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Abstract: Most indoor environments have wheelchair adaptations or ramps, providing an oppor-
tunity for mobile robots to navigate sloped areas avoiding steps. These indoor environments with
integrated sloped areas are divided into different levels. The multi-level areas represent a challenge
for mobile robot navigation due to the sudden change in reference sensors as visual, inertial, or laser
scan instruments. Using multiple cooperative robots is advantageous for mapping and localization
since they permit rapid exploration of the environment and provide higher redundancy than using a
single robot. This study proposes a multi-robot localization using two robots (leader and follower) to
perform a fast and robust environment exploration on multi-level areas. The leader robot is equipped
with a 3D LIDAR for 2.5D mapping and a Kinect camera for RGB image acquisition. Using 3D
LIDAR, the leader robot obtains information for particle localization, with particles sampled from
the walls and obstacle tangents. We employ a convolutional neural network on the RGB images for
multi-level area detection. Once the leader robot detects a multi-level area, it generates a path and
sends a notification to the follower robot to go into the detected location. The follower robot utilizes
a 2D LIDAR to explore the boundaries of the even areas and generate a 2D map using an extension
of the iterative closest point. The 2D map is utilized as a re-localization resource in case of failure of
the leader robot.

Keywords: multi-robot; localization; 2.5D mapping; Monte Carlo algorithm; multi-level surface

1. Introduction

For mapping and localization on an uneven or multi-level surface, 3D LIDAR is
needed. However, the price of a 3D LIDAR is very high, and the required computing
power and resources are also high. A single small robot cannot process both 3D localization
and mapping for real-time navigation. Since our previous work [1] studied mapping and
localization on uneven surfaces, we decided to extend the experiment using a second robot.
The mapping and exploration time is simplified, and the computational time is improved.

The present experiment intends to provide a starting point for a bigger multi-robot
team, where the more robots, the faster the mapping task could be performed.

Multi-robot mapping and exploration encounter sparse features in large environments.
Alternatives for 2.5D and 3D mappings include 2D–3D feature matching [2] and online
point cloud segmentation. Multi-robot systems reduce the mapping time, improve map
accuracy and robot localization [3–5]. The iterative closest point (ICP) and the random
sample consensus (RANSAC) methods are solutions for point cloud registration, but those
approaches have issues with the local minimum. Merging image-key points into the
point cloud can also reduce the local minimum error [6]. LIDAR odometry and mapping
(LOAM) [7] uses point features and edges-planes for scan registration but lacks loop closure
in large-scale maps.
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Further, scale mismatch and repeating patterns are common issues in robot map-
ping. A solution for those challenges involves fixing the coordinate transformations and
minimizing the distance in input maps. Optimizing point registration [8,9] and using
image registration [10] reduce scan misalignments. However, those methods lack an
initial guess and local minima. For multi-robot simultaneous localization and mapping
(SLAM), idleness optimizes patrol activities [11], and digital pheromones could provide
event relevance [12]. The Hough transform uses rotation and translation to divide the
mapping space [13]. Bayesian mapping [14] and open-source data [15] enhance SLAM.
Mielle et al. [16] employed SLAM in extreme conditions. In an open space, topological rep-
resentation and maximal common sub-graphs (MCS) allow for fast robot localization [17].
The vertices contained in metric space updates the robot paths. The Voronoi diagram [18,19],
segmented regions matching [20], and environment metrics [21] aid map alignment.

The occupancy grid map plays a vital role in the context of multi-robot map representa-
tion. The said map upgrades each cell using the inverse sensor model. Multi-robot mapping
and exploration have already been addressed in several research approaches [22,23]. Sub-
sequently, the inverse sensor model evaluates the laser scan as a vector. Graph matching
aligns the occupancy grid with floor maps [20]. Kaufman et al. [24] measure 2D distances
using laser scan ray casting. The occupancy grid and a Monte Carlo algorithm calculate the
2D pose uncertainty [25]. Gaussian modeling has applications for the occupancy grid [26],
mapping, and point cloud modeling [27]. A learning trial [28] and a Bayesian occupancy
map also employ an inverse sensor model [29,30]. Despite the robustness of grid-based
map representation, this method depends on the inverse sensor model and is sensitive to
simulation errors.

