

2.1. RF-RSSI

Mrazovac et al. [24] track the RSSI between stationary ZigBee communication nodes,
detecting changes to infer a presence from it. In the context of home automation, this
work is used to switch on and off home appliances. Seshadri et al. [15], Kosba et al. [14],
Gunasagaran et al. [25], and Retscher and Leb [26] analyze different signal strength features
for usability of detection and identification using standard Wi-Fi hardware. Kaltiokallio
and Bocca [27] reduce the power consumption of the detection system by distributed RSSI
processing.
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This technique was then improved by Yigitler et al. [28], who built a radio tomographic
map of the indoor area. The difference from the previously sampled map of RSSI values
is the notification of a presence or occupancy. This general concept is known in the field
of indoor localization as fingerprinting. Hillyard et al. [29] utilize these concepts to detect
border crossings.

2.2. RF-Radar

Suijker et al. [30] present a 24 GHz FMCW (Frequency-Modulated Continuous-Wave)
Radar system to detect indoor presence and to be used for intelligent LED lighting systems.
An interferometry approach is implemented by Wang et al. [16] for precise human tracking
in an indoor environment. Another promising approach in the RF domain is, instead
of using a time-reversal approach (as Radar does), deriving properties of the medium
(and contained, noncooperative objects) by means of wave front shaping as proposed
by del Hougne et al. [31,32]. This approach would also in principle be conceivable in the
acoustic wave domain.

2.3. Ultrasonic Presence Detection and Localization

A direct approach to provide room-level tracking is presented by Hnat et al. [33]. Ul-
trasonic range finders are mounted above doorways to track people passing beneath. More
precise localization can be achieved by using ultrasonic arrays as proposed by Caicedo and
Pandharipande [9,34]. The arrays’ signals can be used to obtain the range and direction-of-
arrival (DoA) estimates. The system is used for energy-efficient lighting systems. Pandhari-
pande and Caicedo [7] enhanced this approach to track users by probing and calculating the
position via the time difference of arrival (TDoA). Prior to that, Nishida et al. [35] proposed a
system consisting of 18 ultrasonic transmitters and 32 receivers, embedded in the ceiling of a
room with the aim to track elderly people and prevent them from experiencing accidents. A
time-of-flight (ToF) approach was proposed by Bordoy et al. [36], who used a static co-located
speaker-microphone pair to estimate human body and wall reflections. Ultrasonic range
sensing my be combined with infrared technology, as has been done by Mokhtari et al. [37],
to increase the energy efficiency. In lower frequency regimes, the resonance modes of a room
start to dominate the measured signals. This fact may be used to deduce source locations as
proposed by Nowakowski et al. [38] (cf. [39,40]).

2.4. Ultrasonic Indoor Mapping

Indoor mapping and indoor presence detection are two views of the same problem. In
both instances, one tries to estimate the range and direction for a geometrical interpretation.
Ribeiro et al. [41] employ a microphone array co-located to a loudspeaker to record the
room impulse response (RIR). The multiple reflections can be estimated from this RIR with
the use of l1-regularization and least-squares (LS) minimization, and a room geometry
can be inferred, achieving a range resolution of about 1 m. A random and sparse array
of receivers is proposed by Steckel et al. [42] for an indoor Sonar system. In addition to
that, the authors use wideband emission techniques to derive accurate three-dimensional
(3D) location estimates. This system is then enhanced with an emitter array to improve
the signal-to-noise-ratio (SNR) [43]. Another approach, implementing a binaural Sonar
sensor, is proposed by Rajai et al. [44]. A sensor was used to detect the wall within a
working distance of one meter. In a recent work by Zhou et al. [45], it is shown that a
single smartphone with the help of a gyroscope and an accelerometer can be used to derive
indoor maps by acoustic probing. Bordoy et al. [46] use an implicit mapping to enhance
the performance of acoustic indoor localization by estimating walls and defining virtual
receivers as a result of the signals’ reflections.

