Feasibility and Reliability Assessment of Video-Based Motion Analysis and Surface Electromyography in Children with Fragile X during Gait
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population
- Molecularly documented full mutation of the FMR1 gene with expansions of more than 200 CGG repeats and methylation of the promoter and repeated sequence; possible size and/or methylation mosaicism;
- Ability to walk independently;
- Absence of documented orthopaedic comorbidities affecting the lower limbs within 12 months from the beginning of the study;
- Absence of documented neurological disorders.
- Ability to walk independently;
- Absence of documented lower limbs injures within 12 months from the beginning of the study;
- Absence of documented neurological disorders.
2.2. Molecular Analysis
2.3. Instrumental Assessment
- Set up 4: a video-based system was adopted without applying any marker (“No Tape”).
2.4. Data Processing
2.4.1. Analysis of Video Sequences
2.4.2. Kinematics Parameters Extraction
2.4.3. Reliability and Repeatability of the Video-Based Gait Analysis Protocol in Children
- The comparison between set up 1 and 2 allows the assessment of the reliability of the automatic feature tracking software in reconstructing the anatomical landmarks’ positions during gait with respect to a stereophotogrammetric gold standard;
- The comparison between set up 3 and 1 allows the assessment of the role of one side of the type of marker (double coloured double sided tape in set up 3) in reconstructing the anatomical landmarks’ trajectories; on the other one of a reduced marker set on the definition of the joint embedded frames and, consequently, on the joint angles;
- The comparison between setup 4 and 1 allows the assessment of the role of visual identification of the anatomical landmarks, in the absence of markers, on the reconstruction of the anatomical landmarks’ trajectories and, consequently, on the joint angles.
- 0.65–0.75: moderate
- 0.75–0.85: good
- 0.85–0.95: very good
- 0.95–1: excellent
2.4.4. sEMG Data Processing
2.4.5. Variables Extracted
- -
- stance time in percentage of the gait cycle;
- -
- stride length (m);
- -
- gait cycle duration (s);
- -
- gait velocity (m/s);
- -
- swing time in percentage of the gait cycle;
- -
- gait cadence (step/min).
- -
- peak of the envelope;
- -
- peak of the envelope occurrence within the gait cycle;
- -
- envelope profiles;
- -
- duration of muscle activation;
- -
- onset and offset of muscle activation.
- -
- In terms of kinematic parameters, the following variables were analysed:
- -
- 2D joint rotation angles.
2.5. Statistical Analysis
3. Results
3.1. Reliability and Repeatability of Video-Based Motion Analysis in CS
3.2. Kinematics Analysis
- Comparison between FXS Full Mutation and FXS Mosaics groups with respect to CS, reduced velocity (in FXS Full Mutation vs. CS), swing duration, and cadence accompanied by increased stride time and stance duration (in FXS Full Mutation vs. CS);
- Comparison between FXS Full mutation and FXS Mosaics groups with respect to CSL reduced swing duration and reduced stride length (in FXS Full Mutation vs. CSL);
- Comparison between FXS Full Mutation and FXS Mosaics groups with respect to CSF, reduced stride length, swing duration and velocity accompanied by increased stance duration; an increased stride time and reduced cadence (in FXS Full Mutation vs. CSF)
3.3. sEMG
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coffee, B.; Keith, K.; Albizua, I.; Malone, T.; Mowrey, J.; Sherman, S.L.; Warren, S.T. Incidence of fragile X syndrome by newborn screening for methylated FMR1 DNA. Am. J. Hum. Genet. 2009, 85, 503–514. [Google Scholar] [CrossRef] [Green Version]