In a volumetric representation of 3D space, map simplification is critical for robot
mapping. Approaches such as the adaptive online method and voxel compression divide
the map [31,32]. Octomap reduces the mapping framework [33,34], and a robot-centric
grid enhances the map resolution [35]. Furthermore, communication enhancement is
critical for multi-robot systems. Cieslewski et al. [36] propose a decentralized visual SLAM
by encoding the environment information to reduce communication requirements. A
coordinated multi-robot exploration under connectivity constraints is presented in [37],
where each robot keeps connectivity with the teammates. Smith et al. [38] use distributed
inference-based communication for a 3D space. The main problem in centralized and
decentralized multi-robot exploration is map merging and robot localization. [4,13]. To
establish proper communication, we utilize a decentralized system after considering the
approaches in the recent years.

Deep learning and machine learning have become trends for robot mapping and
localization in the last few years. Through trial and error, robots can adjust their behavior
in a dynamic environment. In a multi-robot real-time obstacle avoidance [39], the authors
propose a continuous domain detection for obstacle avoidance. An actor-critic component
with specific training allows for obstacle avoidance on multi-robot systems [40]. Those
techniques entail cooperative interactions. For object detection, methods as You only look
once (YOLO) and SSD [41,42] use a single convolutional neural network (CNN) to detect
the target position and properties. Approaches such as those in [43,44] use faster reinforce
convolutional neural network (Faster R-CNN) for object detection. Our work also employs
Faster R-CNN for object detection because of the speed detection accuracy under our
experimental conditions.

Besides the limitations of mapping, localization, scan alignment, and map representa-
tion, multiple robot systems must adapt to new architectural environments. Nowadays,
slopes commonly occur to facilitate transit from different areas in houses, warehouses, and
buildings. Thus, having a robust localization in multi-level space is critical. Multi-level
areas represent a challenging scenario wherein a mobile robot may lose balance, and 2D
LIDAR information provides a vague reference for localization.

Multi-robot systems offer robust and fast field coverage [45]. There is limited work
focused on autonomous navigation in sloped and unstructured interior areas, particularly
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in narrow slopes and crowded spaces. Input from multiple robots renders the system more
fault-tolerant than its counterparts. The overlapping of multiple information compensates
for sensor uncertainties. Nevertheless, multi-robot systems have limitations in exploring
uneven spaces because of the sudden change of flat surfaces [46]. There is extensive work
for single and multi-robot systems on 2D flat surfaces. However, robot localization is
significantly affected when the robots need to explore areas provided with multiple levels.
Thus, the major problem for a multi-robot system involves identifying and finding solutions
for multi-robot localization. Multi-robot navigation should be capable of localizing the
robot, distinguishing slopes from a staircase, and ascertaining a safe path.

This work proposes a robot framework for cooperative robot navigation in indoor
environments with multi-level surfaces. We used two robots to validate the proposed
method. The leader robot explores the uneven areas of the multi-level access using a
Faster R-CNN to detect indoor ramps. By contrast, the follower robot examines the
boundaries of the even areas using 2D LIDAR. We propose a novel 2.5D mapping approach
to generate a 2.5D map while the robot is exploring an environment with multi-level terrain.
Furthermore, we develop a 2D scan merging method to generate a map and obtain a
resource to back up the robot localization. Furthermore, autonomous navigation in uneven
and unstructured environments is helpful for mobile robots and provides meaningful
information for the design of smart wheelchairs. The remainder of this paper is organized
as follows. Section 2 addresses the ramp detection using Faster R-CNN, feature extraction,
map merging, and localization. Section 3 provides the experimental results, and Section 4
presents the conclusions.

System Overview

The proposed experiment uses a base station computer as a manager for the data
collection from the two robots. The wheel odometry of both robots constitutes the priority
reference for the pose distribution using Monte Carlo localization. We measure the weight
of the particles according to the input from each LIDAR. To ascertain the correspondences
among the point clouds, we translate them to the given pose from the particle estimation.

