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Abstract: Due to the complexity of background and diversity of small targets, robust detection of
infrared small targets for the trajectory correction fuze has become a challenge. To solve this problem,
different from the traditional method, a state-of-the-art detection method based on density-distance
space is proposed to apply to the trajectory correction fuze. First, parameters of the infrared image
sensor on the fuze are calculated to set the boundary limitations for the target detection method.
Second, the density-distance space method is proposed to detect the candidate targets. Finally,
the adaptive pixel growth (APG) algorithm is used to suppress the clutter so as to detect the real
targets. Three experiments, including equivalent detection, simulation and hardware-in-loop, were
implemented to verify the effectiveness of this method. Results illustrated that the infrared image
sensor on the fuze has a stable field of view under rotation of the projectile, and could clearly
observe the infrared small target. The proposed method has superior anti-noise, different size target
detection, multi-target detection and various clutter suppression capability. Compared with six novel
algorithms, our algorithm shows a perfect detection performance and acceptable time consumption.

Keywords: trajectory correction fuze; infrared image sensor; small target detection; density-distance
space

1. Introduction

Detecting infrared small targets on the ground at long distance is a crucial mission
in many defense and anti-terrorist applications. Wheeled and tracked vehicles represent
typical classes of small militant ground targets. Recently, the detecting sensor based on
the trajectory correction fuze has received much attention [1]. In previous research, the
traditional detecting method could not effectively detect targets in the complex environ-
ment [2]. Therefore, this paper mainly aims to improve the detection accuracy of infrared
small targets on the trajectory correction fuze.

Among various detecting methods, thermal infrared imaging is a passive model
to effectively detect small targets at long distance. Compared with the visible image
sensor, radar [3] and laser [4], the infrared image sensor has capabilities of strong anti-
interference, good concealment and all-day work. At present, the forward-looking infrared
sensor (FLIR) adopts the superior microbolometer with the noise equivalent temperature
difference (NETD) of 50 Mk, the pixel pitch of 12 µm and wavelength of 3–14 µm. In
previous research, the authors of [5] designed a correction fuze and reserved space for
an infrared image sensor. However, the important parameters of the sensor were not
calculated. We aim to make a graceful integration of the infrared image sensor and the fuze
that benefits the target detection.

The trajectory correction fuze could reduce the circular error probable (CEP) by adding
the correction function to the mortar without any modification of the projectile. Generally,
the onboard computer calculates the correction value by the detected target’s azimuth.
Then, the original terminal trajectory is changed by a pair of rudders which could produce
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the aerodynamics. Existing research on the correction fuze combined with the infrared
image sensor is still in the initial stage. For example, the authors of [6,7] researched the
influences of the velocity, rotation rate and pitch on the dynamic response during terminal
correction. However, the target detection method was ignored when the aerodynamic
feature and correction strategy were analyzed. Therefore, accurately detecting the infrared
small target is essential for realizing the fuze’s function [8].

The infrared small target has three unique characteristics, such as small physical
dimensions, and low thermal and visible signatures [9]. Generally, small target size does
not exceed 0.15% of the image resolution. Likewise, without dissipating any thermal
energy, the vehicle body itself only reflects some incident energy, which is almost equal
to the energy reflection of the surrounding environment. Most of the energy difference is
generated by the motor, and its infrared band is basically in the range of the long wave
(8–14 µm). Such low thermal energy produces a minuscule signal in the infrared image
sensor. As the detection distance increases, the signal-to-noise ratio (SNR) of the target
degrades drastically. Therefore, these challenges make infrared small target detection an
unusually difficult task.

Existing traditional infrared small target detection approaches mainly include the use
of spatial-only information in individual single frames and the spatial-temporal information
in image sequences, where the spatial-only method could be divided into two categories:
filter-based methods and human vision system (HVS) methods. The former designed
filters to express noise according to the statistics of local pixels, such as max-median [10],
max-mean [11], and morphological [12] transformation. Although these typical filters are
of lightweight calculation, they are extremely interfered with by noise. Correspondingly,
the improved filter methods of median [13,14], mean [15] and Gaussian [16] were proposed
to effectively suppress clutters. In addition, some improved morphological methods
such as Top-Hat [17] and region grow [18] were studied. However, the initial elements
selected by these methods should be highly matched with various clutter shapes, otherwise
the performance will be degraded. To summarize, these methods partly improve the
robustness, but still have a high false detection rate with complex background and variable
target size.

