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Abstract: The visual design elements and principles (VDEPs) can trigger behavioural changes and
emotions in the viewer, but their effects on brain activity are not clearly understood. In this paper,
we explore the relationships between brain activity and colour (cold/warm), light (dark/bright),
movement (fast/slow), and balance (symmetrical/asymmetrical) VDEPs. We used the public DEAP
dataset with the electroencephalogram signals of 32 participants recorded while watching music
videos. The characteristic VDEPs for each second of the videos were manually tagged for by
a team of two visual communication experts. Results show that variations in the light/value,
rhythm/movement, and balance in the music video sequences produce a statistically significant
effect over the mean absolute power of the Delta, Theta, Alpha, Beta, and Gamma EEG bands
(p < 0.05). Furthermore, we trained a Convolutional Neural Network that successfully predicts the
VDEP of a video fragment solely by the EEG signal of the viewer with an accuracy ranging from
0.7447 for Colour VDEP to 0.9685 for Movement VDEP. Our work shows evidence that VDEPs affect
brain activity in a variety of distinguishable ways and that a deep learning classifier can infer visual
VDEP properties of the videos from EEG activity.

Keywords: EEG; emotion classification; CNN; spectral analysis; visual perception; visual attention;
visual features; visual design elements and principles (VDEPs)

1. Introduction
1.1. Overview

Visual communication design is the process of creating visually engaging content
for the creative industries, to communicate specific messages and persuade in a way that
eases the comprehension of the message and ensures a lasting impression on its recipient.
Therefore, the main objective of visual communication design as a discipline, is the creation
of visually attractive content that impacts the target audience through persuasion, the
stimulation of emotions and the generation of sentiments. This objective is achieved
through conscious manipulation of the inherent elements and principles, such as shape,
texture, direction harmony, and colour that make up the designed product [1].

The elements of visual design describe the building blocks of a product’s aesthetics,
and the principles of design tell how these elements should go together for the best results.
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Although there is no consensus on how many visual design elements and principles
(VDEPs) there are, some of these design reference values have been thoroughly studied
for centuries and are considered the basis of modern graphic design [2]. One of the most
important breakthroughs in graphic design history is the theory of the Gestalt in the
1930s, which studied these VDEPs from a psychological point of view, and discovered
that the notion of visual experience is inherently structured by the nature of the stimulus
triggering it as it interacts with the visual nervous system [3]. Since then, several studies
have explored the psychological principles of different VDEPs and their influence on their
observers [4–6]. As an example, in colour theory, some colours have been experimentally
proven to convey some semantic meanings, and they are often used to elicit particular
emotions in the viewers of visual content [7–9].

Within this context, in recent years diverse research has been carried out to deepen
our understanding of brain activity and visual perception [10]. Research findings on visual
perception have been applied to real-world applications in a wide range of fields, including
visual arts, branding, product management, and packaging design to increase consumer
spending, creating engaging pedagogic content, and survey design, among others [11–14].
These works mostly focus on the VDEPs capability of eliciting specific emotions in the
viewer and how to trigger the desired response from the viewer, such as favouring the learn-
ing of content or increasing the probability of purchasing some goods. Multiple approaches
have recently addressed the study of human visual perception from within the fields of
attention and perception psychology and computational intelligence with studies focused
on the neuropsychology of attention and brain imaging techniques and their applications
(fMRI or electroencephalogram, EEG) [14,15], pupillometry [16] or eye-tracking [17,18] as
a scanning technique of information processing as well as neuroaesthetics [19], computa-
tional neuroscience [20], computational aesthetics [21], or neuromarketing, and consumer
neuroscience studies [22,23], among others [24].

However, it is not yet known how the VDEPs impact human brain activity. In this
regard, we turn our attention to the DEAP dataset [25], a multimodal dataset for the
analysis of human affective states with EEG recordings and synchronous excerpts of music
videos. Previous research carried out with DEAP dataset pursued emotion recognition from
the EEG records by using 3D convolutional neural networks [26], a fusing of learned multi-
modal representations and dense trajectories for emotional analysis in videos [27], studying
arousal and valence classification model based on long short-term memory [28], DEAP
data for mental healthcare management [28], or accurate EEG-based emotion recognition
on combined features using deep convolutional neural networks, among others [29].

Beyond the information about levels of valence, arousal, like/dislike, familiarity, and
dominance in the DEAP dataset, we sought to analyse the EEGs and videos to extract
some of the most important VDEPs—Balance, Colour, Light, and Movement—and search
for measurable effects of these on the observable EEG brain activity. The Balance, Colour,
Light and Movement principles are fundamental for professional design pipelines and are
universally considered to influence the emotions of the viewer, as designers rely on the
contrasts, schemes, harmony, and interaction of colours to evoke reactions and moods in
those who look at their creations [30–33].

The Balance refers to the visual positioning or distribution of objects in a composition,
gives the visual representation of a sense of equality, and can be achieved through a
symmetrical or asymmetrical composition to create a relationship of force between the
various elements represented, either to compensate or, to the contrary, to decompensate
the composition [6,34]. We speak of symmetrical balance when the elements are placed
evenly on both sides of the axes. Secondly, the Colour helps communicate the message by
attracting attention, setting the tone of the message, guiding the eye to where it needs to go
and determines 90% of the choice of a product [35,36]. The warmth or coldness of a colour
attends to subjective thermal sensations; it can be cold or warm depending on how it is
perceived by the human eye and the interpretation of the thermal sensation it causes [36].
Thirdly, the Light or “value” refers to relative lightness and darkness and is perceived in



Sensors 2021, 21, 4695 3 of 22

terms of varying levels of contrast; it determines how light or dark an area looks [34,37].
Finally, Movement refers to the suggestion of motion using various elements and it is the
strongest visual inducement to attention. Different studies have dissected the exact nature
of our eye movement habits and the patterns our eyes trace over when viewing specific
things [17,18]. Strongly connected with direction VDEPs, rhythm/movement provide
designers with the chance to create final pieces with good flow from top to bottom, left to
right, corner A to corner B, etc., [37]. By layering simple shapes of varying opacities, an
abrupt change in the camera, a counterstroke or a tracking shot, or a sudden change in the
subject’s action, it is possible to create a strong sense of speed and motion and determine
an effect of mobility or immobility.