The leader robot generates a global map from the collected LIDAR point clouds.
The map can be updated using SLAM according to pose graph optimization and the
LIDAR odometry. The follower robot uses the reference generated by the leader robot to
identify multi-level access. Once the follower robot enters the new level, it explores all 2D
boundaries on the floor. The diagram for the proposed multi-robot system is presented in
Figure 1. The follower robot relies on the inertia measurement unit (IMU) to only proceed
with the exploration on the X-Y plane. Unless an input of a new path comes from the leader
robot, the follower robot will allow the reading in the Y-Z plane.

This work utilizes pose-graph optimization to update a map M. The contributions of
this study are as follows: a multi-robot localization according to a Monte Carlo algorithm
for multi-level areas, an extension of 2D ICP map merging, and a multi-robot exploration
of multi-level areas using a deep CNN.
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Figure 1. Task flow diagram for the multi robots.

2. Materials and Methods
2.1. Faster R-CNN for Indoor Ramp Detection

Our multi-robot system defines the location of multi-level areas. The leader robot
uses a Faster R-CNN [47] for real-time object detection. The Faster R-CNN detector adds
a region proposal network to generate region proposals directly in the network, thereby
improving object detection. First, training images were collected using a Kinect camera
and then resized to a resolution of 224 × 224. Next, each image was divided into grids
and assigned a bounding box. A single CNN runs once on every image. The network
consists of 15 convolutional layers followed by two fully connected layers. During training
and testing, the Faster R-CNN checks the entire image. Figure 2 shows (a) the diagram
for the Faster R-CNN training, (b) the 2D image capture by the Kinect camera, and (c) the
detected ramp.

2.2. 3D Point Clouds and 2D Feature Extraction

The leader robot performs three tasks: detecting uneven areas in the scenery, generat-
ing a 3D dense point cloud map, and extracting 2D features from the 3D point cloud.

Based on our previous research [1], the leader robot generates a 2D occupancy grid
map OMA using features obtained from a 3D point cloud for localization. The 2D features
represent the main edges of the 3D point cloud. Figure 3a shows the projection of the
3D point cloud on a 2D plane. The range of interest (ROI) is set to detect the significant
component of the 3D point cloud. To remove the invalid floor points, we employed the
Random sampling consensus algorithm (RANSAC). The edge points are denoted as E1

c
and arranged into polar coordinates. Then, the angle ∆θ between the consecutive points
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(rn, rn+1) of the polar coordinates can be obtained as Figure 3b shows. The distance
between those two points is given by Equation (1).

D(rn, rn+1) =
√

r2
n + rn+1 − 2rnrn+1 cos(∆θ). (1)

Given the 3D LIDAR resolution, the distance threshold is Dthd = 0.02 m to split
the points. The ROI was divided into segments Sgk ε {p1, p2, . . . , pN}. {p1, p2, . . . , pN}
represent the set of points for every segment. The created segments allow us to generate
and label features. The orientation for each feature line is ∆θ. Figure 3b illustrates how the
points were split into segments. Using the described segments Sgk and orientation ∆θ we
created a set of features FL:A.
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2.3. 2D Mapping and Map Merging

The follower robot explores the flat area boundaries. The set of 2D LIDAR scans
collected by the follower robot was divided according to the input received from the leader
robot. The leader robot detects a ramp and the follower robot crosses to the ramp, thereby
creating a new set of 2D LIDAR scans sL:B. Then, using sL:B, the follower robot filters each
scan using the Voronoi diagram and Delaunay triangulation. Algorithm 1, Line 4 shows
the filtering step. After filtering the scans, the follower robot creates an occupancy grid
map OMB.
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Figure 3. Point splitting method. (a) 3D point cloud projection onto the 2D plane. (b) Splitting and
merging of the 2D edge features.

We propose an extended version of the ICP for scan merging and further occupancy
grid map creation. For every robot pose, Mi−1 is the reference scan and Si

c is the current
scan. Given the rotation matrix R = Rθ and the translation t, ICP computes the alignment
error E between the two datasets and determines the proper rotation R and translation t
that minimizes the outcome of Equation (2).