2.5. Algorithms

The first set of methods, which are broadly applied are triangulation algorithms as
described by Kundu [47]. In this work we focus on two Maximum-Likelihood approaches,
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similar to the one proposed by Liu et al. [48]. The first one, Direct Intersection (DI), uses
a Look-up-Table (LUT) and spheres inferred from the sensors delay measurements with
error margin [49], while the other one, the Sonogram method, populates a 3D intensity
map with probabilities to find likely positions of the asset. Since the approaches of the
two methods are different, it is likely to expect different outcomes in accuracy, precision,
computational complexity, and memory requirements.

3. System Overview

The system consists of a single acoustic transmitter, a multi-channel receiver, a power
distribution board, and a central computer to analyze the recorded signals. Four micro-
phones are placed equidistantly around the speaker and connected to the receiver board.
The set-up is shown in Figure 1 as it was used for the experiment reported below.

µC
D

A

D

A

µCPC
A

D

A

D

stx

s1

sK

sfb

Figure 1. Schematic representation of the system.

3.1. Signal Waveform

Due to their auto-correlation properties and the ability to maximize the Signal-
to-Noise-Ratio (SNR) without increasing acoustic amplitude, swept-frequency cosine,
i.e., frequency modulated chirp signals, perfectly fit our case-study [50]. Auto-correlated
frequency-modulated chirps are able to provide compressed pulses at the correlator output,
whose width in time space is defined as follows [51]:

Pw =
2
B

. (1)

The frequency-modulated signal employed in our experiments, xTx(t), is mathemati-
cally defined as follows:

stx(t) =

{
A cos(2πφ(t)), for 0 ≤ t ≤ Ts

0, otherwise
, with (2)

φ(t) =
fend − fstart

2Ts
t2 + fstartt, (3)
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where A denotes the signal amplitude, fstart is the start frequency, fend the end frequency,
B = fend − fstart the frequency bandwidth, Ts is the pulse duration, and φ(t) the instanta-
neous phase. The chirp instantaneous frequency is defined as follows:

f (t) = fstart +
fend − fstart

Ts
t, 0 ≤ t ≤ Ts. (4)

Taking into account the hardware characteristics of our setup, we selected a linear
up-chirp pulse with amplitude A = 1, Ts = 5 ms, fstart = 16 kHz, and fend = 22 kHz,
which result in a time-bandwidth product of T B = 30. The frequency response of a
chirp signal directly depends on the Time-Bandwidth (T B) product. For chirps with
T B ≥ 100, the pulse frequency response is almost rectangular [52]. However, due to the
hardware limitation of our setup, which do not allow a high (T B) product, the frequency
response will be characterized by ripples. In order to mitigate the spectrum disturbances,
we consider a window in the time domain the transmitted chirp pulse with a raised cosine
window [52]. The frequency band, chirp length, and shaping window were chosen to
minimize the system affecting persons and animals in hearing range. We implemented
chirps, due to their property of spreading the signals energy over time compared to a single
pulse to limit the maximal amplitude and resulting harmonics. While young and highly
audio-sensitive people can in principle hear these frequencies, the short signal length of
5 ms compared to the repetition interval of 1000 ms further reduces the occupation of the
low ultrasonic channel. Generally speaking, higher amplitudes and lower frequencies
potentially increase the operation range of the system, but this comes at a health risk for
humans and animals, which we seek to avoid.

3.2. Hardware Overview

To obtain 3D coordinates with static arrangement, a four-element microphone array
is sampled, as well as a feedback signal. This array records the incoming echo wave with
different time of arrival, depending on the incoming signal direction. Since unsuitable
hardware can affect the system’s performance [53], both the microphones and speaker were
tested for correct signal generation and reception in an anechoic box.

3.3. Data Acquisition

Each microphone’s signal was preconditioned before the digitization by the multi-
channel analog-to-digital converter, which was chosen to provide each channel with the
identical sample-and-hold trigger flank before conversion. Each frame consists of the signal
from each microphone and a feedback, which is recorded as an additional input to estimate
and mitigate playback jitter. The first layer of digital signal processing is to compress the
signal, extracting the reverberated acoustic amplitude over time and removing the empty
room impulse response (RIR).