1.2. Background
1.2.1. EEG Symmetry Perception

Symmetry is known to be an important determinant of aesthetic preference. Sen-
sitivity to symmetry has been studied extensively in adults, children, and infants with
diverse research ranging from behavioural psychology to neuroscience. Adults detect
symmetrical visual presentations more quickly and accurately than asymmetrical ones
and remember them better [38,39]. The perception and appreciation of visual symmetry
have been studied in several EEG/fMRI experiments, some of the most recent studies are
focused on symmetric patterns with different luminance polarity (anti-symmetry) [40],
the role of colour and attention-to-colour in mirror-symmetry perception [41], or contour
polarity [42], among others.

1.2.2. EEG Colour Perception

The perception of colour is an important cognitive feature of the human brain and is a
powerful descriptor that considerably expands our ability to characterize and distinguish
objects by facilitating interactions with a dynamic environment [43]. Some of the most
recent studies that have addressed the interactions of colour and human perception through
EEG are the response of a human visual system to continuous colour variation [44], human
brain perception and reasoning of image complexity for synthetic colour fractal and natural
texture images via EEG [45], or neuromarketing studies based on the study of colour
perception and the application of EEG power for the prediction and interpretation of
consumer decision-making [46], and so forth.

1.2.3. EEG Brightness Perception

Brightness is one of the most important sources of perceptual processing and may
have a strong effect on brain activity during visual processing [47]. Brain responses of the
brain to changes in brightness were explored in different studies centred on the luminance
and spatial attention effects on early visual processing [48], the grounding valence in
brightness through shared relational structures [49] or the interaction of brightness and
semantic content in the extrastriate visual cortex [50].

1.2.4. EEG Visual Motion Perception

Detecting the displacement of retinal image features has been studied for many years
in both psychophysical and neurobiological experiments [51]. Visual motion perception has
been explored through EEG technique in several lines of research such as the speed of neural
visual motion perception and processing in the visuomotor reaction time of young elite
table tennis athletes [52], visual motion perception for prospective control [53], or visual
perception of motion to cortical activity, by evaluation of the association of quantified
EEG parameters with a video film projection [54], the analysis of neural responses to
motion-in-depth using EEG [55], or the examination of the time course of motion-in-depth
perception [56].

In addition, recent research has sought to delve deeper into Brain-Computer Interfaces
(BCI), an emerging area of research that aims to improve the quality of human-computer ap-
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plications [57], and the relationship with Steady-State Visually Evoked Potentials (SSVEPS),
a stimulus-locked oscillatory response to periodic visual stimulation commonly recorded
in an electroencephalogram (EEG) studies in humans, through the use and execution of
Convolutional Neural Networks (CNN) [58,59]. Some of these research works have fo-
cused on the review of the steady-state evoked activity, its properties, and the mechanisms
of SSVEP generation, as well as the SSVEP-BCI paradigm and the recently developed
SSVEP-based BCI systems [60]; studies focused on analysing Deep Learning-based classifi-
cation for BCI through comparisons among various traditional classification algorithms
to the newer methods of deep learning, exploring two different types of deep learning
methods: CNN and Recurrent Neural Networks (RNN) with long short-term memory
(LSTM) architecture [61]. In addition, recent research works proposed a novel CNN for
the robust classification of an SSVEPS paradigm, where the authors measured electroen-
cephalogram (EEG)-based SSVEPs for a brain-controlled exoskeleton under ambulatory
conditions in which numerous artefacts may deteriorate decoding [62]. Another work
that analyses SSVEPS by using CNNs is the work of S.Stober et al. [63], which analysed
and classified EEG data recorded within a rhythm perception study. In this last case, the
authors investigated the impact of the data representation and the pre-processing steps for
this classification task and compared the different network structures.

1.3. Objective

It is not known whether predictors can be constructed to classify these VDEPs based
on brain activity alone. The large body of previous research explored the effects of the
VDEPs as isolated features, even though during human visual processing and perception
many of them act simultaneously and are not appreciated individually by the viewer in
different situations.

In this work, we present a novel methodology for exploring this relationship between
VDEPs and brain activity in the form of EEGs available on the DEAP dataset. Our method-
ology consisted of combining the expert recognition and classification of VDEPs, statistical
analysis, and deep learning techniques, which we used to successfully predict VDEPs
solely from the EEG of the viewer. We tested whether:

â There is a statistical relationship between the VDEPs of video fragments and the mean
EEG frequency bands (δ, θ, α, β, γ) of the viewers.

â A simple Convolutional Neural Network model can accurately predict the VDEPs in
video content from the EEG activity of the viewer.

2. Materials and Methods
2.1. DEAP Dataset

The DEAP dataset is composed of the EEG records and peripheral physiological
signals of 32 participants, which were recorded as each watched 40 1-min-long excerpts
of music videos, relating to the levels of valence, arousal, like/dislike, familiarity, and
dominance reported by each participant. Firstly, the ratings came from an online self-
assessment where 120 1-min extracts of music videos were rated by volunteers based on
emotion classification variables (namely arousal, valence, and dominance) [25]. Secondly,
the ratings came from the participants’ ratings on these emotion variables, face video, and
physiological signals (including EEG) of an experiment where 32 volunteers watched a
subset of 40 of the abovementioned videos. The official dataset also includes the YouTube
links of the videos used and the pre-processed physiological data (down sampling, EOG
removal, filtering, segmenting, etc.) in MATLAB and NumPy (Python) format.

