Optical Simulation and Experimental Assessment with Time–Walk Correction of TOF–PET Detectors with Multi-Ended Readouts †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Optical Simulation
2.2. Multi-Ended Readout Detector
2.3. Readout Electronic Circuit
2.4. Time–Walk Correction
3. Results
3.1. Cumulative Density Light Output
3.2. Energy Resolution
3.3. Time–Walk Correction
3.4. Timing Resolution
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Karlberg, A.M.; Sæther, O.; Eikenes, L.; Goa, P.E. Quantitative comparison of PET performance-Siemens Biograph mCT and mMR. EJNMMI Phys. 2016, 3, 5. [Google Scholar] [CrossRef] [Green Version]
- Levin, C.S.; Maramraju, S.H.; Khalighi, M.M.; Deller, T.W.; Delso, G.; Jansen, F. Design Features and Mutual Compatibility Studies of the Time-of-Flight PET Capable GE SIGNA PET/MR System. IEEE Trans. Med. Imaging 2016, 35, 1907–1914. [Google Scholar] [CrossRef] [PubMed]
- Budinger, T.F. Instrumentation trends in nuclear medicine. Semin. Nucl. Med. 1977, 7, 285–297. [Google Scholar] [CrossRef]
- Conti, M. State of the art and challenges of time-of-flight PET. Phys. Med. 2009, 25, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Kadrmas, D.J.; Casey, M.E.; Conti, M.; Jakoby, B.W.; Lois, C.; Townsend, D.W. Impact of Time-of-Flight on PET Tumor Detection. J. Nucl. Med. 2009, 50, 1315–1323. [Google Scholar] [CrossRef] [Green Version]
- Surti, S.; Karp, J.S. Advances in time-of-flight PET. Phys. Med. 2016, 32, 12–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Z.; Zhao, Z.; Yu, H.; Yang, J.; Zhang, X.; Sui, T.; Xu, J.; Xie, S.; Huang, Q.; Peng, Q. An 8.8 ps RMS Resolution Time-To-Digital Converter Implemented in a 60 nm FPGA with Real-Time Temperature Correction. Sensors 2020, 20, 2172. [Google Scholar] [CrossRef] [Green Version]
- Gundacker, S.; Knapitsch, A.; Auffray, E.; Jarron, P.; Meyer, T.; Lecoq, P.; Gundacker, S.; Knapitsch, A.; Auffray, E.; Jarron, P.; et al. Time resolution deterioration with increasing crystal length in a TOF-PET system. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2014, 737, 92–100. [Google Scholar] [CrossRef]
- Kuhn, A.; Surti, S.; Karp, J.; Raby, P.; Shah, K.; Perkins, A.; Muehllehner, G. Design of a lanthanum bromide detector for time-of-flight PET. IEEE Trans. Nucl. Sci. 2004, 51, 2550–2557. [Google Scholar] [CrossRef]
- Conti, M.; Eriksson, L.; Rothfuss, H.; Melcher, C. Comparison of Fast Scintillators with TOF PET Potential. IEEE Trans. Nucl. Sci. 2009, 56, 926–933. [Google Scholar] [CrossRef]
- Xie, S.; Zhang, X.; Peng, H.; Yang, J.; Huang, Q.; Xu, J.; Peng, Q. PET detectors with 127 ps CTR for the Tachyon-II time-of-flight PET scanner. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2019, 933, 48–55. [Google Scholar] [CrossRef]
- Peng, Q.; Xie, S.; Sui, T.; Yang, M.; Huang, Q.; Xu, J. Experimental assessments of the timing performances of detectors constructed with LaBr3, CeBr3, LFS, LSO, LYSO, GAGG scintillators. Inst. Electr. Electron. Eng. 2017, 1–2. [Google Scholar] [CrossRef]
- Lecoq, P.; Auffray, E.; Knapitsch, A. How Photonic Crystals Can Improve the Timing Resolution of Scintillators. IEEE Trans. Nucl. Sci. 2013, 60, 1653–1657. [Google Scholar] [CrossRef] [Green Version]
- Schaart, D.R.; Seifert, S.; Vinke, R.; Van Dam, H.T.; Dendooven, P.; Löhner, H.; Beekman, F.J. LaBr3:Ce and SiPMs for time-of-flight PET: Achieving 100 ps coincidence resolving time. Phys. Med. Biol. 2010, 55, N179–N189. [Google Scholar] [CrossRef] [Green Version]
- Korpar, S.; Dolenec, R.; Križan, P.; Pestotnik, R.; Stanovnik, A. Study of TOF PET using Cherenkov light. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2011, 654, 532–538. [Google Scholar] [CrossRef]