E(R, t) =
Nr

∑
k=1

Nc

∑
j=1

wk,j‖Mi−1
k − (RSi

c,j + t)‖2
, (2)

where Nr and Nc are the number of the points in Mi−1 and Si
c respectively. wk,j is 1,

if Mi−1
k is the closest point to Si

c,j and is 0 otherwise. ICP rotates the scanned data Si
c,j

by θ and translates using t to obtain the best alignment to the reference data Mi−1. We
started the mapping and localization matching

[
0 0 0

]T with the coordinate frame.

Using ICP scan matching, we obtained a pose correction vector
[

xi
sm yi

sm θi
sm
]T . The

pose correction vector derives the homogeneous coordinate transformation matrix H. By
employing the 2D geometric transformation, H was expanded to a 3 × 3 matrix as shown
in Equation (3).

H =

 cos θi
sm − sin θi

sm xi
sm

sin θi
sm cos θi

sm yi
sm

0 0 1

 (3)

Then the pose of the robot can be updated by Equation (4). xi
est

yi
est

θi
est

 =

 xi−1
est

yi−1
est

θi−1
est

+

 dxi
i−1

dyi
i−1

dθi
i−1

+

 xi
sm

yi
sm

θi
sm

 (4)

where
[

xi−1
est yi−1

est θi−1
est

]T
is the estimated pose of the leader robot t (i− 1)− th sam-

pling time, and
[

dxi
i−1 dyi

i−1 dθi
i−1

]T
is the difference between the i − th and the

(i− 1)− th pose of the robot as estimated through the odometer. Scan merging combines
the reference data set Mi−1 and the current data set Si

c into a new data set Mi. Then, we
determined the outlier points and validated the workspace scans. Using a sparse point
map, we avoid point duplication. The map of the environment was incrementally built
according to Equation (5).

Mi = Mi−1 ∪
{
(xq, yq) ∈ Si

c

∣∣∣∃(xp, yp) ∈Mi−1 : ‖ (xq, yq)− (xp, yp) ‖ < dth

}
(5)
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where (xq, yq) is a data point of the current scan Si
c, (xp, yp) is a data point in Mi−1, and

dth is the threshold value for the scan merging. The sensor range determines the proper
value dth to achieve optimal scan alignment. The initial state Si

c is one “1” and dth is the
threshold circle radius.

The merging was executed from left to right, and the threshold circle moves as the
data line increases. The new reference Mi−1 was obtained from the data line “5.” The larger
the value dth, the smaller the number of points on the map. Figure 4 shows the reference
scan Mi−1 (red triangles) and the current scan Si

c (blue circles). Figure 4a presents a circle
moving from the previous Pi+1 line “1” to the new position pi line “2.” Points that do not
belong to pi and pi+1 are the new scanned points. Figure 4b shows lines “1” and “4” as
a duplicated data set and lines “2” and “3” as new scanned points. Our method merges
LIDAR scans using a circle threshold that omits adjacent points. If the Euclidian distances
between,pi, pi−1 and pi+1 are shorter than the threshold dth, then the points are invalid.
Algorithm 1, Line 6 includes the described scan merging. Figure 5a–c shows the different
stages of the map merging using the segmented data set.

Sensors 2021, 21, 4588 8 of 17 
 

 

 
Figure 4. Scan merging. (a) Conventional merging rule. (b) Modified scan merging rule. 

   
(a) (b) (c) 

Figure 5. 2D LIDAR segmentation and filtering. (a) Aligned 2D LIDAR scans without filtering and segmentation (b) Seg-
mented and filtered LIDAR scans. (c) Generated occupancy grid map. 