DEAP dataset pre-processing:

1. The data were down sampled to 128 Hz.
2. EOG artefacts were removed.
3. A bandpass frequency filter from 4 to 45 Hz was applied.
4. The data was averaged to the common reference.
5. The EEG channels were reordered so that all the samples followed the same order.
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6. The data was segmented into 60-s trials and a 3-s pre-trial baseline was removed.
7. The trials were reordered from presentation order to video (Experiment_id) order.

In our experiments, we use the provided pre-processed EEG data in NumPy format, as
recommended by the dataset summary, since it is especially useful for testing classification
and regression techniques without the need of processing the electrical signal first. This
pre-processed signal contains 32 arrays corresponding to each of the 32 participants, with a
shape of 40 × 40 × 8064. Each array contains data for each of the 40 videos/trials of the
participant, signal data from 40 different channels (the first 32 of them being EEG signals
and the remainder 8 being peripheral signals such as temperature and respiration) and
8064 EEG samples (63 s × 128 Hz). As we are not working with emotion in this work,
the labels provided for the videos on the DEAP dataset were not used in this experiment.
Instead, we retrieved the original videos from the URLs provided and performed an
exhaustive classification of them on the studied VDEPs. Of the original 40 videos, 14 URLs
pointed to videos that were taken down from YouTube as of the 4 June 2019, therefore, only
26 of the videos used in the original DEAP experiment were retrieved and classified. The
generated dataset was updated on the 5 May 2021.

2.2. VDEP Tagging and Timestamps Pre-Processing

The researchers retrieved the 26 1-min videos from the original DEAP experiment.
These video clips accounted for 1560 1-s timestamps. These videos were presented to two
experts on visual design, who were tasked to tag each second of video on the studied
VDEPs (Figures A1–A4), considering the following labels:

# Colour: “cold” (class 1), “warm” (class 2) and “unclear”.
# Balance: “asymmetrical” (class 1), “symmetrical” (class 2) and “unclear”.
# Movement: “fast” (class 1), “slow” (class 2) and “unclear”.
# Light: “bright” (class 1), “dark” (class 2) and “unclear”.

The timestamps tagged as “unclear” or where experts disagreed were discarded. On
the other hand, the number of timestamps per class was unbalanced, because the music
videos exhibited different visual aesthetics and characteristics among different sections
within the same videos; for example, most of the timestamps were tagged as asymmetrical.
Therefore, we computed a sub-sample for each VDEP, selecting nv random timestamps,
where nv represents the number of cases in the smaller class. The resultant number of
timestamps belonging to each class is displayed in Table 1. It is important to notice that
all the participants provided the same amount of data points, therefore each second from
Table 1 corresponds to 32 epochs, one for each participant. The four VDEPs are being
considered as independent of each other, therefore, each second of video will appear
classified only once in each of the four VDEPs, either within one of the two classes or as
an unclear timestamp. The VDEPs tagging of the selected video samples from the DEAP
dataset is available in Appendix A (Table A11).

Table 1. The number of video seconds for each VDEP label.

VDEP Timestamps Class 1 Timestamps Class 2 Unclear Timestamps

Colour 875 588 97
Balance 1276 264 20

Movement 645 535 380
Light 795 654 111

Since the DEAP dataset provides the EEG signal and the experts provided the VDEP
timestamps for the videos used in the original experiment, an extraction-transformation
process (ETP) was performed. In this process, we obtained a large set of 1-s samples from
the DEAP dataset classified according to their VDEPs. The steps of this ETP are shown in
Figure 1.
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Figure 1. VDEP extraction-transformation process (ETP) from the DEAP dataset.

This work uses statistical analysis as well as convolutional neural networks to analyse
the relationship between VDEPs and the EEG, so we designed the ETP to return the outputs
in two different formats, readily available to perform each of these techniques. The first
output is a set of spreadsheets containing the EEG bands for the studied samples and their
VDEP classes, which are used to find statistical relationships. The second output is a set of
NumPy matrices with the shape of 128 × 32, each containing the 32 channels of a second
of an EEG signal at 128 Hz and classified by their VDEP class that we used to train and
test the artificial neural networks. This ETP was repeated four times, one for each VDEP
studied in this work.

The first step of the ETP is the extraction of the intervals from the DEAP dataset
according to the VDEP timestamps provided by the experts. In this step, we must take into
consideration that the first 3 s of the EEG signal for each video trial in the DEAP dataset
corresponds to a pre-trial for calibration purposes and therefore must be ignored when
processing the signals. We also discard the channels numbered 33–40 in the DEAP dataset
since they do not provide EEG data but peripheral signals, which are out of the scope of
this work.

In the second step, we trimmed the first and last 0.5 s of each interval, and in the
third step, we split the remainder of the signal in 1-s intervals. Given that the visual
design experts extracted the VDEPs from the videos by 1-s segments, the removal of a full
second of each interval (half a second on each end) strengthens the quality of the remaining
samples by reducing the truncation error. An epoch is one second of a subject’s EEG with
information about the VDEPs that is currently being displayed. When extracting epochs,
subjects are not considered separately. For the authors, the subject has attributed a series
of samples, as well as the rest of the subjects, to finally put them all together and obtain a
set of epochs independently of the subject they come from. Therefore, from each second
of the video, we extract 32 epochs (one for each subject). The samples are extracted from
the remainder of the interval by taking 1-s samples, this approach mitigates the effects
of the perception time, which is the delay between the occurrence of the stimuli and its
perception by the brain [64]. In Figure 2 we show the resulting samples obtained from a 5-s
interval classified in the same class.