- Du, J.; Schmall, J.P.; Judenhofer, M.S.; Di, K.; Yang, Y.; Cherry, S.R. A Time-Walk Correction Method for PET Detectors Based on Leading Edge Discriminators. IEEE Trans. Radiat. Plasma Med. Sci. 2017, 1, 385–390. [Google Scholar] [CrossRef]
- Chen, Y.; Deng, Z.; Liu, Y. DIET: A multi-channel SiPM readout ASIC for TOF-PET with individual energy and timing digitizer. J. Instrum. 2018, 13, P07023. [Google Scholar] [CrossRef]
- Ota, R.; Nakajima, K.; Ogawa, I.; Tamagawa, Y.; Shimoi, H.; Suyama, M.; Hasegawa, T. Coincidence time resolution of 30 ps FWHM using a pair of Cherenkov-radiator-integrated MCP-PMTs. Phys. Med. Biol. 2019, 64, 07LT01. [Google Scholar] [CrossRef] [PubMed]
- Tao, L.; Daghighian, H.M.; Levin, C.S. A promising new mechanism of ionizing radiation detection for positron emission tomography: Modulation of optical properties. Phys. Med. Biol. 2016, 61, 7600–7622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Li, Y.; Yi, F.; Li, J.; Xie, S.; Peng, Q.; Xu, J. Two-crossed-polarizers based optical property modulation method for ionizing radiation detection for positron emission tomography. Phys. Med. Biol. 2019, 64, 135017. [Google Scholar] [CrossRef]
- Wang, Y.; Tao, L.; Abbaszadeh, S.; Levin, C. Further investigations of a radiation detector based on ionization-induced modulation of optical polarization. Phys. Med. Biol. 2021, 66, 055013. [Google Scholar] [CrossRef]
- Gundacker, S.; Acerbi, F.; Auffray, E.; Ferri, A.; Gola, A.; Nemallapudi, M.; Paternoster, G.; Piemonte, C.; Lecoq, P. State of the art timing in TOF-PET detectors with LuAG, GAGG and L(Y)SO scintillators of various sizes coupled to FBK-SiPMs. J. Instrum. 2016, 11, P08008. [Google Scholar] [CrossRef]
- Oliver, S.; Moliner, L.; Ilisie, V.; Benlloch, J.; Rodríguez-Álvarez, M. Simulation Study for Designing a Dedicated Cardiac TOF-PET System. Sensors 2020, 20, 1311. [Google Scholar] [CrossRef] [Green Version]
- Kwon, S.I.; Roncali, E.; Gola, A.; Paternoster, G.; Piemonte, C.; Cherry, S.R. Dual-ended readout of bismuth germanate to improve timing resolution in time-of-flight PET. Phys. Med. Biol. 2019, 64, 105007. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Tian, J.; Chen, P.; Derenzo, S.; Choong, W.-S. Improving timing performance of double-ended readout in TOF-PET detectors. J. Instrum. 2020, 15, P01003. [Google Scholar] [CrossRef]
- Seifert, S.; Schaart, D.R. Improving the Time Resolution of TOF-PET Detectors by Double-Sided Readout. IEEE Trans. Nucl. Sci. 2014, 62, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Sui, T.; Zhao, Z.; Xie, S.; Xie, Y.; Zhao, Y.; Huang, Q.; Xu, J.; Peng, Q. A 2.3-ps RMS Resolution Time-to-Digital Converter Implemented in a Low-Cost Cyclone V FPGA. IEEE Trans. Instrum. Meas. 2019, 68, 3647–3660. [Google Scholar] [CrossRef] [PubMed]
- Cates, J.W.; Levin, C.S. Evaluation of a clinical TOF-PET detector design that achieves ≤100 ps coincidence time resolution. Phys. Med. Biol. 2018, 63, 115011. [Google Scholar] [CrossRef]
- Peng, P.; Judenhofer, M.S.; Cherry, S.R. Compton PET: A layered structure PET detector with high performance. Phys. Med. Biol. 2019, 64, 10LT01. [Google Scholar] [CrossRef]
- Hsu, D.F.C.; Freese, D.L.; Innes, D.R.; Levin, C.S. Time Resolution Studies for a 1-mm Resolution Clinical PET System With a Charge Sharing Readout and Leading Edge Discrimination. IEEE Trans. Radiat. Plasma Med. Sci. 2018, 3, 285–291. [Google Scholar] [CrossRef]
- Xie, S.; Zhang, X.; Huang, Q.; Gong, Z.; Xu, J.; Peng, Q. Methods to Compensate the Time Walk Errors in Timing Measurements for PET Detectors. IEEE Trans. Radiat. Plasma Med. Sci. 2020, 4, 555–562. [Google Scholar] [CrossRef]
- User’s Manual for Software TracePro, Release 7.8. Available online: https://www.lambdares.com/wp-content/uploads/support/tracepro/tracepro_releases/TracePro78_UpdateGuide.pdf (accessed on 7 July 2021).