On the contrary, the HVS [19] methods are directly applied to the target itself. The
local contrast method (LCM) [20,21], simulating the attention mechanism of the HVS, is
often used to detect targets. Later, a series of improved algorithms based on this were
proposed, such as improved LCM (ILCM) [22], novel LCM (NLCM) [23] and relative LCM
(RLCM) [24]. By redefining the contrast parameters of the central region, the pixel-sized
noises with high brightness (PNHB) are suppressed and the target is enhanced. Moreover,
other methods optimize the rectangle structure of LCM to detect targets with different
sizes, such as double-neighborhood (DLCM) [25], tri-layer (TLCM) [26], multiscale patch-
based (MPCM) [27] and high-boost-based multiscale (HBMLCM) [28]. Although local
contrast is further enhanced, sparse clutter elements are also highlighted [29]. Besides, the
above methods are cyclically and complexly calculated pixel-by-pixel, which leads to high
computational costs and cannot meet the real-time requirements of target detection.

Recently, convolutional neural networks (CNN) [30,31] have been widely used in
target detection and recognition. Derived methods consist of one-stage methods, such as
single-shot multi-box detector (SSD) [32] and you only look once (YOLO v1-v5) [33,34],
and two-stage methods such as Fast-RCNN [35] and Faster RCNN [36], providing a new
backbone, activation function, loss function, etc. These methods all require a large number
of datasets for training to obtain model parameters. However, the fuzes often lack prior
knowledge and cannot obtain huge datasets, and the size of the target is too small to
extract features.

As described, our main goal in this paper is to effectively detect small infrared targets
in the application of the trajectory correction fuze, and experimentally demonstrate that our
method could deal with the challenges associated with long distance, small variable size
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and minimal thermal signature in a real infrared scene. The comprehensive performance is
better than the existing methods. Our main contributions include:

(1) On the basis of [5], the main parameters of the infrared image sensor were selected,
and then the correctness was verified through outdoor experiments.

(2) Inspired by filtering methods, we proposed a novel two-dimensional density-distance
space to obtain the density peak pixels by full use of image information.

(3) A new pixel growth method was presented to effectively suppress clutters. Then, the
real targets were selected from the density peak pixels.

(4) Three experiments proved the robustness and effectiveness of the algorithm and the
applicability of the trajectory correction fuze. Especially, our method maintained a
good detection performance without increasing the processing time compared with
the previous existing methods.

2. Application Background

The infrared image sensor is located on the front of the fuze. Its detection ability is the
premise for completing the correction function. Therefore, the parameters of the infrared
image sensor should be calculated based on the trajectory feature of the mortar.

2.1. Design of the Fuze

In this paper, the fuze is used in the tail-stabilized mortar with three characteristics.
First, the projectile rotates at a speed of no more than 2 r/s. Second, the pitch and yaw
angle of the projectile changes at a high frequency because of the curvature of the trajectory.
The above problems lead to the frequent changes of the image background. Finally, the
conventional terminal trajectory distance is 1.5 km. With the mortar flying at an initial
speed of 272 m/s, the total time is within 8 s. The rest of the time for target detection is
extremely short, excluding the correction and solution time. Therefore, the number and
function of sensors should be balanced due to the limitation of response time and the space
size of the fuze.