3.3.1. Channel Phase Synchronization

Initially, we calculate the convolution of the feedback channel signal sfb with our
known reference signal sref in its analytic form to obtain the RIR and retrieve the time of
transmission from the compressed signal yfb, as shown in Equation (5), where j denotes the
imaginary unit.

yfb = |(sfb ~ sref) + j · H(sfb ~ sref)| (5)

This compressed analytic form yfb of the feedback signal sfb (see Figure 1) ideally
holds only a single pulse from the transmitted signal, if the output stage is impedance
matched. Searching for the global maximum returns both time of transmission and the
output amplitude.

aout = max
t−→t0

yfb(t) (6)

In the following, we refer to the start time of a transmission as t0, all other channels’
time scales are regarded relative to t0. Therefore, the signals of the microphone channels
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are truncated to remove information prior to the transmission. The ring-down of small
office rooms is in the order of 100 ms, so the repetition interval of consecutive transmissions
is chosen accordingly to be larger. This prevents leakage of late echos into the following
interval, which would result in peaks being recorded after the following interval’s line-of-
sight. The remaining signal frames from all microphones are compressed with the same
approach as the feedback channel, shown in Equations (5) and (6), to extract each channel’s
compressed analytic signal yi and line-of-sight detection time ti.

3.3.2. Baseline Removal

In the following, we refer to the acoustic channel response after the line-of-sight as
the echo profile. An example of such echo profiles is shown in Figure 2. While the line-of-
sight signal ideally provides the fastest and strongest response, large hard surfaces, like
desks, walls, and floors return high amplitudes, which are orders of magnitude above
a person’s echo. For a linear and stable channel, we can reduce this interference from
the environment by subtracting the empty room echo profile from each measurement,
following the approach of [54]. This profile loses its validity if the temperature changes,
the air is moving, or objects in the room are moved, e.g., an office chair is slightly displaced.
A dynamic approach to create the empty room profile is updating an estimation, when
no change is observed for an extended time or alternatively using a very low-weight
exponential filter to update the room estimation. In this work, the empty office room
was sounded N times directly before each test and averaged into an empty room echo
profile ȳ◦i for each channel i as denoted in Equation (7), to assure unchanged conditions
and reduce the complexity of the measurements. The removal itself is then, as mentioned
above, the subtraction of the baseline from each measurement, as in Equation (8), under
the assumption of coherence.

ȳ◦i = mean(y◦i ) (7)

ỹi = yi − ȳ◦i (8)

Figure 2. Exemplary magnitude plot of the compressed analytic signal, i.e., RIR, with (top) the
baseline drawn from an previous recording of the empty room, (middle) the room with a person in
it, and (bottom) the difference of the two above. The red highlighted line in the center marks the area
of interest due to geometric constraints. Note the changed scale of the ordinate in the bottom plot.
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3.3.3. Time-Gating

For our approach we assume some features of the person, such as being closer to
the observing system compared to the distant environment objects, like chairs, tables and
monitors, while another area of reverberations is in the close lateral vicinity of the system,
consisting, e.g., of lamps and the ceiling. This is exploited by introducing a time gate,
which only allows for non-zeros values in the interval of interest as in Equation (9) (also
compare Figure 2).

ỹtg,i =

{
ỹi, for tmin < t < tmax

0, otherwise
(9)

Another assumption is that of a small reverberation area on the person. We assume
the points of observation from each microphone to be sufficiently close on a person to
overlap. The latter assumption introduces an error, which limits the precision of the
system in the order of 10 cm [55], which we deem sufficient for presence detection, as a
person’s dimension is considerably larger in all directions. This estimation is based on
the approximate size of a person’s skull and its curvature with respect to the distance
to the microphones and their spacing. The closer the microphones and the further the
distance between head and device, the more the reflection points will approach each other.
If we regard a simplified 2D projection, where a person with a spherical head of radius
rH ≈ 10 cm moves in the y-plane only, the position of a reflection point R = (xR, zR) on
the head can be calculated by

xR = xC − rH sin (αR), and

zR = zC − rH cos (αR),
(10)

where xC and zC are the lateral and vertical center coordinates of the head and αR is the
reflection angle. The latter is calculated through

αR = tan−1 xC + dM
2

zC
, (11)

with the distance dM between the microphone and sender. The origin is set as the speaker
position. By geometric addition, the distance between two such reflection points can be
calculated and reach the maximum value if the head moves towards the center. In this case,
the reflection points would be on the opposing sides of the head and result in a mismatch
of 2 rh. The other extreme is laterally moving to a infinite distance, which increases the
magnitude of xC, while the distance between microphone and speaker stays constant;
therefore, the reflection points converge to a single point of reflection. In this work, the
distance between head center and speaker remained above 120 cm, with a projected error
distance of about 1.3 cm.