- Martins, A.; Carreira, J.; Rodrigues, J.; Ben Sedrine, N.; Castro, I.; Correia, P.; Veloso, J.; Rino, L.; Monteiro, T. Spectroscopic analysis of LYSO:Ce crystals. Spectrochim. Acta Part. A Mol. Biomol. Spectrosc. 2017, 172, 163–167. [Google Scholar] [CrossRef]
- Xie, S.; Xu, J.; Yang, M.; Ying, G.; Zhang, X.; Huang, Q.; Peng, Q. Methods to Improve Light Transport Efficiency in LYSO Crystals Based on Characteristics of Optical Reflectance. IEEE Trans. Nucl. Sci. 2019, 66, 2100–2106. [Google Scholar] [CrossRef]
- Pro, T.; Ferri, A.; Gola, A.; Serra, N.; Tarolli, A.; Zorzi, N.; Piemonte, C. New Developments of Near-UV SiPMs at FBK. IEEE Trans. Nucl. Sci. 2013, 60, 2247–2253. [Google Scholar] [CrossRef]
- Xie, S.; Zhang, X.; Zhang, Y.; Ying, G.; Huang, Q.; Xu, J.; Peng, Q. Evaluation of Various Scintillator Materials in Radiation Detector Design for Positron Emission Tomography (PET). Crystals 2020, 10, 869. [Google Scholar] [CrossRef]
- Lee, M.S.; Cates, J.W.; Gonzalez-Montoro, A.; Levin, C.S. High-resolution time-of-flight PET detector with 100 ps coincidence time resolution using a side-coupled phoswich configuration. Phys. Med. Biol. 2021, 66, 125007. [Google Scholar] [CrossRef]
- Nadig, V.; Gundacker, S.; Profe, M.; Radermacher, H.; Schug; Weissler, B.; Schulz, V. Methods to Improve the Timing Resolution of Positron Emission Tomography Systems. Jahrestag. Dtsch. Ges. Nukl. 2021, 60, V46. [Google Scholar] [CrossRef]
- Kuang, Z.; Wang, X.; Fu, X.; Ren, N.; Yang, Q.; Zhao, B.; Zhang, C.; Wu, S.; Sang, Z.; Hu, Z.; et al. Dual-ended readout small animal PET detector by using 0.5 mm pixelated LYSO crystal arrays and SiPMs. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2019, 917, 1–8. [Google Scholar] [CrossRef]
Materials | Refractive Index | Absorption Rate | Thickness/Size (mm) |
---|---|---|---|
LYSO scintillator | 1.82 | 0.042/mm | 6 × 6 × 25 |
SIPM glass | 1.53 | 0.042/mm | 6 × 6 × 0.35 |
Diffuse reflection material | / | 1.5% | 0.2 |
Optical glue | 1.53 | 0.08/mm | 0.1 |
Dual-Ended | Side Dual-Ended | Triple-Ended | ||
---|---|---|---|---|
ER | Ref. detector | 8.9% | 9% | 8.4% |
Test detector | 11.8% | 12.9% | 11.9% | |
EW | Ref. detector | [440 550] | ||
SiPM A | [190 310] | [180 340] | [140 200] | |
SiPM B | [210 310] | [150 310] | [150 220] | |
SiPM C | / | / | [150 210] |
SiPM 1 | SiPM 2 | SiPM 3 | All SiPM | ||
---|---|---|---|---|---|
Dual-ended | 288.4 | 325.2 | / | 240.7 | |
251.9 | 287.1 | / | 216.9 | ||
12.6% | 11.7% | / | 9.9% | ||
Side dual-ended | 392.3 | 417.1 | / | 241.1 | |
293.4 | 316.0 | / | 231.0 | ||
25.2% | 24.2% | / | 4.2% | ||
Triple-ended readout | 294.0 | 364.9 | 315.6 | 224.1 | |
276.2 | 333.7 | 265.3 | 203.6 | ||
6.0% | 8.6% | 15.9% | 9.1% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, S.; Zhu, Z.; Zhang, X.; Xie, Q.; Yu, H.; Zhang, Y.; Xu, J.; Peng, Q. Optical Simulation and Experimental Assessment with Time–Walk Correction of TOF–PET Detectors with Multi-Ended Readouts. Sensors 2021, 21, 4681. https://doi.org/10.3390/s21144681
Xie S, Zhu Z, Zhang X, Xie Q, Yu H, Zhang Y, Xu J, Peng Q. Optical Simulation and Experimental Assessment with Time–Walk Correction of TOF–PET Detectors with Multi-Ended Readouts. Sensors. 2021; 21(14):4681. https://doi.org/10.3390/s21144681
Chicago/Turabian StyleXie, Siwei, Zhiliang Zhu, Xi Zhang, Qiangqiang Xie, Hongsen Yu, Yibin Zhang, Jianfeng Xu, and Qiyu Peng. 2021. "Optical Simulation and Experimental Assessment with Time–Walk Correction of TOF–PET Detectors with Multi-Ended Readouts" Sensors 21, no. 14: 4681. https://doi.org/10.3390/s21144681
APA StyleXie, S., Zhu, Z., Zhang, X., Xie, Q., Yu, H., Zhang, Y., Xu, J., & Peng, Q. (2021). Optical Simulation and Experimental Assessment with Time–Walk Correction of TOF–PET Detectors with Multi-Ended Readouts. Sensors, 21(14), 4681. https://doi.org/10.3390/s21144681