Sensors 2021, 21, 4695 7 of 22Sensors 2021, 21, x FOR PEER REVIEW 7 of 22 
 

 

 
Figure 2. Epochs obtained from a 5-s segment. 

These samples can be represented as (128 × 32) matrices and can be used to obtain 
EEG characteristics such as the delta, theta, alpha, beta, and gamma channels that we used 
in our statistical analysis. In our case, we used a basic FFT (Fast-Fourier Transform) 
filtering function to extract these time-domain waveforms [65]. 

The second output was used to train artificial neural networks (ANN), so in the ETP 
we normalized the values of the samples from their original values to the [0, 1] interval 
by using Equation (1), as normalized inputs have proven an increase on the learning rate 
of convolutional neural networks [66].  𝑓ሺ𝑥ሻ ൌ 𝑥 െ min ሺ𝑋ሻmaxሺ𝑋ሻ െ min ሺ𝑋ሻ. (1) 

2.3. Convolutional Neural Network (CNN) 
In this work, we used a generic CNN architecture typically used in image analysis 

consisting of a sequence of two-dimensional convolutional layers followed by a fully 
connected layer with sigmoid activation. The same network architecture was used in each 
of the VDEPs, and the neural network was trained using the previously extracted epochs, 
given that the epochs do not consider the subject from which they were extracted, it could 
be considered that all the subjects were equally fed into the model. The training process 
of the model was performed by randomly selecting 90% for the training sample and 10% 
for testing in a non-exhaustive 10-fold cross-validation execution. The performance 
metrics for the area under the ROC curve (AUC), accuracy and area under the precision-
recall curve (PR-AUC) were computed for the validation set after each execution. 

The input of the model re-arranged the EEG channels by proximity for improving 
the information of adjacent channels, which helps convolutional neural networks to learn 
more effectively [67]. The original ordering of the channels and the final order are shown 
in Figure 3, including a plot of input before and after this re-ordering. 

  

Figure 2. Epochs obtained from a 5-s segment.

These samples can be represented as (128 × 32) matrices and can be used to obtain
EEG characteristics such as the delta, theta, alpha, beta, and gamma channels that we
used in our statistical analysis. In our case, we used a basic FFT (Fast-Fourier Transform)
filtering function to extract these time-domain waveforms [65].

The second output was used to train artificial neural networks (ANN), so in the ETP
we normalized the values of the samples from their original values to the [0, 1] interval by
using Equation (1), as normalized inputs have proven an increase on the learning rate of
convolutional neural networks [66].

f (x) =
x − min(X)

max(X)− min(X)
. (1)

2.3. Convolutional Neural Network (CNN)

In this work, we used a generic CNN architecture typically used in image analysis
consisting of a sequence of two-dimensional convolutional layers followed by a fully
connected layer with sigmoid activation. The same network architecture was used in each
of the VDEPs, and the neural network was trained using the previously extracted epochs,
given that the epochs do not consider the subject from which they were extracted, it could
be considered that all the subjects were equally fed into the model. The training process of
the model was performed by randomly selecting 90% for the training sample and 10% for
testing in a non-exhaustive 10-fold cross-validation execution. The performance metrics for
the area under the ROC curve (AUC), accuracy and area under the precision-recall curve
(PR-AUC) were computed for the validation set after each execution.

The input of the model re-arranged the EEG channels by proximity for improving
the information of adjacent channels, which helps convolutional neural networks to learn
more effectively [67]. The original ordering of the channels and the final order are shown
in Figure 3, including a plot of input before and after this re-ordering.



Sensors 2021, 21, 4695 8 of 22Sensors 2021, 21, x FOR PEER REVIEW 8 of 22 
 

 

Original EEG channels ordering Final EEG channels ordering 

  

  

Figure 3. Re-arrangement of the EEG channels for the ANN analysis. 

3. Results 
We tested the normality of the distribution of measurements of the mean power 

measurements across all channels (δ, θ, α, β, and γ) using the Kolmogorov-Smirnov test 
with the Lilliefors Significance Correction. Then, we conducted Mann-Whitney U Tests to 
examine the differences on each of the mean power measurements according to the 
categories related to each of the VDEP criteria, e.g., the differences in the Alpha band 
between the Symmetrical and Asymmetrical categories for the Balance VDEP. The Mann-
Whitney U test (also known as the Wilcoxon rank-sum test) was chosen to test the null 
hypothesis that there is a probability of 0.5 that a randomly drawn observation for one 
group is larger than a randomly drawn observation from the other. 

The Kolmogorov-Smirnov test proved that the distribution of measurements of the 
mean δ, θ, α, β, and γ bands of the EEGs provided in the DEAP were not normally 
distributed, with p < 0.0001 in all cases, as shown in Table A1. 

3.1. Balance 
The mean power measurements across all channels were statistically significantly 

higher in the Symmetrical category than the Asymmetrical category for the Balance, with 
p < 0.05 in all cases (Figure 4). The details of the ranks and statistical average of the mean 
band measurements for the Balance are listed in Table A2. The full Test Statistics for 
Mann-Whitney U Tests conducted on the Balance are listed in Table A7. 

Figure 3. Re-arrangement of the EEG channels for the ANN analysis.

3. Results

We tested the normality of the distribution of measurements of the mean power
measurements across all channels (δ, θ, α, β, and γ) using the Kolmogorov-Smirnov test
with the Lilliefors Significance Correction. Then, we conducted Mann-Whitney U Tests
to examine the differences on each of the mean power measurements according to the
categories related to each of the VDEP criteria, e.g., the differences in the Alpha band
between the Symmetrical and Asymmetrical categories for the Balance VDEP. The Mann-
Whitney U test (also known as the Wilcoxon rank-sum test) was chosen to test the null
hypothesis that there is a probability of 0.5 that a randomly drawn observation for one
group is larger than a randomly drawn observation from the other.