- Hagerman, R.J.; Berry-Kravis, E.; Hazlett, H.C.; Bailey, D.B.; Moine, H.; Kooy, R.F.; Tassone, F.; Gantois, I.; Sonenberg, N.; Mandel, J.L.; et al. Fragile X syndrome. Nat. Rev. Dis. Primers 2017, 3, 17065. [Google Scholar] [CrossRef]
- Pretto, D.; Yrigollen, C.M.; Tang, H.-T.; Williamson, J.; Espinal, G.; Iwahashi, C.K.; Durbin-Johnson, B.; Hagerman, R.J.; Hagerman, P.J.; Tassone, F. Clinical and molecular implications of mosaicism in FMR1 full mutations. Front. Genet. 2014, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacquemont, S.; Hagerman, R.J.; Hagerman, P.J.; Leehey, M.A. Fragile-X syndrome and fragile X-associated tremor/ataxia syndrome: Two faces of FMR1. Lancet Neurol. 2007, 6, 45–55. [Google Scholar] [CrossRef]
- Hallemans, A.; Van de Walle, P.; Wyers, L.; Verheyen, K.; Schoonjans, A.-S.; Desloovere, K.; Ceulemans, B. Clinical usefulness and challenges of instrumented motion analysis in patients with intellectual disabilities. Gait Posture 2019, 71, 105–115. [Google Scholar] [CrossRef]
- Cimolin, V.; Cau, N.; Galli, M.; Santovito, C.; Grugni, G.; Capodaglio, P. Gait initiation and termination strategies in patients with Prader-Willi syndrome. J. Neuroeng. Rehabil. 2017, 14, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cimolin, V.; Galli, M.; Grugni, G.; Vismara, L.; Albertini, G.; Rigoldi, C.; Capodaglio, P. Gait patterns in Prader-Willi and Down syndrome patients. J. Neuroeng. Rehabil. 2010, 7, 28. [Google Scholar] [CrossRef] [Green Version]
- Galli, M.; Cimolin, V.; Rigoldi, C.; Castori, M.; Celletti, C.; Albertini, G.; Camerota, F. Gait strategy in patients with Ehlers-Danlos syndrome hypermobility type: A kinematic and kinetic evaluation using 3D gait analysis. Res. Dev. Disabil. 2011, 32, 1663–1668. [Google Scholar] [CrossRef] [PubMed]
- Murley, G.S.; Menz, H.B.; Landorf, K.B. Foot posture influences the electromyographic activity of selected lower limb muscles during gait. J. Foot Ankle Res. 2009, 2, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benedetti, M.G.; Beghi, E.; De Tanti, A.; Cappozzo, A.; Basaglia, N.; Cutti, A.G.; Cereatti, A.; Stagni, R.; Verdini, F.; Manca, M.; et al. SIAMOC position paper on gait analysis in clinical practice: General requirements, methods and appropriateness. Results of an Italian consensus conference. Gait Posture 2017, 58, 252–260. [Google Scholar] [CrossRef]
- O’Keefe, J.A.; Espinoza Orías, A.A.; Khan, H.; Hall, D.A.; Berry-Kravis, E.; Wimmer, M.A. Implementation of a markerless motion analysis method to quantify hyperkinesis in males with fragile X syndrome. Gait Posture 2014, 39, 827–830. [Google Scholar] [CrossRef]
- Volpe, D.; Pavan, D.; Morris, M.; Guiotto, A.; Iansek, R.; Fortuna, S.; Frazzitta, G.; Sawacha, Z. Underwater gait analysis in Parkinson’s disease. Gait Posture 2017, 52, 87–94. [Google Scholar] [CrossRef]
- Magalhaes, F.A.; Sawacha, Z.; Di Michele, R.; Cortesi, M.; Gatta, G.; Fantozzi, S. Effectiveness of an automatic tracking software in underwater motion analysis. J. Sports Sci. Med. 2013, 12, 660–667. [Google Scholar] [PubMed]
- Leardini, A.; Sawacha, Z.; Paolini, G.; Ingrosso, S.; Nativo, R.; Benedetti, M.G. A new anatomically based protocol for gait analysis in children. Gait Posture 2007, 26, 560–571. [Google Scholar] [CrossRef] [PubMed]
- Nobile, M.; Perego, P.; Piccinini, L.; Mani, E.; Rossi, A.; Bellina, M.; Molteni, M. Further evidence of complex motor dysfunction in drug naive children with autism using automatic motion analysis of gait. Autism 2011, 15, 263–283. [Google Scholar] [CrossRef]