As shown in Figure 1, the organization is composed of three parts. The aft part, shown
in purple, connects the fuze and the projectile with threads. The mid part, indicated by
blue, is used to externally fix the rudder blade and internally contain the sensors for control.
When the mortar rotates, the fuze can rotate in the opposite direction to the projectile
to ensure a stable field of view for the image sensor. The front part, equipped with the
infrared image sensor, is used for navigation. In addition, the detail of the infrared image
sensor is shown at the top of Figure 1, where the fairing is at the top. The green base is
used to fix the sensor and lens. Therefore, the infrared image sensor is not affected by the
rotation of the projectile due to the reverse function of this structure. Correspondingly, this
design makes the field of view stable and ensures the detection capability.
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2.2. Connection between Infrared Image Sensor and Fuze

When the mortar flight is in the terminal trajectory, the parameters of the trajectory and
the infrared image sensor will affect the detection effect directly. Therefore, the detection
algorithm should be based on the workflow of the correction fuze and the infrared image
sensor. Table 1 lists the trajectory parameters of conventional mortar and parameters of the
infrared image sensor selected in this paper.

Table 1. Parameters of mortar and infrared image sensor.

Trajectory Parameters Infrared Imager

Detection distance (m) 1500 Focal length (mm) 19
Launch angle (degree) 53 Pixel pitch (µm) 17
Pitch range (degree) 60.3–65.2 Fov (degree) 17 × 13

Time (s) 8 Array format 320 × 240
Initial velocity (m/s) 272 Spectral band (µm) 7.5–13.5

According to the trajectory equation of mortars, the terminal flight time is generally
within 8 s when the detection distance is 1500 m and the launch angle is 53◦. Obviously,
this time is sufficient for algorithms with high FPS. However, most of the time is spent on
the onboard computer calculation and trajectory correction, leaving a short amount of time
for target detection. Simultaneously, at the beginning of the terminal trajectory, the pitch
angle of the projectile changes rapidly within the integration time. This causes the change
of the background on the field of view. Therefore, the classic frame difference method
using time domain should not be applied. The appropriate method is to detect the target in
a single image.

Notably, in this paper, the parameters of the infrared image sensor were selected based
on the target’s size, under the premise that the temperature difference between the target
and background can be detected. Due to the fact that the detection range of most current
uncooled staring VOx microbolometers is far greater than 1500 m, the infrared small target
is clearly visible on the field of view on the terminal trajectory. However, unlike missiles,
overload caused by mortars’ launching phase will damage the lens assembly. Therefore,
a stable coaxial spherical lens assembly is used. The transformation relation between the
infrared image sensor and the target is calculated as follows:

R
f
=

H
h

(1)

Fovcol = 2arctan
(

nd
2 f

)
(2)

Fovrow = 2arctan
(

md
2 f

)
(3)

where f is the focal length of the infrared imager, R and H are the detection distance and
size of the target and h is the pixel size of the detectable target on the pixel array. The
target size is set to 1-line pairs according to the detection degree of the Johnson Criteria.
The long-wave sensor with the spectral band 7.5–13.5 µm is selected, because the thermal
wavelength emitted by the target is about 8–14 µm. Fovcol and Fovrow are the vertical and
horizontal field of view, respectively. n, m and d represent the array format and single pixel
size. These parameters are used to calculate the equivalent detection experiment of the
infrared image sensor.

Generally speaking, the fuze needs to detect multi-targets with different sizes. More-
over, due to the long detection distance, the target usually contains only a few pixels and
does not exceed 0.15% of the size of the image. Therefore, an infrared small target detection
algorithm based on a single image is proposed. The algorithm should not be affected by
target size and background.
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3. Density-Distance Space

The discussion in Section 2 shows that the algorithm should have three features,
namely adaptive infrared small target detection capability, scales’ changeable adaptability
and low running time. In an infrared scene, most small targets exist in relatively open areas
and have higher grayscale than their surroundings. Correspondingly, infrared small targets
should have two features, maximum grayscale in the local region and farther distance from
any higher gray value pixel. Figure 2 shows the flowchart of the density-distance space for
the infrared small target detection method. First, the two main parameters density-ρ and
distance-σ are generated from the original infrared image. Then, the ρ and σ values of all
pixels are converted into a special two-dimensional ρ-σ space. The green candidate targets
are selected from this space through an adaptive threshold, including real multiple targets
and false targets.
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3.1. Definition of Density and Distance

Infrared small targets usually have high gray value, lower pixel number, certain
contrast or other features. This can be summarized as having a higher gray value in a
limited area compared to neighboring areas. According to this definition, infrared small
targets can be regarded as having a higher “density”. In detail, the gray value is regarded
as “quality”, and the number of pixels is the “volume”. Correspondingly, a simple but
effective method to define the density of each pixel is shown in Equation (4):

ρ(i, j) =
1
n ∑

(i,j)∈ε

G(i, j) (4)

where ρ(i,j) is the density of the pixel at the (i,j) position. G(i,j) is the gray value, and n
represents the number of pixels in the area of ε. The density value reflects the average gray
features of the target and concentrates features on one pixel. Furthermore, by detecting a
single pixel, the size and shape of the target will not affect the detection result.