The Kolmogorov-Smirnov test proved that the distribution of measurements of the
mean δ, θ, α, β, and γ bands of the EEGs provided in the DEAP were not normally
distributed, with p < 0.0001 in all cases, as shown in Table A1.

3.1. Balance

The mean power measurements across all channels were statistically significantly
higher in the Symmetrical category than the Asymmetrical category for the Balance, with
p < 0.05 in all cases (Figure 4). The details of the ranks and statistical average of the mean
band measurements for the Balance are listed in Table A2. The full Test Statistics for
Mann-Whitney U Tests conducted on the Balance are listed in Table A7.
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3.2. Colour

There were no statistically significant differences in the mean power measurements
across all channels (δ, θ, α, β, and γ) between the Warm and Cold categories for the Colour,
with p > 0.05 in all cases (Figure 5). The details of the ranks and statistical average of the
mean power measurements for the Colour are listed in Table A3. The full Test Statistics for
Mann-Whitney U Tests conducted on the Colour are listed in Table A8.
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3.3. Light

All the mean power measurements across all channels (δ, θ, α, β, and γ) were sta-
tistically significantly higher in the Bright category than the Dark category for the Light,
with p < 0.05 in all cases (Figure 6). The details of the ranks and statistical average of the
mean power measurements for the Light are listed in Table A4. The full Test Statistics for
Mann-Whitney U Tests conducted on the Light are listed in Table A9.
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3.4. Movement

All the mean power measurements across all channels (δ, θ, α, β, and γ) were statisti-
cally significantly higher in the Fast category than the Slow category for the Movement,
with p < 0.05 in all cases (Figure 7). The details of the ranks and statistical average of the
mean power measurements for the Movement are listed in Table A5. The full Test Statistics
for Mann-Whitney U Tests conducted on the Movement are listed in Table A10.
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3.5. Convolutional Neural Networks (CNN)

All the VDEP targets were accurately predicted from the EEG signal using a sim-
ple CNN classification model trained using a non-exhaustive 10-fold cross-validation
approach. The performance metrics were obtained from each training and the averages
were computed. It is important to notice that we trained 40 independent models, 10 for
each VDEP, which shared the same base structure (see Table A6). The prediction of Move-
ment was the most accurate among the studied VDEPs (AUC = 0.9698, Accuracy = 0.9675,
PR-AUC = 0.9569). On the other hand, the corresponding trained model struggled to
predict the Colour VDEP from the EEG signal input (AUC = 0.7584, Accuracy = 0.7447, PR-
AUC = 0.6940). A summary of the classification performance for each VDEP is displayed
in Table 2.
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Table 2. Performance metrics of the CNN classification model for each of the target VDEPs.

VDEP Targets AUC Accuracy PR-AUC

Light 0.8873 0.8883 0.8484
Colour 0.75560 0.7447 0.6940
Balance 0.7584 0.7477 0.7241

Movement 0.9698 0.9675 0.9569

4. Discussion

The VDEPs are responsible for capturing our attention, persuading us, informing us,
and engaging a link with the visual information represented. The answer to what makes a
good design and how you can create visual materials that stand out is in the proper use of
VDEPs [9].

Past research has mostly focused on the VDEPs capability of causing specific emotions
and how to activate the desired response from the spectator [33,68,69]. A severe limitation
of such research has been its inability to boost the classification accuracy of various visual
stimuli that are inferred to VDEPs and their impact on human brain activity. Another
limitation of previous research has been its inability to demonstrate which cues related to
the VDEPs and EEG are most correlated with human brain activity, and the difficulty to
reveal the VDEPs that are involved and are conditioning how visual content is perceived.

We sought to address these limitations to understand the relationships between
multimedia content itself with users’ physiological responses (EEG) to such content by
analysing the VDEPs and their impact on human brain activity.

The results of this study suggest that variations in the light/value (Accuracy 0.90/Loss
0.23), rhythm/movement (Accuracy 0.95/Loss 0,13) and balance (Accuracy 0.81/Loss 0.76)
VDEPs in the music video sequences produce a statistically significant effect over the δ, θ,
α, β and γ EEG bands, and Colour is the VDEP that has produced the least variation in
human brain activity (Accuracy 0.79/Loss 0.50). The CNN model successfully predicts the
VDEP of a video fragment solely by the EEG signal of the viewer.

The violin plots confirm that the distributions are practically equal between classes of
the same VDEP, and the fact that the p-values are significant comes from a large number
of samples. We find significant differences in some bands for some VDEPs, but these are
minor as the distributions show. However, this could be expected since we are simply
analysing power in classical a priori defined bands. However, the CNN results are more
remarkable. The fact that we obtain high ranking values with the CNN versus the similarity
of the calculated powers in those bands suggests, for future work, that the relationship
between VDEPs and EEG is more complex than simple power changes in predetermined
frequency bands.

The results show how human brain activity is more susceptible to producing alter-
ations to sudden changes in the visualization of movement, light, or balance in music video
sequences than the impact that a colour variation can generate in human brain activity.
Reddish tones transmit heat, just as blood is hot and fire burns. The bluish brushstrokes are
associated with cold and lightness [70]. These are the colours with which the mind paints,
effortlessly and from childhood, water, rain, or a bubble. Different studies support the
results obtained on these associations that we can consider universal [68], being directly
involved in the design of VDEPs. However, divergences appear when it comes to distin-
guishing between smooth and rough, male, or female, soft or rigid, aggressive, or calm,
for example. Moreover, people disagree more, depending on the results, when judging
whether the audio-visual content is interesting, and whether they like it or not.