- Chiu, M.C.; Wang, M.J. The effect of gait speed and gender on perceived exertion, muscle activity, joint motion of lower extremity, ground reaction force and heart rate during normal walking. Gait Posture 2007, 25, 385–392. [Google Scholar] [CrossRef]
- Kwon, J.W.; Son, S.M.; Lee, N.K. Changes of kinematic parameters of lower extremities with gait speed: A 3D motion analysis study. J. Phys. Ther. Sci. 2015, 27, 477–479. [Google Scholar] [CrossRef] [Green Version]
- Whitley, E.; Ball, J. Statistics review 4: Sample size calculations. Crit. Care 2002, 6, 335–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawacha, Z.; Spolaor, F.; Pavan, D.; Guiotto, A.; Polli, R.; Murgia, A. Gait analysis in children with fragile syndrome: A pilot study. Gait Posture 2018, S34–S35. [Google Scholar] [CrossRef]
- Chen, L.; Hadd, A.; Sah, S.; Filipovic-Sadic, S.; Krosting, J.; Sekinger, E.; Pan, R.; Hagerman, P.J.; Stenzel, T.T.; Tassone, F.; et al. An information-rich CGG repeat primed PCR that detects the full range of fragile X expanded alleles and minimizes the need for southern blot analysis. J. Mol. Diagn. 2010, 12, 589–600. [Google Scholar] [CrossRef] [PubMed]
- Tassone, F.; Pan, R.; Amiri, K.; Taylor, A.K.; Hagerman, P.J. A rapid polymerase chain reaction-based screening method for identification of all expanded alleles of the fragile X (FMR1) gene in newborn and high-risk populations. J. Mol. Diagn. 2008, 10, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Filipovic-Sadic, S.; Sah, S.; Chen, L.; Krosting, J.; Sekinger, E.; Zhang, W.; Hagerman, P.J.; Stenzel, T.T.; Hadd, A.G.; Latham, G.J.; et al. A novel FMR1 PCR method for the routine detection of low abundance expanded alleles and full mutations in fragile X syndrome. Clin. Chem. 2010, 56, 399–408. [Google Scholar] [CrossRef] [Green Version]
- Nahhas, F.A.; Monroe, T.J.; Prior, T.W.; Botma, P.I.; Fang, J.; Snyder, P.J.; Talbott, S.L.; Feldman, G.L. Evaluation of the Human Fragile X Mental Retardation 1 Polymerase Chain Reaction Reagents to Amplify the FMR1 Gene: Testing in a Clinical Diagnostic Laboratory. Genet. Test. Mol. Biomark. 2011, 16, 187–192. [Google Scholar] [CrossRef]
- Chen, L.; Hadd, A.; Sah, S.; Houghton, J.F.; Filipovic-Sadic, S.; Zhang, W.; Hagerman, P.J.; Tassone, F.; Latham, G.J. High-resolution methylation polymerase chain reaction for fragile X analysis: Evidence for novel FMR1 methylation patterns undetected in Southern blot analyses. Genet. Med. 2011, 13, 528–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawacha, Z.; Gabriella, G.; Cristoferi, G.; Guiotto, A.; Avogaro, A.; Cobelli, C. Diabetic gait and posture abnormalities: A biomechanical investigation through three dimensional gait analysis. Clin. Biomech. 2009, 24, 722–728. [Google Scholar] [CrossRef] [PubMed]
- Castro, J.L.G.; Medina-Carnicer, R.; Galisteo, A.M. Design and evaluation of a new three-dimensional motion capture system based on video. Gait Posture 2006, 24, 126–129. [Google Scholar] [CrossRef]
- Sawacha, Z.; Carraro, E.; Del Din, S.; Guiotto, A.; Bonaldo, L.; Punzi, L.; Cobelli, C.; Masiero, S. Biomechanical assessment of balance and posture in subjects with ankylosing spondylitis. J. Neuroeng. Rehabil. 2012, 9, 63. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 11, 1330–1334. [Google Scholar] [CrossRef] [Green Version]
- Tomasi, C.; Kanade, T. Shape and Motion from Image Streams: A Factorization Method. Proc. Natl. Acad. Sci. USA 1993, 90, 9795–9802. [Google Scholar] [CrossRef] [Green Version]
