Frequency Disentanglement Distillation Image Deblurring Network
Abstract
:1. Introduction
- A frequency split block (FSB) is proposed, distilling high-frequency and low-frequency features in different channels.
- We propose a frequency distillation block (FDB) that can better retain the information of the high-frequency characteristic channel and filter and reorganize the information of the low-frequency characteristic channel.
- A lot of experiments have been conducted to prove the validity of the FDDN that we designed.
2. Related Work
3. Proposed Method
3.1. Overview
3.2. The Algorithm Frequency Split Block
3.3. Frequency Distillation Block (FDB)
3.4. Loss Function
3.4.1. Mse Loss
3.4.2. Perception Loss
4. Experiments
4.1. Dataset
4.2. Training Details
4.3. Quantitative and Qualitative Evaluation on Gopro Dataset
4.4. Quantitative and Qualitative Evaluation on Hide Dataset
4.5. Qualitative Evaluation of the Real-World Dataset
4.6. Ablation Study
4.7. Analysis of the FDDN
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tai, Y.W.; Tan, P.; Brown, M.S. Richardson-Lucy Deblurring for Scenes under a Projective Motion Path. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 1603–1618. [Google Scholar] [PubMed]
- Nah, S.; Kim, T.H.; Lee, K.M. Deep Multi-scale Convolutional Neural Network for Dynamic Scene Deblurring. arXiv 2016, arXiv:1612.02177. [Google Scholar]
- Zhang, J.; Pan, J.; Ren, J.; Song, Y.; Yang, M.H. Dynamic Scene Deblurring Using Spatially Variant Recurrent Neural Networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Aittala, M.; Durand, F. Burst Image Deblurring Using Permutation Invariant Convolutional Neural Networks. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar]
- Kupyn, O.; Budzan, V.; Mykhailych, M.; Mishkin, D.; Matas, J. DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Bing, X.; Bengio, Y. Generative Adversarial Nets; MIT Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Zoran, D.; Weiss, Y. From learning models of natural image patches to whole image restoration. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 479–486. [Google Scholar]
- Dong, G.; Jie, Y.; Liu, L.; Zhang, Y.; Shi, Q. From Motion Blur to Motion Flow: A Deep Learning Solution for Removing Heterogeneous Motion Blur. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Kupyn, O.; Martyniuk, T.; Wu, J.; Wang, Z. DeblurGAN-v2: Deblurring (Orders-of-Magnitude) Faster and Better. In Proceedings of the 2017 IEEE/CVF International Conference on Computer Vision (ICCV), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Lin, T.Y.; Dollar, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Chen, L.; Fang, F.; Wang, T.; Zhang, G. Blind Image Deblurring With Local Maximum Gradient Prior. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Li, L.; Pan, J.; Lai, W.; Gao, C.; Sang, N.; Yang, M. Blind Image Deblurring via Deep Discriminative Priors. Int. J. Comput. Vis. 2019, 127, 1025–1043. [Google Scholar] [CrossRef]
- Pan, J.; Sun, D.; Pfister, H.; Yang, M.H. Blind Image Deblurring Using Dark Channel Prior. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.; Wong, W.; Woo, W. Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting. In Proceedings of the Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015, Montreal, QC, Canada, 7–12 December 2015; pp. 802–810. [Google Scholar]