Brain activity may be slightly altered by changes in the design of different VDEPs
such as colour, brightness, or lighting. However, it may be more severely altered when one
visualizes sudden changes in movement and course of action. The possible explanation for
the results obtained is that the majority of the most basic processes of perception are part
of the intrinsic neuronal architecture, the human being more accustomed to this type of
modifications in the action that is visualized, and within this context being more susceptible
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to sudden and abrupt changes in the action that we observe, distorting and altering our
brain activity, which has been demonstrated in various studies [69]. Most of the difficulties
that arise in studies of this typology are the particularities of the individual. The same
person, depending on its perceptual state, will observe the same scene differently, by
existing a very wide range of experiences and individual variances [71–75].

Several limitations affect this study. It is important to notice that to the best of
our knowledge, there is currently no established ontology for VDEPs. Although the
identification of four VDEPs has been sufficient to find and determine the physiological
relationships (EEG) and the VDEPs, it would be very interesting if we had a system to
organize this knowledge and allow us to construct the architecture of neural networks
focused and customized to specific VDEPs, which would permit us to improve accuracy
and reduce loss, instead of working with generic networks.

Therefore, we consider that further research in this area should pursue the devel-
opment of ontologies that let us structure the knowledge related to design, recognition,
labelling, filtering, and classification of VDEPs for the improvement and optimization for
their use in information systems, expert systems, and decision support systems. More-
over, this study should be extended to research about other VDEPs combinations on brain
activity. Future research should also carry out investigations using multiple VDEPs in
the EEG of each individual to study the relationships and interactions between different
VDEPs. Furthermore, we recommend analysing the VDEPs separately in each EEG channel
to understand how the synergies between various VDEPs affects visual perception and
visual attention. Finally, future investigations could focus on exploring VDEPs through
other models such as generative ones to visualize the topographical distribution of the EEG
channels and each VDEP.

5. Conclusions

This study found evidence supporting that there is a physiological link between
VDEPs and human brain activity. We found that the VDEPs expressed in music video
sequences are related to statistically significant differences in the average power of classical
EEG bands of the viewers. Furthermore, a CNN classifier tasked to identify the VDEP
class from the EEG signals achieved accuracies of 90.44%, 79.67%, 81.25%, and 95.29% of
accuracy for the Light, Colour, Balance, and Movement VDEPs, respectively. The results
suggest that the relationship between the VDEPs and brain activity is more complex than
simple changes in the EEG band power.
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Appendix A

Table A1. Test of normality of the measurements of the mean Alpha, Beta, Delta, Gamma, and Theta
bands, measured in the EEG records related to the Balance, Colour, Light, and Movement VDEPs.

VDEP Band Category Kolmogorov-Smirnov
Statistic df Sig.

Balance

Alpha Symmetrical 0.276 6528 <0.001
Asymmetrical 0.295 6528 <0.001

Beta
Symmetrical 0.252 6528 <0.001

Asymmetrical 0.262 6528 <0.001

Delta
Symmetrical 0.264 6528 <0.001

Asymmetrical 0.282 6528 <0.001

Gamma
Symmetrical 0.237 6528 <0.001

Asymmetrical 0.280 6528 <0.001

Theta
Symmetrical 0.274 6528 <0.001

Asymmetrical 0.289 6528 <0.001

Colour

Alpha Warm 0.291 15,296 <0.001
Cold 0.280 15,296 <0.001

Beta
Warm 0.265 15,296 <0.001
Cold 0.263 15,296 <0.001

Delta
Warm 0.278 15,296 <0.001
Cold 0.282 15,296 <0.001

Gamma
Warm 0.266 15,296 <0.001
Cold 0.264 15,296 <0.001

Theta
Warm 0.292 15,296 <0.001
Cold 0.281 15,296 <0.001

Light

Alpha Bright 0.269 20,320 <0.001
Dark 0.286 20,320 <0.001

Beta
Bright 0.256 20,320 <0.001
Dark 0.263 20,320 <0.001

Delta
Bright 0.276 20,320 <0.001
Dark 0.282 20,320 <0.001

Gamma
Bright 0.258 20,320 <0.001
Dark 0.266 20,320 <0.001

Theta
Bright 0.279 20,320 <0.001
Dark 0.288 20,320 <0.001

Movement

Alpha Slow 0.282 16,480 <0.001
Fast 0.273 16,480 <0.001

Beta
Slow 0.265 16,480 <0.001
Fast 0.258 16,480 <0.001

Delta
Slow 0.272 16,480 <0.001
Fast 0.277 16,480 <0.001

Gamma
Slow 0.265 16,480 <0.001
Fast 0.264 16,480 <0.001

Theta
Slow 0.284 16,480 <0.001
Fast 0.285 16,480 <0.001
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Table A2. Ranks of the mean band measurements related to the Symmetrical and Asymmetrical
categories for the Balance VDEP.

Band Category N Mean Rank Sum of Ranks

α (alpha)
Symmetrical 6528 6625.26 43,249,723.00

Asymmetrical 6528 6431.74 41,986,373.00
Total 13,056

β (beta)
Symmetrical 6528 6628.52 43,270,953.00

Asymmetrical 6528 6428.48 41,965,143.00
Total 13,056

δ (delta)
Symmetrical 6528 6599.36 43,080,616.00

Asymmetrical 6528 6457.64 42,155,480.00
Total 13,056

γ (gamma)
Symmetrical 6528 6641.20 43,353,771.00

Asymmetrical 6528 6415.80 41,882,325.00
Total 13,056

θ (theta)
Symmetrical 6528 6596.48 43,061,834.00

Asymmetrical 6528 6460.52 42,174,262.00
Total 13,056

Table A3. Ranks of the mean band measurements related to the Warm and Cold categories for the
Colour VDEP.