3.3.4. Echo Profile

During the experiment, the reflected signals from the floor, walls, tables, and chairs
have a very high amplitude. This interference can lead to masking the echo from the target
object. To reduce the effect of the interference, the empty room profile is used to subtract
the target impulse response from the input impulse response. If we define the reflection
from objects other than the target object as noise, we can increase the signal-to-noise ratio
with this method. The empty room impulse response is also called empty room echo profile
in this work. In Figure 2, the upper plot is the empty room impulse response, where the
experiment room is cleared of most clutter. The middle plot is the room with single static
object as target, shown in Figure 3. The lower plot shows the result of subtraction between
the the second and first plot, and the scale is adjusted for clarity.
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stx

s2s3

s4 s1

dMM

Figure 3. Experimental setup for K = 4 receivers spaced by dMM ≈ 0.2 m. The transmitted signal stx

is observed as reflected signals si by the system located near the ceiling of the room.

3.3.5. Distance Maps

Look-up tables are calculated before the experiment to estimate the travel distance of a
signal from the speaker to each microphone under the assumption of a direct reverberation
from a point at position ~x in the room and linear beam-like signal propagation. This grid is
formed by setting the center speaker as origin and spanning up a 3-dimensional Cartesian
coordinate system of points ~x through the room in discrete steps. We limit the grid to the
intervals X1 to X3 in steps of 1 cm to decrease the calculational effort and multipath content
under the prior knowledge of the rooms geometry as follows:

~x = (x1, x2, x3) ∈ X, where

X = {X1 × X2 × X3} ⊂ R3.
(12)

The look-up table approach serves to minimize the processing time during execution.
The distance maps provide pointers to convert from binary sampling points to distance
points. Each sub-matrix contains the sum of distance between each point in the room to the
corresponding ith microphone at the position ~xM,i and to the speaker at position ~xS, which
cover the flight path of the echoes, as in Equation (13):

Mi(~x) = ‖~x−~xS‖+ ‖~xM,i −~x‖. (13)

Therefore, the resultant entries in matrices M depend on the geometric arrangement
of speaker and microphones, and the matrix size corresponds to the area of detection, as in
Equation (12).
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3.4. Data Processing
3.4.1. Direct Intersection

The main assumption for this approach (Algorithm 1) is that the highest signal peak in
the observation window of each channel indicates the position of interest, as visualized in
Figure 2. Each channels’ peak index defines the radius ri of a sphere around each microphone,
which is contained in the point cloud Li. While ideally those spheres overlap in exactly
the point of reverberation, in practical application, where noise, interference, and jitters are
present, this is not the case. To compensate this error, we pad the sphere by ∆r additional
points in the radius until all spheres overlap and the unity of valid estimation points UL is not
empty. The sphere radius widening ∆r can be used as an indication of each measurement’s
quality, as a low error case will require little to no padding, while in high-error cases, the
required padding will be large. Another approach is to use a fixed and small padding, which
will ensure only measurements of high quality to be successful, but will fail for high error
scenarios.

Algorithm 1: Direct Intersection Estimation [56,57].
Input : ỹtg, observed intensity data frames,

Mi, distance maps,
K, number of channels,
∆rmax, maximum radius spreading distance.

Output :~xest, estimated 3D-position.

begin
∆r ← 0 // initial estimation tolerance
NOL ← 0 // number of overlapping points
for i = 1 to K do

ri ← maxn→ri ỹtg // get index of peak
Ri ← {ri}

while (NOL = 0) & (∆r < ∆rmax) do
∆r++
for i = 1 to K do

Ri ← {ri − ∆r, Ri, ri + ∆r} // recursively add width
Li ← isMember(Mi, Ri) // select points by radius [56]

UL ← (L1 & . . . & LK)
~xOL ← ind2sub(size(UL), find(UL)) // wrap into 3D coordinates [57]
NOL ← min(length(~xOL))

~xest = mean(~xOL)