The parameter σ is defined as the distance feature of the pixel, which means the mini-
mum distance between pixel i and any other pixel j with higher density. Equations (5) and (6)
show the calculation of distance, where dij represents the Euclidean distance between pixel-i
and pixel-j, and x and y are the coordinate values of the pixels. Figure 3 shows the calculation
process of density and distance. The area with light blue is the original image, and the deep
blue is ε, which has a 3 × 3 size. The order of density is ρ2 < ρ0 < ρ1, ρ3. For pixel-ρ0, σ is the
distance between ρ0 and ρ1, which is shown in yellow. Although ρ2 has a shorter distance, its
density is less than ρ0. Correspondingly, the density of ρ3 is higher than ρ0, but the distance
is longer than ρ1. Therefore, the two red pixels could not be selected as the correct distance
value. It should be noted that when the pixel-i has the maximum density, there is no σ. We
temporarily take its σ to the maximum value among all dij values, because it may be the
true target and cannot be ignored. Then, it will be compared with other pixels through the
subsequent adaptive threshold.

σi = min
j:ρj>ρi

(
dij
)

(5)
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dij =
√(

xi − xj
)2

+
(
yi − yj

)2 (6)
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3.2. Density-Distance Space

If a pixel has a maximum ρ-density in the local region and a long σ-distance at the
same time, we call it “density peak”. Obviously, the small infrared target meets these
features. Generally, pixels in a continuous background have low grayscale and are close
to pixels with higher grayscale. Correspondingly, the number of density peaks is small.
Therefore, a certain number of density peaks could be directly selected as candidate targets.
This brings two benefits. One is that the detection accuracy will not be affected by target
size and shape. The other is that the detection difficulty is reduced. Therefore, evaluating
the density peak by two-dimensional ρ-σ space and adaptive threshold α, we select a
certain number of candidate targets. The calculation of α is shown in Equation (7):

α = ρ× σ (7)

where α is mainly used to evaluate whether the pixel is a density peak. By multiplying ρ
and σ, the difference of α between the real target and the background is enlarged. Then, all
the pixels are sorted by α. The number of real targets is n. To ensure that the real targets
will not be lost within the minimum calculation amount, we take at least 4n as candidate
targets from density peaks with a larger α. Notably, it is almost impossible that a real
target has two pixels with the same density, and the σ-distance of the lower-density pixel is
extremely small. Therefore, the target region only has one density peak.

Figure 4 shows the establishment and preliminary detection of ρ-σ space of two targets
with different sizes at the same position. The sizes of the two targets in Figure 4a and b
are 2 × 2 and 3 × 5, respectively. We extracted a region with 25 × 25 pixels containing the
target. As shown, even if the target sizes are different in the original image, the targets
with the same position have similar positions in the ρ-σ space, approximately. This test
shows that the ρ-σ space has the ability to detect multi-scale targets.
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3.3. Adaptive Pixel Growth

Notably, it is easy to confuse the detection of real targets, where some density peaks
are located at the edges of some background regions. Therefore, an adaptive pixel growth
(APG) algorithm is used to eliminate false targets so as to retain the real targets.