- Chen, Y.; Fan, H.; Xu, B.; Yan, Z.; Kalantidis, Y.; Rohrbach, M.; Yan, S.; Feng, J. Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks With Octave Convolution. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2020. [Google Scholar]
- Zhang, H.; Dai, Y.; Li, H.; Koniusz, P. Deep Stacked Hierarchical Multi-patch Network for Image Deblurring. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Gao, H.; Tao, X.; Shen, X.; Jia, J. Dynamic Scene Deblurring with Parameter Selective Sharing and Nested Skip Connections. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Lu, B.; Chen, J.C.; Chellappa, R. Unsupervised Domain-Specific Deblurring via Disentangled Representations. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Xu, B.; Yin, H. Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution. arXiv 2021, arXiv:2105.10465. [Google Scholar]
- Pan, Z.; Lv, Q.; Tan, Z. A Two-Stage Network for Image Deblurring. IEEE Access 2021, 9, 76707–76715. [Google Scholar] [CrossRef]
- Wu, Y.; Qian, P.; Zhang, X. Two-Level Wavelet-Based Convolutional Neural Network for Image Deblurring. IEEE Access 2021, 9, 45853–45863. [Google Scholar] [CrossRef]
- Feng, H.; Guo, J.; Xu, H.; Ge, S.S. SharpGAN: Dynamic Scene Deblurring Method for Smart Ship Based on Receptive Field Block and Generative Adversarial Networks. Sensors 2021, 21, 3641. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yue, Z.; Zhao, Q.; Meng, D. A Deep Variational Bayesian Framework for Blind Image Deblurring. arXiv 2021, arXiv:2106.02884. [Google Scholar]
- Zamir, S.W.; Arora, A.; Khan, S.H.; Hayat, M.; Khan, F.S.; Yang, M.; Shao, L. Multi-Stage Progressive Image Restoration. arXiv 2021, arXiv:2102.02808. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar]
- Liu, J.; Tang, J.; Wu, G. Residual Feature Distillation Network for Lightweight Image Super-Resolution. In Proceedings of the Computer Vision—ECCV 2020 Workshops, Glasgow, UK, 23–28 August 2020; Bartoli, A., Fusiello, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; Volume 12537, pp. 41–55. [Google Scholar]
- Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Wang, Z. Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Hui, Z.; Gao, X.; Yang, Y.; Wang, X. Lightweight Image Super-Resolution with Information Multi-distillation Network. In Proceedings of the 27th ACM International Conference on Multimedia, MM 2019, Nice, France, 21–25 October 2019; Amsaleg, L., Huet, B., Larson, M.A., Gravier, G., Hung, H., Ngo, C., Ooi, W.T., Eds.; ACM: New York, NY, USA, 2019; pp. 2024–2032. [Google Scholar]
- Cai, J.; Zuo, W.; Zhang, L. Dark and Bright Channel Prior Embedded Network for Dynamic Scene Deblurring. IEEE Trans. Image Process. 2020, 29, 6885–6897. [Google Scholar] [CrossRef]
- Shen, Z.; Wang, W.; Lu, X.; Shen, J.; Ling, H.; Xu, T.; Shao, L. Human-Aware Motion Deblurring. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 5571–5580. [Google Scholar]
- Tao, X.; Gao, H.; Wang, Y.; Shen, X.; Wang, J.; Jia, J. Scale-recurrent Network for Deep Image Deblurring. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Liu, Y.; Luo, Y.; Huang, W.; Qiao, Y.; Luo, D. Semantic Information Supplementary Pyramid Network for Dynamic Scene Deblurring. IEEE Access 2020, 8, 188587–188599. [Google Scholar] [CrossRef]