3.4.2. Sonogram

The Sonogram approach (Algorithm 2) leverages available memory and processing
power to build a 3D intensity map. This approach utilizes the entire echo profile differ-
ence shown in Figure 2 (bottom) and maps them into the 3D distance map explained
in Section 3.3.5, with the assumption that the highest peak corresponds to the source of
reverberation. The multiplication of impulse amplitude that corresponds to the same coor-
dinates is used as an indication of possible reverberation source. Therefore, the maximum
result would have the highest likelihood of being the reverberation source location.
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Algorithm 2: Sonogram Estimation [58,59].
Input : ỹtg, observed intensity data frames,

Mi, distance maps,
K, number of channels,
∆rmax, maximum radius spreading distance.

Output :~xest, estimated 3D-position.

begin
ỹ+ ←

{
ỹtg > 0

}
// remove negative intensities

forall ~x do
I(~x)← ∏K

i=1 ỹ+,i(Mi(~x))

Ax1 ← maxx1∈X1(I) // 2D matrix
~ax2 ← maxx2∈X2(Ax1) // 1D vector
x3,est ← maxx3∈X3(smooth(~ax2)) // scalar, moving average smoothed [58]

x2,est ← find(~ax2, x3,est) // select first matching value [59]
x1,est ← find(Ax1, {x2,est, x3,est})
~xest ← (x1,est, x2,est, x3,est)

4. Experiments
4.1. Set-Up

In the experiment, we use a mock-up representing a person’s head as the experiment
target. The hard and smooth surface of the object is intentional for the sake of usability and
to remove unintended movements from our measurements at this early stage. In the set-up
shown in Figure 3, the central speaker emits the well-known signal stx, and the reflected
echoes from the target s1 to s4 are recorded by the microphone array around the speaker.
The depiction in Figure 3 is exaggerated for clarity.

Table 1 shows the spherical coordinates, i.e., radial distance r, azimuth angle θ, and
elevation angle φ of the target inside the room, with the center of the device as the ref-
erence point. The device is positioned on the ceiling, oriented downward. For each
position, we measure the distance for the assumed acoustic path with a laser distance meter
Leica DISTOTM D3a BT for reference. As mentioned above, the coordinate system’s
point of origin is set to the center of the device, the x-axis is set perpendicular to the
entrance door’s wall, and increasing towards the right, the y-axis is parallel to the line of
sight from the door and increasing towards the rear end of the room, and the z-axis is zero
in the plane of the device (upper ceiling lamp level) and decreasing towards the floor. The
two-dimensional depictions are shown in Cartesian coordinates to provide clarity, while
the detection results are done in spherical coordinates.

Table 1. Reference Positions.

Position r (m) θ (◦) φ (◦)

1 1.58 77 59
2 1.70 −92 57
3 1.23 −35 54
4 1.26 169 54

4.2. Results
4.2.1. Room Properties and Impulse Response

In preparation for the later experiments, we sounded the room 100 times as described
in Section 3.3.2 to record the baseline profiles shown in Figures 4 and 5. This recordings
were taken one time and served as a reference for all later experiment runs. During the
recordings, the room was left closed and undisturbed.



Sensors 2021, 21, 4465 11 of 22

Figure 4. Empty room’s impulse response magnitude of a linear chirp (Ts = 5 ms, 16 to 22 kHz)
in logarithmic scale for all 4 channels s1 to s4. The red line indicates the mean response over
100 measurements, with a linear fit indicated by a black dashed line in the interval between 13 to
94 ms (dotted vertical lines) to approximate the reverberation time constant Trev of the room, given
in the legend of each channel’s subplot. The upper horizontal dotted line indicate the fit’s level at
t = 13 ms, while the lower indicates an additional drop by −20 dB.

Figure 5. First 20 ms of the empty room’s amplitude response for all 4 channels s1 to s4. The red line
indicates the mean response over 100 measurements, the grey envelope the ±3σ region. The first
peak marks the line-of-sight arrival time and is used for time synchronization.