The APG method is similar to that of region growth. Each candidate target (pixel)
is regarded as a “seed”, and represented by Tk(x,y), where k is the number of candidate
targets and (x,y) is the coordinate of the pixel. The seed grows in the direction of its eight
neighboring connected pixels. The growth condition depends on the grayscale difference
between the seed and its neighboring pixels. When the difference is less than the threshold,
the seed grows one step, otherwise it stops growing. We use Th to denote the adaptive
threshold to limit the growth of the seed, as shown in Equations (8) and (9):
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Th = η ×
(
GTk − GPk

)
(8)

Pk(i, j) =
{
(i, j)

∣∣∣x−m ≤ i ≤ x + m, y− n ≤ j ≤ y + n, m2 + n2 6= 0
}

(9)

where Pk denote the pixels around the seed Tk, GTk and GPk represent the grayscale of the
seed Tk and pixel Pk and GPk is the average gray value of the pixels Pk(i,j). The range of Pk
is the pixels in a certain area around but not containing the seed, as shown in Equation (9).
m and n are positive integers, η is the threshold coefficient and the range is 0–1, which is
obtained by large numbers of experiments. After one step of pixel growth, the seed, Tk,
extends to one or more pixels in the set Pk. Equally, the pixels in the set Pk which meet
the threshold, Th, become new seeds. All seeds follow this strategy in each step of the
algorithm. When the growth of seeds cannot meet the threshold, Th, the growth stops. The
total number of pixels after the final growth of each seed is regarded as area Sk.

Figure 5 shows the process of APG, where seed, Tk, is shown in yellow, and the
surrounding pixels, Pk, are shown in blue. The red dotted frame indicates the range after
each step of APG. At the beginning, there are three pixels around the seed, T1(x,y), within
the growth threshold, Th, which are P1(x + 1,y + 1), P1(x,y − 1) and P1(x − 1,y), respectively.
After the first step, three new seeds marked with number 2 are added. Similarly, after the
second step, the new seeds are marked with number 3. For this seed, the area S1 contains
10 pixels after two steps of APG.
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Figure 5. Process of the APG method. From left to right is the two-step growth process of the
No. 1 seed.

The growth feature of seeds in the target region, edge region and clutter region
is shown in Figure 6, and 20 candidate targets including 2 real targets are detected in
Figure 6a. The seed 1 is in the target region, and the number of growth steps is small, as
shown in Figure 6b. Correspondingly, the area Sk of the seed is small. Figure 6c,d show
the growth results of seeds 2 and 3. For a seed in the edge region, such as buildings, pixel
set Tk will grow along the high grayscale edge under the premise of not exceeding Th.
Therefore, the entire edge region will be covered by the area of seed growth. Especially,
when the seed is located at the junction of two connecting regions, the growth will contain
both regions. Obviously, the growth areas of seeds in the edge region have high density.
Figure 6e,f show that the growth areas of seeds 4 and 5 are located in clutter regions, such
as clouds, sea–sky line and other float backgrounds. Clearly, the growth areas of clutters
are sparse. Through the comparison of the above three conditions, the target region has
the smallest area Sk. Therefore, the APG method could effectively remove the clutters and
background, and detect real targets.
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4. Experimental and Analysis

In this section, the parameters of the infrared image sensor are first verified to ensure
that the correction fuze can clearly capture infrared targets. Then, our proposed algorithm
is tested to verify its effectiveness, robustness and real-time performance by simulation
and the hardware-in-the-loop experiment. There are two key parameters that should be set
in the following experiments. First, n is set to 5 due to the fact that the number of targets
we detected generally did not exceed 5. Then, for a small target with several pixels, the
growth directions of its neighboring pixels surrounding the seed are usually 3–5, which
occupy 40–60% of the 8 directions. Therefore, η is set to 0.4 to limit the growth area of real
targets. We do not need any further parameter changes in all of the following experiments.

4.1. Equivalent Experiment about Detection Capability of the Infrared Image Sensor

The prerequisite for the algorithm verification was that the infrared imager could
clearly observe infrared small targets. For this purpose, both equivalent size and tem-
perature difference should be considered. We used FLIR’s Tau2 infrared imager with
the same parameters as in Table 1 for experiments. A vehicle model connecting with an
electrically conductive board was used to replace the infrared target. A temperature sensor
powered by a battery was connected with the electrically conductive board through its
own thermometer. When the surrounding environment temperature, T0, is known, the
temperature sensor could control the temperature, T1, of the electrically conductive board
to maintain the temperature difference (T1 − T0). The infrared image sensor was carried
by an UAV to achieve the long-distance detection. The experimental conditions are shown
in Table 2.