- Sawacha, Z.; Minelle, F.; Scarton, A.; Cobelli, C. Development of an Automatic Tracking Software for Out of Water and Underwater Motion Analysis. In Proceedings of the World Congress of Biomechanics (WCB), Boston, MA, USA, 6–11 July 2014. [Google Scholar]
- Freeman, H. Machine Vision for Three-Dimensional Scenes, 1st ed.; Academic Press: Boston, MA, USA, 1990. [Google Scholar]
- Harrington, M.E.; Zavatsky, A.B.; Lawson, S.E.; Yuan, Z.; Theologis, T.N. Prediction of the hip joint centre in adults, children, and patients with cerebral palsy based on magnetic resonance imaging. J. Biomech. 2007, 40, 595–602. [Google Scholar] [CrossRef]
- Ferrari, A.; Cutti, A.G.; Cappello, A. A new formulation of the coefficient of multiple correlation to assess the similarity of waveforms measured synchronously by different motion analysis protocols. Gait Posture 2010, 31, 540–542. [Google Scholar] [CrossRef]
- Castelli, A.; Paolini, P.; Cereatti, A.; Della Croce, U. A 2D Markerless Gait Analysis Methodology: Validation on Healthy Subjects. Comput. Math. Methods Med. 2015, 2015, 186780. [Google Scholar] [CrossRef] [Green Version]
- Ceseracciu, E.; Sawacha, Z.; Cobelli, C. Comparison of Markerless and Marker-Based Motion Capture Technologies through Simultaneous Data Collection during Gait: Proof of Concept. PLoS ONE 2014, 9, e87640. [Google Scholar] [CrossRef] [PubMed]
- Kadaba, M.P.; Ramakrishnan, H.K.; Wootten, M.E.; Gainey, J.; Gorton, G.; Cochran, G.V.B. Repeatability of kinematic, kinetic and electromyographic data in normal adult gait. J. Orthop. Res. 1989, 7, 849–860. [Google Scholar] [CrossRef]
- Schwartz, M.H.; Trost, J.P.; Wervey, R.A. Measurement and management of errors in quantitative gait data. Gait Posture 2004, 20, 196–203. [Google Scholar] [CrossRef] [Green Version]
- Sawacha, Z.; Spolaor, F.; Guarneri, G.; Contessa, P.; Carraro, E.; Venturin, A.; Avogaro, A.; Cobelli, C. Abnormal muscle activation during gait in diabetes patients with and without neuropathy. Gait Posture 2012, 35, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Bonato, P.; D’Alessio, T.; Knaflitz, M. A statistical method for the measurement of muscle activation intervals from surface myoelectric signal during gait. IEEE Trans. Biomed. Eng. 1998, 45, 287–299. [Google Scholar] [CrossRef] [PubMed]
- McFadyen, B.J.; Winter, D.A. An integrated biomechanical analysis of normal stair ascent and descent. J. Biomech. 1988, 21, 733–744. [Google Scholar] [CrossRef]
- Agostini, V.; Nascimbeni, A.; Gaffuri, A.; Imazio, P.; Benedetti, M.G.; Knaflitz, M. Normative EMG activation patterns of school-age children during gait. Gait Posture 2010, 32, 285–289. [Google Scholar] [CrossRef] [Green Version]
- Pataky, T.; Vanrenterghem, J.; Robinson, M. Zero- vs. One-Dimensional, Parametric vs. Non-Parametric, and Confidence Interval vs. Hypothesis Testing Procedures in One-Dimensional Biomechanical Trajectory Analysis. J. Biomech. 2015, 48, 1277–1285. [Google Scholar] [CrossRef] [Green Version]
- Worsley, K.J.; Taylor, J.E.; Tomaiuolo, F.; Lerch, J. Unified univariate and multivariate random field theory. NeuroImage 2004, 23, S189–S19510. [Google Scholar] [CrossRef] [PubMed]
- Hall, D.A.; Birch, R.C.; Anheim, M.; Jønch, A.E.; Pintado, E.; O’Keefe, J.; Trollor, J.N.; Stebbins, G.T.; Hagerman, R.J.; Fahn, S.; et al. Emerging topics in FXTAS. Neurodev. Disord. 2014, 6, 31. [Google Scholar] [CrossRef] [Green Version]
- Perry, J. Gait Analysis: Normal and Pathological Function; SLACK: Thorofare, NJ, USA, 1992; ISBN 978-1-55642-192-1. [Google Scholar]