Category N Mean Rank Sum of Ranks

α (alpha)
Warm 15,296 15,333.69 234,544,166.00
Cold 15,296 15,259.31 233406362.00
Total 30,592

β (beta)
Warm 15,296 15,345.02 234,717,493.00
Cold 15,296 15,247.98 233,233,035.00
Total 30,592

δ (delta)
Warm 15,296 15,319.84 234,332,287.00
Cold 15,296 15,273.16 233,618,241.00
Total 30,592

γ (gamma)
Warm 15,296 15,326.88 234,439,886.00
Cold 15,296 15,266.12 233,510,642.00
Total 30,592

θ (theta)
Warm 15,296 15,276.85 233,674,686.00
Cold 15,296 15,316.15 234,275,842.00
Total 30,592

Table A4. Ranks of the mean band measurements related to the Bright and Dark categories for the
Light VDEP.

Category N Mean Rank Sum of Ranks

α (alpha)
Bright 20,320 20,597.97 418,550,732.00
Dark 20,320 20,043.03 407,274,388.00
Total 40,640

β (beta)
Bright 20,320 20,567.33 417,928,061.50
Dark 20,320 20,073.67 407,897,058.50
Total 40,640

δ (delta)
Bright 20,320 20,532.43 417,218,904.00
Dark 20,320 20,108.57 408,606,216.00
Total 40,640

γ (gamma)
Bright 20,320 20,570.53 417,993,114.00
Dark 20,320 20,070.47 407,832,006.00
Total 40,640

θ (theta)
Bright 20,320 20,553.28 417,642,687.00
Dark 20,320 20,087.72 408,182,433.00
Total 40,640
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Table A5. Ranks of the mean band measurements related to the Slow and Fast categories for the
Movement VDEP.

Category N Mean Rank Sum of Ranks

α (alpha)
Slow 16,480 16,084.77 265,076,976.00
Fast 16,480 16,876.23 278,120,304.00
Total 32,960

β (beta)
Slow 16,480 16,066.68 264,778,816.00
Fast 16,480 16,894.32 278,418,464.00
Total 32,960

δ (delta)
Slow 16,480 16,079.20 264,985,174.00
Fast 16,480 16,881.80 278,212,106.00
Total 32,960

γ (gamma)
Slow 16,480 16,081.66 265,025,729.00
Fast 16,480 16,879.34 278,171,551.00
Total 32,960

θ (theta)
Slow 16,480 16,087.10 265,115,447.00
Fast 16,480 16,873.90 278,081,833.00
Total 32,960

Table A6. Convolutional Neural Networks classifier model architecture.

Layer (type) Output Shape Param #

Convolutional 2D (None, 126, 30, 32) 320
Convolutional 2D (None, 124, 28, 32) 9248

Batch Normalization (None, 124, 28, 32) 128
Dropout (None, 124, 28, 32) 0

Convolutional 2D (None, 122, 26, 64) 18,496
Convolutional 2D (None, 120, 24, 64) 36,928

Batch Normalization (None, 120, 24, 64) 256
Dropout (None, 120, 24, 64) 0

Max Pooling 2D (None, 60, 12, 64) 0
Convolutional 2D (None, 58, 10, 64) 36,928
Convolutional 2D (None, 56, 8, 64) 36,928

Batch Normalization (None, 56, 8, 64) 256
Dropout (None, 56, 8, 64) 0

Convolutional 2D (None, 54, 6, 128) 73,856
Convolutional 2D (None, 52, 4, 128) 147,584

Batch Normalization (None, 52, 4, 128) 512
Dropout (None, 52, 4, 128) 0

Max Pooling 2D (None, 26, 2, 128) 0
Flatten (None, 6656) 0
Dense (None, 16) 106,512
Dense (None, 2) 34

Table A7. Test Statistics for Mann-Whitney U Tests conducted on the Balance VDEP.

δ (Delta) θ (Theta) α (Alpha) β (Beta) γ (Gamma)

Mann-Whitney U 20,844,824.000 20,863,606.000 20,675,717.000 20,654,487.000 20,571,669.000
Wilcoxon W 42,155,480.000 42,174,262.000 41,986,373.000 41,965,143.000 41,882,325.000

Z −2.148 −2.061 −2.933 −3.032 −3.417
Asymptotic Significance (2-tailed) 0.032 0.039 0.003 0.002 0.001
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Table A8. Test Statistics for Mann-Whitney U Tests conducted on the Colour VDEP.

δ (Delta) θ (Theta) α (Alpha) β (Beta) γ (Gamma)

Mann-Whitney U 116,626,785.000 116,683,230.000 116,414,906.000 116,241,579.000 116,519,186.000
Wilcoxon W 233,618,241.000 233,674,686.000 233,406,362.000 233,233,035.000 233,510,642.000

Z −0.462 −0.389 −0.737 −0.961 −0.602
Asymptotic Significance (2-tailed) 0.644 0.697 0.461 0.337 0.547

Table A9. Test Statistics for Mann-Whitney U Tests conducted on the Light VDEP.

δ (Delta) θ (Theta) α (Alpha) β (Beta) γ (Gamma)

Mann-Whitney U 202,144,856.000 201,721,073.000 200,813,028.000 201,435,698.500 201,370,646.000
Wilcoxon W 408,606,216.000 408,182,433.000 407,274,388.000 407,897,058.500 407,832,006.000

Z −3.642 −4.000 −4.768 −4.241 −4.296
Asymptotic Significance (2-tailed) <0.001 <0.001 <0.001 <0.001 <0.001

Table A10. Test Statistics for Mann-Whitney U Tests conducted on the Movement VDEP.