Table 2. Experimental conditions.

Experimental
Conditions Detection Distance (m) Target Size (m) Temperature

Difference (K)

Real Conditions 1500 2.3 15
Equivalent
Conditions 65 0.1 7

The size feature of the tank was 2.3 m according to the data, and the size of the infrared
target model was 0.1 m. Correspondingly, when the real detection distance is 1500 m, the
equivalent distance should not be less than 65 m. Similarly, the temperature difference
should also be equivalent, but it is not linear with the detection distance. It needs to be
multiplied by an atmospheric transmittance coefficient, τa. In Reference [37], the range
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of τa is 0.3–0.7 under the bad condition of cloud cover. Therefore, τa is set to 0.5, based
on the average. For the ground environment, when the temperature difference between
the vehicle target and the surrounding environment is 15 K on average, the equivalent
temperature difference is 7 K.

The experimental equipment, arrangement and detection results are expressed in
Figure 7. The highlighted region in the image is the small infrared target. Notably, the
target is vignetted due to the diffusion of its own thermal radiation, leading to the changes
of the target’s shape and size. However, the density-space method will not be affected.
We only detected one pixel with the highest density in the target region. The experiment
proved that the infrared image sensor could clearly observe the target at long distance, and
simultaneously provided a guarantee for subsequent simulation experiments.
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4.2. Simulation of Algorithms

Simulation experiments were mainly used to prove the effectiveness of the proposed
algorithm. Notably, the simulation was run on a laptop with a 2.8 GHz Intel i7-7700HQCPU
processor and 8 GB RAM. In order to evaluate our algorithm objectively, only one key
parameter should be preset in this simulation: the number of candidate targets (seeds).
According to the analysis in Section 3, we set the number of candidate targets to 20 so that
the infrared image can contain no more than 5 real targets.

The detection result is easily affected by noise. Therefore, the anti-noise ability should
be tested. In order to reflect the effect intuitively, an image with one infrared target was
selected, and different levels of Gaussian noise were added in this picture, respectively.
SNR is defined as in Equation (10), where σ2

t is the grayscale variance of the target region
and σ2

n is the variance of Gaussian noise. Figure 8 shows the noise with different SNR
and target detection results. Obviously, the target is hard to detect as the SNR decreases
gradually. When SNR was from 44.1 to 45.4, we obtained a perfect detection result. The
target missed when SNR was reduced to 43.9. The changes of position of the remaining
candidate targets are caused by the randomness of Gaussian noise. Consequently, the
lower limit of SNR that the algorithm could detect the target at is around 44. When SNR
was higher than 44, the algorithm could detect the real target. Otherwise, depending
on the distribution of noise, it may not detect the real target. The test clearly showed a
certain degree of anti-noise ability of the algorithm based on density-distance space and
the APG method.

SNR = 10lg
σ2

t
σ2

n
(10)
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In addition, the multi-target detection ability of the algorithm in different environ-
ments was tested by simulation. We chose six typical images with different backgrounds,
target number and target size to accurately test the robustness of the algorithm. Figure 9
shows the ρ-σ space and the detection results. The targets are marked with red rectangles.
Two pairs of ground and sky images, respectively containing 3 and 4 infrared targets with
different size, grayscale and regions, were selected. Besides, the limit of the detection
ability of the algorithm was tested by the last image with 6 targets. All backgrounds in
the image sequences include clutters with different types and shapes. The details of the
original images are listed in Table 3.
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Table 3. Details of the six original images.

No. Background Target Number Image Size

1 Sea Building 2 284 × 213
2 Ground 3 220 × 140
3 Cloud Sky 3 281 × 240
4 Ground 4 220 × 140
5 Cloud Sky 4 250 × 200
6 Ground 6 220 × 140

In Figure 9, the red rectangles represent the real targets, and the green ones represent
the candidate targets. In the first four images, all real targets were well-detected under the
interference of various clutters. No false detections or missed detections occurred. Two
extreme conditions should be considered. In the fifth image, only three of the four real
targets were detected because the missing target has a minuscule grayscale. In the sixth
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image, all targets were detected by setting n to 6 individually. The results proved that our
method had a superior robustness, adaptability and efficiency for the detection of multiple
infrared targets in most conditions. However, the target with a low α value will still be
missed when its thermal signature is lower than clutters.