Algorithm 1 Follower Robot Occupancy Grid Map. 
1: Input: the follower robot sets local point-clouds: ܥ: 
2: Output: Occupancy grid map: ܱܯ 
3: for ݅ = 1 to ܵ݅݁ݖ(ܥ:) do 
 (:()ܥ)௧_:  = Filterܥ :4
5: if Leader robot(uneven = 1) then 
:()ݏ :6 =  ௧_:(:ାଵ)ܥ
7: ܵ:() = Merge(ݏ:()) 
8: j = j+1 
9: end if 
  = Occupancy Map (ܵ:)ܯܱ   :10
11: end for 

Figure 4. Scan merging. (a) Conventional merging rule. (b) Modified scan merging rule.



Sensors 2021, 21, 4588 8 of 16

Sensors 2021, 21, 4588 8 of 17 
 

 

 
Figure 4. Scan merging. (a) Conventional merging rule. (b) Modified scan merging rule. 

   
(a) (b) (c) 

Figure 5. 2D LIDAR segmentation and filtering. (a) Aligned 2D LIDAR scans without filtering and segmentation (b) Seg-
mented and filtered LIDAR scans. (c) Generated occupancy grid map. 

Algorithm 1 Follower Robot Occupancy Grid Map. 
1: Input: the follower robot sets local point-clouds: ܥ: 
2: Output: Occupancy grid map: ܱܯ 
3: for ݅ = 1 to ܵ݅݁ݖ(ܥ:) do 
 (:()ܥ)௧_:  = Filterܥ :4
5: if Leader robot(uneven = 1) then 
:()ݏ :6 =  ௧_:(:ାଵ)ܥ
7: ܵ:() = Merge(ݏ:()) 
8: j = j+1 
9: end if 
  = Occupancy Map (ܵ:)ܯܱ   :10
11: end for 

Figure 5. 2D LIDAR segmentation and filtering. (a) Aligned 2D LIDAR scans without filtering and
segmentation (b) Segmented and filtered LIDAR scans. (c) Generated occupancy grid map.

Algorithm 1 Follower Robot Occupancy Grid Map

1 : Input: the follower robot sets local point− clouds : CL:B
2 : Output: Occupancy grid map : OMB
3 : for i = 1 to Size(CL:B) do
4 : C f ilter_L:B = Filter

(
CL:B(i) )

5: if Leader robot(uneven = 1) then
6 : sL:B(j) = C f ilter_L:B(i:i+1)

7 : SL:B(j)= Merge
(

sL:B(j) )

8: j = j + 1
9: end if
10 : OMB = Occupancy Map(SL:B)
11: end for

2.4. Communication

To establish multi-robot communication, we used an ad hoc on-demand distance
vector (AODV) and a WLAN access point. The AODV is a package of the robot operative
system (ROS) and has a unicast and multicast transition. The ROS allows us to create nodes
for multi-robot communication. The AODV uses an automatic request datalink to achieve
reliable data transfer. The robots do not communicate with each other directly. Instead, the
AODV transmits the data using a raw socket, thereby avoiding kernel space. Once each
robot has received the data, the master computer publishes the AODV package. With the
mentioned protocol and ROS node-publication method, we establish flexible communi-
cation among the robots. Figure 6a shows the multi-robot communication diagram. The
master station receives a ROS message containing the occupancy grid created by each robot.
The master computer then merges the multi-robot trajectories into a single-occupancy grid
map. Figure 6b presents the communication flowchart.

2.5. Multi-Robot Localization

We propose a multi-robot localization using a Monte Carlo algorithm from our previ-
ous study [1]. The leader robot gives the starting point in the initial pose. Each robot uses
a sensor reading for particle estimation. We used an iterative process; each robot moves,
senses, and re-samples to determine its pose. We can execute a single robot localization
when multi-robots have mutual poses. This work assumes that the initial robot pose is
known, but each robot does not have global positioning. The leader robot extracts 2D fea-
tures from the 3D point cloud projection and generates an occupancy grind map OMA. The
follower robot then uses 2D LIDAR scans to localize itself in the occupancy grid map OMB.
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with the master computer. (b) Communication flowchart.