The room exhibits a different room response for each microphone, as illustrated in
Figure 4. We divide the response into four parts: line-of-sight, free space transition, first
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order echoes, and higher order echoes, i.e., coda [60]. The signal remains in the room for
more than 100 ms, before it drops below the noise floor. The definition of the reverberation
time from Sabine requires a drop of the sound levels below −60 dB [61,62], for which
the low signal-to-noise ratio of less than 24 dB does not suffice. Therefore, we adapted a
fractional model and extrapolated the reverberation from a drop of 20 dB. The resulting
mean reverberation time of the room is approximately T̄rev ≈ 445 ms, which corresponds to
a dampening factor δ ≈ 15.5 s−1 and a Schroeder frequency of approximately fsch ≈ 230 Hz,
which is far below the transmission band. In this work, we focus on the response in the
parts-free space transition and first-order echoes to estimate a person’s position. A close-up
of the first three parts of the room response is shown in Figure 5.

The recordings still show significant variances in each channel at varying positions,
e.g., in the uppermost subplot of Figure 5 from 15 to 16 ms. Below 8 ms, these intervals
with increased variances do not occur, indicating a stable channel. The signals’ interval
close to zero contains strong wall and ceiling echos. Note the very strong reverberation
peak at 12.5 to 13.5 ms that is caused by the floor. As our area of interest does not fall within
this distance, we omit it for analysis as well. Hence, the time-gate limits as introduced in
Section 3.3.3 are tmin = 3 ms and tmax = 8 ms.

If we transfer the room dimensions into the wavelength space, hence

Λ =
l

λg
=

` fg

c
, (14)

with c as the speed of sound and l the room dimensions in the respective Cartesian direction,
we can draw an estimator from [63] for the number of modes below the reference frequency
fg as

Nmode =
4 π

3
(
Λx Λy Λz

)
+

π

2
(
Λx Λy + Λy Λz + Λz Λx

)
+

1
2
(
Λx + Λy + Λz

)
. (15)

This lets us calculate approximately 15× 106 modes below 16 kHz and 40× 106 modes
below 22 kHz, which leaves about 25× 106 modes in the sounding spectrum in-between. If
we regard the number of eigenfrequencies below the Schroeder frequency, Equation (15)
yields Nsch ≈ 73 modes that strongly influence the sound characteristics of the room [64].

4.2.2. Direct Intersection

The localization by Direct Intersection from all 100 runs is shown for each of the
four reference positions in Figure 6. While the statistical evaluation is performed in spher-
ical coordinates due to the geometric construction during the estimation, this overview
plots, as well as those for the Sonogram localization are drawn in Cartesian coordinates
that allow for easier verification and intuitive interpretation. The lateral spread of the
estimation point cloud in Figure 6 1 is misleading as the points are situated on a sphere
around the origin. The projected lateral extent is almost entirely due to the angular errors.
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Figure 6. 2D projection of 100 estimations of 3D positions 1 to 4 by Direct Intersection. The single
estimations are indicated by the black circled markers, the red cross marks the Cartesian averaged
position and is highlighted by the red line to the origin, and the green diamond indicates the reference
position. The points’ infill is proportional to the observed intensity relative to the radius spreading
(darker is higher).

Positions 1 and 2 show a distance estimation deviation of σr ≈ 10 cm, as well
as azimuth and elevation angle errors of σθ ≈ σŒ < 5° for both Direct Intersection and
Sonogram localization (compare Tables 2 and 3). For positions 3 and 4 , which are
situated closer to the desks, the deviation increases to almost 40 cm in distance and almost
arbitrary azimuth angles with a σθ ≈ 120° and more, but a far less affected elevation angle
estimation with a σθ < 10°. The deviations are calculated around the mean estimator for
each value. For simplicity of interpretation, the mean error for each dimension is shown in
Section 4.2.3.

Table 2. Direct Intersection Estimated Positions.

Position r (m) θ (◦) φ (◦)

1 1.83 ± 0.14 81 ± 4 61 ± 1
2 2.01 ± 0.11 −100 ± 3 61 ± 1
3 1.92 ± 0.37 4 ± 96 59 ± 4
4 2.12 ± 0.25 −58 ± 135 60 ± 3

Table 3. Sonogram Estimated Positions.