To further evaluate the comprehensive effectiveness of the proposed algorithm, six
novel algorithms were used for comparison, namely the Top-Hat method [17], the least
squares support vector machine method (LS-SVM) [38], the high-boost-based multiscale
local contrast measure (HBMLCM) [28], the multiscale relative local contrast measure
(RLCM) [24], the multiscale patch-based contrast measure (MPCM) [27] and the minimum
local Laplace of Gaussian (MinLocalLoG) [13]. We used the receiver operator characteristic
(ROC) curve to compare the effects of the algorithm. The ROC is calculated by the true
positive rate (TPR) and false positive rate (FPR), as shown below:

TPR =
True Positive

True Positive + False Negative
(11)

FPR =
False Positive

Fasle Positive + True Negative
(12)

The ROC curve is composed of FPR as the abscissa and TPR as the ordinate so as to
provide a quantitative comparison of the detection performances. Meanwhile, the area
under the curve (AUC) was the area included by the ROC curve and the axis of abscissa
and ordinate. We prepared five different datasets of 200 frames for evaluation. Every frame
has only one true target with a corresponding coordinate. In order to be considered a
correct result, the detected target must have the same coordinate as that of the real target.
The detection rate could be regarded as the AUC value, which means the proportion of the
number of real targets detected in 200 frames. Meanwhile, the higher AUC value presents
the better performance of our method to detect the real target in one frame.

Figure 10 shows the ROC curves and AUC value. The red dotted line represents
the proposed algorithm. It can be seen from all ROC curves that the proposed algorithm
generally has a superior detection accuracy. In sequences 3–5, the AUC value of our
algorithm is almost close to 1. However, the detection accuracy of sequence 2 is not ideal.
This is due to more clutter and the low target grayscale. For example, the second sequence
shown in Figure 10f has many clutters with a small area, which seriously interfere with the
step of pixel growth. The AUC value of our method was 6.02× 10−5 and 9.03× 10−5 lower
than that of HBMLCM and LS-SVM. Thus, the detection rate of our method is slightly
worse than that of LS-SVM and HBMLCM but better than the other four algorithms.

Then, the running time test was performed. We compared the time consumption of
all algorithms by calculating the average time of 200 frames for each sequence, as listed
in Table 4. Although the running time of our algorithm was slower than the other four
algorithms, it was not more than an order of magnitude and had better performance.
The total average running time is listed at the bottom of the table. The running time of
the proposed method is almost equal to that of MPCM. Compared with MinLocalLoG,
LS_SVM, HBMLCM and MPCM, our running time was more, by 0.0057, 0.0096, 0.0031 and
0.0006 s, but was still in the same order of magnitudes. Top-Hat had the shortest running
time, which is about 3 times lower than the proposed algorithm. RLCM has the largest
amount of calculation, surpassing most methods by 2 orders of magnitude.
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Table 4. Average running time for a frame, of seven algorithms in five sequences (Seq.).

Top-Hat
(s)

MinLocalLoG
(s)

LS_SVM
(s)

HBMLCM
(s)

RLCM
(s)

MPCM
(s)

Proposed
(s)

Seq.1 0.0058 0.0155 0.0115 0.0181 1.9756 0.0213 0.0214
Seq.2 0.0059 0.0160 0.0120 0.0184 1.9616 0.0221 0.0214
Seq.3 0.0059 0.0154 0.0115 0.0179 1.9817 0.0213 0.0214
Seq.4 0.0061 0.0152 0.0113 0.0177 1.9799 0.0214 0.0211
Seq.5 0.0061 0.0149 0.0112 0.0178 1.9691 0.0217 0.0202

Average 0.0060 0.0154 0.0115 0.0180 1.9735 0.0216 0.0211

The comprehensive performance and running time of HBMLCM were better, but its
adaptability of clutter is weaker than our algorithm. However, the target detection task
of the fuze was to firstly ensure the detection accuracy, and then improve the real-time
performance as much as possible. Therefore, compared with other algorithms, our method
was more applicable for fuze.