The leader robot provides the initial position for localization using the Monte Carlo
algorithm. Then, the follower robot proceeds with the localization in the occupancy grid
map OMB using the features FL:A described in the Section 2.2 as shown in Algorithm 2,
Line 5. To obtain the multi-robot localization, we merge the follower robot trajectory onto
the leader robot occupancy-grid-map OMA as shown in Algorithm 2, Line 6. Lastly, we
ascertain each robot’s global position in an occupancy grid map. Figure 7 reveals the
occupancy map created by each robot: (a) the map for the leader robot, (b) the follower
robot map, and (c) the combination of both in one map.
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Algorithm 2 Multi-Robot Localization

1 : Input: Set local clouds (CL:A ) in the follower robot occupancy grid map (OMB)
2 : Output: Global robot position : RG:A, RG:B
3 : for i = 1 to N = Size(CL:A) do
4 : FL:A= Extract 2D Features(CL:A)
5 : OMA= Occupancy Map(FL:A)
6 : OMA= merge(OMA, OMB)

7 : AMCL
[

FL:A(i), CL:B(i), OMA

]
→ RG:A(i), RG:B(i)

8: end for
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3. Results

Our multi-robot system has two robots: Robot A (leader) and Robot B (follower). The
leader robot is equipped with a 3D LIDAR scan, a Kinect camera, a Kobuki robot platform,
and a laptop running Linux Ubuntu 14.04. The follower robot is equipped with a 2D
LIDAR scan, a Kobuki platform, and a laptop running Linux Ubuntu 14.04. The master
station uses Matlab with the robotics Tool Box 1.4 with an Intel i7 processor. Figure 8a
depicts the two robots used for the experiment, and Figure 8b–d shows the experiment
location. For the experiment, we use a university location provided with four ramps with
10-degree slopes. The ramps allow us to test the multi-robot performance in an uneven
space. The leader robot collects the features using the process described in Section 2.2. The
follower robot uses raw information from a 2D LIDAR scan.
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Figure 8. Experiment setting: (a) Two mobile robots and their parts, (b) the experiment location and corresponding robot
paths, (c) Image taken from a corner of the experiment location, (d) experiment location diagram.

The experiment coordinates systems are as follows: the world coordinate (x, y, z),
leader robot (xA, yA, zA), and the follower robot (xB, yB, zB). The robot coordinates are
always parallel to each robot’s velocity. Axes zA and zB are perpendicular to the soil. Both
robots move with a linear velocity of 0.05 m/s.

The 2D and 3D LIDAR sensor axes are concurrent with the follower and leader robots,
respectively. The speed of both robots VA and VB are considered as non-slip speeds. The
scanning frequency for the leader robot is every 0.5 m, and that of the follower robot is 0.1 m.
The leader robot sampling period is ∆t = 1 s, and that of the follower robot is ∆t = 0.5 s.
The follower robot has a shorter sampling period because 2D LIDAR scans are lighter
than their 3D LIDAR counterparts. Both robots have enough time for data acquisition
from LIDAR and odometry sensors employing the described sampling time. The proposed
multi-robot system uses 3D point cloud information to identify features and recreate a
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2.5D dense map. By contrast, the 2D LIDAR scans allow for fast localization on the even
space. The ground truth for the robot localization was obtained using the odometer and
the Inertia measurement unit (IMU) integrated into the robot. The information collected
from these sensors was fused using the Extended Kalman Filter (EKF) within a ROS node.

We calculated the root-mean-square error (RMSE) in meters for the scan registration.
Table 1 lists the RSME errors for both robots. Figure 9 shows the multi-robot estimated and
ground-truth trajectories. Figure 9a,b are the trajectories of the leader and follower robots,
respectively. The follower robot has a larger trajectory than that of the leader robot. As
the leader robot uses a 3D LIDAR for exploration, his trajectory is shorter than that of the
follower robot. Figure 9c shows the combined trajectory for both robots. Table 1 indicates
that the leader and follower robots’ scanning errors are approximately 0.2 m in the X and Y
axes, and this outcome acceptable for robot mapping and exploration.

Table 1. Root mean square error for scan registration.