Position r (m) θ (◦) φ (◦)

1 1.85 ± 0.10 80 ± 4 58 ± 2
2 2.03 ± 0.11 −100 ± 3 60 ± 2
3 1.77 ± 0.26 −41 ± 69 47 ± 7
4 1.96 ± 0.34 31 ± 119 51 ± 9
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The error distributions for each dimension are shown in Figure 7, where each column
depicts one of the spherical dimensions (radius, azimuth angle, and elevation angle), while
each row represents the results from the reference position indicated to the left of the plot.
For the first two positions, the distributions are almost unimodal, but for the latter two, this
does not hold true, making the mean value and standard deviation unsuitable estimators.

Figure 7. Histograms of the error in estimation compared to the reference over 100 localization
repetitions at each position by DI (blue) and Sonogram (red) estimation. Each row depicts the
3 degrees of freedom for each position.

The distribution of the error in the absolute distance between the estimated positions
and reference positions (see Figure 8) is likewise a few dozen centimeters for the first two
cases, but around 1 m for the latter two. If we recall the reference positions from Table 1,
the true distances are between 1 and 2 m, which puts the error in the same order as the
expected value.

Figure 8. Histograms of the absolute distance error in estimation compared to the reference over
100 localization repetitions at each position by DI (blue) and Sonogram (red). Each row depicts the
3 degrees of freedom for each position.
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The Direct Intersection method allows for an investigation into the time variance of
the detected maximum peak, which is depicted in Figure 9. In the first two cases, we
observe unimodal distributions of around 10 samples in width, while the latter cases show
detected peaks all over the interval.

Figure 9. Histograms of the highest peak position of each microphone’s channel over 100 localization
repetitions at each position by DI. Each row depicts the 3 degrees of freedom for each position.

4.2.3. Sonogram

The Sonogram localization on the same data as before in Section 4.2.2 is shown in
Figure 10 for all four cases. The lateral distribution of the estimated locations is not
following the spherical shape as closely as is the case for those by Direct Intersection
estimations (compare, e.g., Figure 6 1 ).

Figure 10. The same position estimation plot as in Figure 6 for positions 1 to 4 but by Sonogram. The
reference position is given by the green diamond, the averaged estimation by the red cross, and each circle
represents a single estimated position. The circles’ infill is proportional to the observed intensity.
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Similar to before, the method performs well in the cases 1 and 2 , exhibiting small
deviations (see Table 3), but far less precise with the largest deviation increase in the
azimuth angle as well. The corresponding mean errors to the reference positions are listed
in Table 4.

Table 4. Mean Error for Direct Intersection and Sonogram.

Direct Intersection Sonogram
Position r (m) θ (◦) φ (◦) r (m) θ (◦) φ (◦)

1 0.25 3 2 0.27 2 1
2 0.31 8 4 0.34 8 3
3 0.69 39 5 0.53 6 7
4 0.87 47 6 0.70 138 3

The cases 3 and 4 display two larger clusters of estimated positions, which leads to
the bimodal error distributions in Figure 7.

The absolute error is similarly distributed around lower values for the former two cases
and widely spread for the two latter cases (see Figure 8). Note that the error distribution
plots for the Sonogram are of slightly different horizontal scale, as no errors below 20 cm
were observed, while the observed maximal error exceeds 200 cm.

Lastly, the performance of both algorithms with regard to execution time is listed in
Table 5 and mean required memory in Table 6. The distribution of those measures is shown
in Figures 11 and 12. The Direct Intersection method requires roughly 2.4× less memory
than the Sonogram localization. With a best-case mean execution time of 0.66 s, the former
algorithm is almost 1.7× faster than the best case mean of the latter method, while the
worst-case mean—almost unchanged for the Sonogram approach—is with a factor of 7.1
for the Direct Intersection by far slower than the worst case mean execution time of the
Sonogram method.

Table 5. Runtime Performance: Time.

Direct Intersection Sonogram
Position Time (s) Time (s)

1 0.94 ± 0.17 1.14 ± 0.07
2 0.66 ± 0.13 1.20 ± 0.02
3 6.38 ± 6.60 1.10 ± 0.01
4 8.58 ± 7.12 1.10 ± 0.01

Table 6. Runtime Performance: Memory.

Direct Intersection Sonogram
Memory

(
×108 bit

)
Memory

(
×108 bit

)
1.600 ± 0.004 3.840 ± 0.002
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Figure 11. Histograms of the execution time of 100 localization repetitions at each position by DI
(blue) and Sonogram (red).