- Yuan, Y.; Su, W.; Ma, D. Efficient Dynamic Scene Deblurring Using Spatially Variant Deconvolution Network With Optical Flow Guided Training. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Sun, J.; Cao, W.; Xu, Z.; Ponce, J. Learning a Convolutional Neural Network for Non-uniform Motion Blur Removal. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef] [Green Version]
Input: |
Step1: Hchannel = ratio * output_channnel |
Lchannel = (1-ratio) * output_channel |
Step2: Feature to High = lucky_relu[Conv_croase2h(Feature in)] |
Feature to Low = lucky_relu[Conv_croase2l(down-sampling(Feature in))] |
Step3: H2h = Conv_h2h(feature to high) |
L2l = Conv_l2l(feature to low))] |
Step4: h2l = lucky_relu[Conv_h2l(down-sampling(feature to high))] |
L2h = lucky_relu[Conv_l2h(up-sampling(feature to low))] |
Output: |
Conv_Name | Input_Channel | Output_Channel | Kernal-Size | Stride |
---|---|---|---|---|
Conv_croase2h | input_channel | Hchannel | 3 | 1 |
Conv_croase2l | input_channel | Lchannel | 3 | 1 |
Conv_h2h | Hchannel | Hchannel | 1 | 1 |
Conv_h2l | Lchannel | Lchannel | 1 | 1 |
Conv_l2l | Lchannel | Lchannel | 1 | 1 |
Conv_l2h | Lchannel | Hchannel | 1 | 1 |
Methods | PSNR | SSIM | Model Size (MB) | Time (s) |
---|---|---|---|---|
DeepDeblur [2] | 29.08 | 0.841 | 303.6 | 15 |
Zhang et al. [3] | 29.19 | 0.9306 | 37.1 | 1.4 |
Gao et al. [17] | 30.92 | 0.9421 | 2.84 | 1.6 |
DeblurGAN [5] | 28.70 | 0.927 | 37.1 | 0.85 |
Tao et al. [31] | 30.10 | 0.9323 | 33.6 | 1.6 |
DeblurGANv2 [9] | 29.55 | 0.934 | 15 | 0.35 |
DMPHN [16] | 30.21 | 0.9345 | 21.7 | 0.03 |
SIS [32] | 30.28 | 0.912 | 36.54 | 0.303 |
Yuan et al. [33] | 29.81 | 0.936 | 3.1 | 0.01 |
Pan et al. [20] | 31.40 | 0.947 | - | - |
Wu et al. [21] | 30.75 | 0.913 | 29.1 | 3.2 |
SharpGAN. [22] | 29.62 | 0.897 | - | 0.17 |
Ours | 31.42 | 0.923 | 8.08 | 0.019 |
Methods | Sun et al. [34] | DMPHN [16] | Nah et al. [2] | Tao et al. [31] | Kupyn et al. [5] | GCResNet [19] | FDDN (Ours) |
---|---|---|---|---|---|---|---|
PSNR | 23.21 | 29.09 | 27.43 | 28.60 | 26.44 | 30.04 | 30.07 |
SSIM | 0.797 | 0.930 | 0.902 | 0.928 | 0.890 | 0.924 | 0.923 |
Distillation Block | Frequency Split Block | Frequency Distillation Block | PSNR | SSIM | Model Size (MB) |
---|---|---|---|---|---|
✕ | ✓ | ✓ | 29.65 | 0.892 | 9.05 |
✓ | ✕ | ✓ | 29.80 | 0.901 | 7.96 |
✓ | ✓ | ✕ | 29.21 | 0.863 | 7.89 |
✓ | ✓ | ✓ | 31.42 | 0.923 | 8.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Guo, J.; Yang, S.; Liu, T.; Zhou, H.; Liang, M.; Li, X.; Xu, D. Frequency Disentanglement Distillation Image Deblurring Network. Sensors 2021, 21, 4702. https://doi.org/10.3390/s21144702
Liu Y, Guo J, Yang S, Liu T, Zhou H, Liang M, Li X, Xu D. Frequency Disentanglement Distillation Image Deblurring Network. Sensors. 2021; 21(14):4702. https://doi.org/10.3390/s21144702
Chicago/Turabian StyleLiu, Yiming, Jianping Guo, Sen Yang, Ting Liu, Hualing Zhou, Mengzi Liang, Xi Li, and Dahong Xu. 2021. "Frequency Disentanglement Distillation Image Deblurring Network" Sensors 21, no. 14: 4702. https://doi.org/10.3390/s21144702
APA StyleLiu, Y., Guo, J., Yang, S., Liu, T., Zhou, H., Liang, M., Li, X., & Xu, D. (2021). Frequency Disentanglement Distillation Image Deblurring Network. Sensors, 21(14), 4702. https://doi.org/10.3390/s21144702