δ (Delta) θ (Theta) α (Alpha) β (Beta) γ (Gamma)

Mann-Whitney U 129,181,734.000 129,312,007.000 129,273,536.000 128,975,376.000 129,222,289.000
Wilcoxon W 264,985,174.000 265,115,447.000 265,076,976.000 264,778,816.000 265,025,729.000

Z −7.657 −7.506 −7.551 −7.896 −7.610
Asymptotic Significance (2-tailed) <0.001 <0.001 <0.001 <0.001 <0.001
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released on Sire Records in 1992. DEAP Dataset Source YouTube Link: http://www.youtube.com/
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Figure A2. (A) DEAP Dataset Experiment_id (17) ‘All I Need’ Music Video from AIR’s album ‘Moon
Safari’ released on Virgin Records in 1998. DEAP Dataset. Source YouTube Link: http://www.
youtube.com/watch?v=kxWFyvTg6mc. (B) The upper music video frame shows a composition
where a cold colour palette predominates while the lower music video frame reveals a warm colour
palette.
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Figure A4. (A) DEAP Dataset Experiment_id (5) ‘Song 2’ Music Video from Blur’s album ‘Blur’
released on Food Records in 1997. DEAP Dataset Source YouTube Link: http://www.youtube.com/
watch?v=WlAHZURxRjY. (B) In the music video frame on the left, we can observe a slow movement
of the subject within the action while in the capture on the right we can appreciate a fast movement
of the subject within the action.

Table A11. VDEPs tagging of the selected video samples from the DEAP dataset.

Colour VDEP LightVDEP Balance VDEP Movement VDEP

Warm Cold Bright Dark Symmetrical Asymmetrical Slow Fast

Clip 1 (1–16),
(35–60) (16–32) (1–17),

(33–60) (17–33)
(3–5), (9–11),

(23–24),
(33–40), (45–60)

(1–10),
(33–49)

Clip 4

(1–4),
(9–12),

(27–49),
(53–60)

(4–9),
(12–15),
(49–53)

(1–60) (1–60) (1–60)

Clip 5 (1–60) (1–60) (1–60) (16–32),
(47–60)

Clip 6 (52–53) (1–49),
(53–60) (1–60) (1–60) (1–2),

(7–11)

Clip 7

(8–15),
(22–25),
(26–30),
(36–44),
(55–60)

(1–3),
(15–22),
(24–25),
(30–36),
(44–55)

(1–60) (27–29),
(30–36), (47–55)

(1–27), (36–47),
(55–60) (1–8)

Clip 9 (1–7),
(9–60) (7–9) (1–6),

(9–60) 6–9 (7–9) (1–7), (9–60) (9–11),
(13–15)

Clip 12 (1–60) (1–60) (1–60) (23–41)

Clip 13 (1–60) (1–60) (7–11), (15–23) (1–7), (23–60) (1–60)

Clip 14 (22–24) (1–22) (37–60) (1–37) (1–60) (1–60)

Clip 15 (1–25),
(29–60) (25–29) (1–60) (25–38) (1–25), (38–60) (1–37),

(43–60) (37–43)

Clip 16 (1–60) (1–60) (1–60) (1–60)

http://www.youtube.com/watch?v=WlAHZURxRjY
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Table A11. Cont.

Colour VDEP LightVDEP Balance VDEP Movement VDEP

Warm Cold Bright Dark Symmetrical Asymmetrical Slow Fast

Clip 17 (2–6),
(8–18)

(6–8),
(18–28),
(30–60)

(1–19),
(34–60) (19–34) (1–60) (1–60)

Clip 19 (1–60) (1–60) (1–60)

Clip 20 (5–60) (2–5) (1–60) (1–60)

Clip 22
(18–22),
(24–33),
(55–60)

(1–18),
(22–24),
(33–55)

(1–60) (4–6), (29–32) (32–60) (1–60)

Clip 23 (1–60) (1–60) (1–60) (1–60)

Clip 24

(10–12),
(15–18),
(20–22),
(25–26),
(27–28),
(35–36),
(38–44)

(1–10),
(12–15),
(18–20),
(22–25),
(26–27),
(28–35),
(37–38),
(44–60)

(15–18),
(33–60)

(1–10),
(19–20),
(22–33)

(1–3), (40–44) (3–40), (44–60) (1–60)

Clip 25 (1–60) (1–60) (1–60)

Clip 26 (12–13) (1–12),
(13–60) (1–60)

Clip 27

(1–9),
(15–16),
(19–22),
(29–39),
(41–44),
(48–51),
(52–53),
(58–60)

(9–15),
(16–19),
(22–29),
(39–41),
(44–48),
(51–52),
(53–58)

(1–7),
(15–39),
(41–44),
(47–60)

(7–15),
(39–41),
(44–47)

(43–60) (1–43) (1–60)

Clip 31 (1–60) (1–60)

(8–9), (11–12),
(17–18),
(33–34),
(36–38),
(44–46),

(49–50), (54–60)

(1–8), (9–11),
(12–17),
(18–33),
(34–36),
(38–44),

(46–49), (50–54)

(1–60)

Clip 32

(1–3),
(7–9),

(25–26),
(29–32),
(42–60)

(3–7),
(9–25),
(26–29),
(32–42)

(1–60) (35–36),
(38–39), (40–41)

(1–35), (36–38),
(39–40), (41–60) (1–60)

Clip 33

(8–11),
(37–38),
(41–42),
(48–60)

(1–8),
(11–37),
(38–41),
(43–48)

(1–60) (1–60) (1–60)

Clip 35

(7–15),
(19–23),
(43–48),
(54–55),
(56–58)

(1–7),
(15–19),
(23–43),
(48–54),
(58–60)

(1–60) (1–60)

Clip 36 (1–60) (1–60) (1–60) (1–60)

Clip 40 (1–60) (1–60) (1–60) (1–60)
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