Leader Robot Follower Robot

Error (m)
X-Axis 0.26 0.22
Y Axis 0.19 0.24
Z Axis 0.31 0.86

The leader robot collects 3D point clouds for every pose and creates a 2.5D dense map.
We used a box grid filter (BGF) with a voxel size of 0.1 m to down-sample each 3D point
cloud. Once the robots completed the exploration, each robot generates a map. The leader
robot generates a 2.5D dense map including all the collected 3D LIDAR point clouds. The
2.5D dense map created by the leader robot includes the floor points. The floor points are
only removed for the generation of the occupancy grid map, as is described in Section 2.2.
The follower robot recreates the 2D map using all the collected 2D LIDAR scans, the 2D
LIDAR map was merged and filter using the process described in Section 2.3.

Filtering the 3D point clouds enable quick registration, thereby maintaining accurate
results. Figure 10a depicts the 2.5D map generated by the leader robot. Figure 10b shows
the 2D map generated by the follower robot following the process described in Section 2.3.
We compare our results with those of two state-of-art methods: generalized GICP and
LOAM, to validate our method. As the proposed method was designed for multiple robots,
we test the performance of each robot. To validate the trajectory obtained, we measure
(in meters) the mean square error (RMSE) between the ground truth and the estimated
trajectory. First, we employed two search algorithms: kd-tree and knearest-neighbor; which
are the optimal ways to find the distance between two neighboring points. Second, once the
closest neighbor pair was found, RMSE calculated the distance between two neighboring
points. Tables 2 and 3 show the localization error for each robot. LOAM and GICP are
dependent on features extracted for even surfaces. As an uneven surface induces a sudden
point cloud rotation, our method provides an accurate response for multi-robot localization
on multi-level spaces.
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Table 2. Leader robot localization errors for the proposed method, the generalized iterative closest
point (GICP) technique, and the LIDAR and odometry mapping (LOAM) approach. The lowest
values in the axis X, Y, Z, and consumed time are denoted in bold.

Leader Robot
Error (m) Time (min)

X Y Z

Our Method 0.26 0.32 0.27 14.64
GICP 0.18 0.17 0.17 11.90

LOAM 0.25 0.12 0.19 11.67
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Table 3. Follower robot localization errors for the proposed method, the generalized iterative closest
point (GICP) technique, and the LIDAR and odometry mapping (LOAM) approach. The lowest
values in the axis X, Y, and consumed time are denoted in bold.

Follower Robot
Error (m)

Time (min)
X Y

Our Method 0.02 0.05 12.10
GICP 0.20 0.27 18.14

LOAM 0.20 0.27 18.14

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn. Table 2 shows the error for the leader robot, for which
our method error in axis Y is approximately 0.15 m that that of the GICP and LOAM.
Table 3 shows the error for the follower robot. Our method errors in axes X and Y are
approximately 0.2 m lower than those of the GICP and LOAM, and the processing time is
also lower because we enhance the filtering and map merging for 2D scans. Table 4 shows
the general errors in the multi-robot system, for which our method reduces the error in
axes X and Y. The processing time of our technique is likewise lower than that of the GICP
and LOAM. As our proposed method includes using a CNN, the 3D–2D exploration is
versatile and allows for robot mapping within an optimal result. To provide a quantitative
and qualitative comparison of the three methods, we only used MATLAB and ROS for
programming. It was clarified in the results section.

Table 4. Total errors and times for a multi-robot system using our proposed method versus the
general iterative closest Point (GICP) technique and the LIDAR odometry and Mapping (LOAM)
approach. The lowest values in the axis X, Y, and consumed time are denoted in bold.

Multi-Robot
Error (m)

Time (min)
X Y

Our Method 0.28 0.37 26.74
GICP 0.38 0.44 30.04

LOAM 0.45 0.39 29.81

4. Conclusions

This work allows the mapping and exploration of multi-level surfaces for multi-robots.
Our mapping approach simplifies the global representation and localization using a merged
occupancy grid map. The experiment results show a robust response in an environment
integrated with multi-level surfaces. Our proposed 2D LIDAR scan merging method
reduces the error localization around the x and y axes. The created Faster R-CNN has a
robust response for detecting ramps in indoor environments. In future work, we shall
extend larger indoor and outdoor mapping scenery.
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