To summarize, our algorithm had a better capability and robustness than the other
algorithms, and the running time was also acceptable. Compared with the six existing
methods, the proposed method has the best performance of detection accuracy. Although
Top-Hat has the best real-time performance, the detection accuracy is significantly lower
than that of our method. In terms of comprehensive performance, HBMLCM is close to our
methods. However, the ROC curve in Figure 10a shows that the detection ability of our
method is much better than HBMLCM for low thermal targets. Moreover, the simulation
also provides a theoretical basis for hardware-in-loop (HIL) experiments.

4.3. HIL Experiment

The HIL experiment was used to test the effectiveness of our algorithm in the fuze. In
order to simulate the outdoor environment, we use a turntable to fix the fuze prototype.
Four infrared small targets were placed in different directions in the field of view. The
detection distance was set to 5 m according to the same equivalent distance between mortar
and target. Moreover, considering the influence of the field of view, the diameter of the
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target placement range was 1.5 m, calculated by the detection distance and the parameters
of the infrared imager.

Figure 11a shows the prototype of the infrared image sensor and its strapdown design
with the correction fuze. Figure 11b shows the fuze prototype fixed on the 3-DOF turntable.
First, the experimental system was powered on. The turntable simulates the rotation of
the mortar around the projectile’s axis at a speed of 2 r/s. At the same time, the fuze was
turned on to keep the field of view stable. In addition, the random swing within 5 degrees
of pitch and yaw direction was added to simulate the aerodynamics. The detection result of
one frame is shown in Figure 11c. Although the disturbance deformed the infrared target,
the proposed method could detect all the targets successfully.
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Through simulation and the HIL experiment, our method was proven to be robust
and was also suitable for the trajectory correction fuze. In terms of subjective and objective
evaluation, it could be concluded that the performance of our algorithm is satisfactory
compared with other state-of-the-art algorithms for small infrared target detection.

5. Conclusions

In this paper, a simple and effective method for small infrared target detection was
proposed for the trajectory correction fuze. The three challenges, namely long detection
distance, small variable size and minimal thermal signature, were solved. The research has
made a great contribution to the application of infrared cameras to intelligent fuzes.

First, the characteristics of the fuze and trajectory were analyzed. The infrared image
sensor was selected by calculating the parameters. Second, the spatial-only target detection
method was used. Inspired by filtering methods, a density-distance space was proposed to
detect the candidate targets from the original infrared image. Finally, an adaptive pixel
growth method was presented to select real targets from seeds (candidate targets) by
suppressing various kind of clutter.

Three experiments proved the robustness, effectiveness and applicability of the
method, respectively. First, the outdoor equivalent detection experiment verified the
correctness of the parameters of the infrared image sensor. The challenge of long-distance
detection was overcome. Second, the simulation proved that our method has superior
anti-noise detection, multiple target detection and small various targets’ size detection
capability. Meanwhile, compared with six state-of-the-art algorithms, by ROC curve and
running time in 5 different sequences, our method showed perfect detection accuracy and
acceptable time consumption. Compared with Top-Hat, our method had better detection
accuracy, and the running time was 0.0151 s slower. The HBMLCM has the same com-
prehensive performance as our method. However, our method had better capabilities of
clutter suppression and low thermal target detection. Although the average running time
of our method was 0.0057, 0.0096, 0.0031 and 0.0006 s slower than MinLocalLoG, LS_SVM,
HBMLCM and MPCM, the order of magnitude was the same. Therefore, the challenge
of minimal thermal signature has been solved. Finally, the HIL experiment generated a
perfect detection result by the application of our method to the correction fuze based on
the infrared image sensor.
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As for the future work, it should be considered that the size of the target will enlarge
during flight of mortar, which means that the small target detection method could not be
used. Therefore, it is necessary to detect the key parts of the infrared target with large areas
through the deep learning method.
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