Figure 12. Histograms of the memory allocation during 100 localization repetitions at each position
by DI (blue) and Sonogram (red).
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The Direct Intersection execution time varies strongly, as we observe it anywhere
between 0.25 and 25.0 s; thus, without further limitations, it does not allow for a well-
confined prediction of the localization algorithm’s execution time.

5. Discussion
5.1. Localization

The localization methods discussed in Section 4 are based on the time of arrival of the
line-of-sight reflection from the target. This is possible because the frequency-modulated
signal in our experiments is significantly higher than the Schroeder frequency of the room.
The Direct Intersection method provides throughout all cases distance estimations that
are too short, while the Sonogram-based localization returns distance estimations that are
longer than the reference (compare Figure 7). Regarding the absolute error distribution,
we observe that the Direct Intersection method performs more accurately, especially in the
better cases 1 and 2 , as well more precise in the first three of the four observed cases, as
drawn from Figure 8. The possible cause of the degradation of both methods performance
for cases 3 and 4 is in the peak detection algorithm, as Figure 9 shows a wide error range
of detected possible peaks. While this was observed specifically for the Direct Intersection
method, this also implies the low signal-to-noise ratio of the underlying echo profile, and
consequently also affects the Sonogram estimation. Interestingly, the lower estimation
errors for cases 1 and 2 implicate a better performance for the larger distances than
the closer ones, which is counter-intuitive from a power perspective, but if we recall the
empty room impulse responses shown in Figure 5, where noise is included as the curves’
variance, and compare it to the magnitudes of a person’s signal in Figure 2, the difference in
magnitude is in the same order. For higher distances, the variance increases, as fluctuations
in the speed of sound cause phase distortions, but for lower distances, interference effects
dominate. The frequency band of the chirp between 16 and 22 kHz sets the wavelength
range to approximately 2.2 to 1.6 cm, which is close to the distance between reflection
points on a person’s head, as shown above in Section 3.3.3. Proximity to objects increases
interference as well, which explains the lower performance in the closer positions 3 and
4 , where the projected distance onto the sensor system’s aperture between the person and

the wall, screen, and desk is reduced. If we regard the error distributions of each position
in Figure 7 again, the angles and distances roughly fit non-line-of-sight paths, especially
for the Sonogram method.

5.2. Performance

The Direct Intersection method requires less than half the memory for its computations
compared to the Sonogram method, as the information is very early condensed in the peak
selection part of the algorithm. The index look-up is in itself a cheap operation, but due
to the sphere-spreading loop to decrease the probability of the algorithm not returning
any valid position at all, comes at higher execution duration. The observed worst case for
Direct Intersection is with 25 s so high that no real-time tracking is possible anymore. If we
look closer at Figure 6 3 , we see that the estimation point gray scale infill is proportional
to the inverse spreading factor, so darker colors mean less radial spread before intersecting
points could be found. The notion that including strong outliers by allowing the sphere
thickness to be spread so far is not confirmed if we consider Figure 6 4 .

6. Conclusions

Both methods show mean distance estimation errors ranging between approximately
0.3 and 0.9 m for objects in distances between 1.2 and 1.7 m, with angular errors between 2°
and 138° in azimuth, 1° and 7° in elevation. The Sonogram Estimation allows for analysis
of room response in more detail, and the results are more accurate (i.e., average error) in
three out of four observed cases, but inversely, the precision (i.e., error variance) of the
Direct Intersection is higher in three of the cases. The Direct Intersection method allows for
less expensive computation by reducing maximum radius spreading, while the Sonogram
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method’s cost can be reduced effectively by limiting the vertical search interval, e.g., to
the clutter free area above the desks. For a full-range sounding of the room, we observed
that the locations close to the clutter area are estimated worse regarding both accuracy and
precision. For a pragmatic operation on hardware with higher memory limitations the
Direct Intersection method will perform faster and with similar precision and accuracy, and
can be limited in execution time by restricting the sphere radius spreading at the cost of not
being able to estimate the position for several intervals. We esteem further investigation
into limiting the degradation of the estimation process by single unreliable channels as
most promising for improving passive acoustic indoor localization.
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