- Almuhtaseb, S.; Oppewal, A.; Hilgenkamp, T.I.M. Gait characteristics in individuals with intellectual disabilities: A literature review. Res. Dev. Disabil. 2014, 35, 2858–2883. [Google Scholar] [CrossRef]
- Sutherland, D.H. The evolution of clinical gait analysis part l: Kinesiological EMG. Gait Posture 2001, 14, 61–70. [Google Scholar] [CrossRef]
- Sutherland, D.H. The evolution of clinical gait analysis part III--kinetics and energy assessment. Gait Posture 2005, 21, 447–461. [Google Scholar] [CrossRef] [PubMed]
- Sloovere, K. Are spasticity, weakness, selectivity, and passive range of motion related to gait deviations in children with spastic cerebral palsy? A statistical parametric mapping study. PLoS ONE 2019, 14, e0223363. [Google Scholar] [CrossRef] [Green Version]
- Woodruff, S.J.; Bothwell-Myers, C.; Tingley, M.; Albert, W.J. Gait Pattern Classification of Children with Developmental Coordination Disorder. Adapt Phys. Activ. Q. 2002, 19, 378–391. [Google Scholar] [CrossRef] [Green Version]
- McGinley, J.L.; Goldie, P.A.; Greenwood, K.M.; Olney, S.J. Accuracy and reliability of observational gait analysis data: Judgments of push-off in gait after stroke. Phys. Ther. 2003, 83, 146–160. [Google Scholar] [CrossRef] [Green Version]
- Pantzar-Castilla, E.; Cereatti, A.; Figari, G.; Valeri, N.; Paolini, G.; Della Croce, U.; Magnuson, A.; Riad, J. Knee joint sagittal plane movement in cerebral palsy: A comparative study of 2-dimensional markerless video and 3-dimensional gait analysis. Acta Orthop. 2018, 89, 656–661. [Google Scholar] [CrossRef] [Green Version]
- Galli, M.; Cimolin, V.; Pau, M.; Costici, P.; Albertini, G. Relationship between flat foot condition and gait pattern alterations in children with Down syndrome. J. Intellect. Disabil. Res. 2014, 58, 269–276. [Google Scholar] [CrossRef]
- Ramírez-Cheyne, J.A.; Duque, G.A.; Ayala-Zapata, S.; Saldarriaga-Gil, W.; Hagerman, P.; Hagerman, R.; Payán-Gómez, C. Fragile X syndrome and connective tissue dysregulation. Clin. Genet. 2019, 95, 262–267. [Google Scholar] [CrossRef]
- Agrawal, Y.; Davalos-Bichara, M.; Zuniga, M.G.; Carey, J.P. Head Impulse Test Abnormalities and Influence on Gait Speed and Falls in Older Individuals. Otol. Neurotol. 2013, 34, 1729–1735. [Google Scholar] [CrossRef] [PubMed]
- Robin, G.; López, J.R.; Espinal, G.M.; Hulsizer, S.; Hagerman, P.J.; Pessah, I.N. Calcium dysregulation and Cdk5-ATM pathway involved in a mouse model of fragile X-associated tremor/ataxia syndrome. Hum. Mol. Genet. 2017, 26, 2649–2666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rigoldi, C.; Galli, M.; Cimolin, V.; Camerota, F.; Celletti, C.; Tenore, N.; Albertini, G. Gait strategy in patients with Ehlers-Danlos syndrome hypermobiliy type and Down syndrome. Res. Dev. Disabil. 2012, 33, 1437–1442. [Google Scholar] [CrossRef] [PubMed]
- Granata, K.P.; Padua, D.A.; Abelc, M.F. Repeatability of surface EMG during gait in children. Gait Posture 2005, 22, 346–350. [Google Scholar] [CrossRef] [Green Version]
- Berry-Kravis, E.M.; Lindemann, L.; Jønch, A.E.; Apostol, G.; Bear, M.F.; Carpenter, R.L.; Crawley, J.N.; Curie, A.; Des Portes, V.; Hossain, F.; et al. Drug development for neurodevelopmental disorders: Lessons learned from fragile X syndrome. Nat. Rev. Drug Discov. 2018, 17, 280–299. [Google Scholar] [CrossRef] [Green Version]
- Hagerman, R.; Jacquemont, S.; Berry-Kravis, E.; Des Portes, V.; Stanfield, A.; Koumaras, B.; Rosenkranz, G.; Murgia, A.; Wolf, C.; Apostol, G.; et al. Mavoglurant in Fragile X Syndrome: Results of two open-label, extension trials in adults and adolescents. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
No. of Subjects | Male/Female | Age [Years] ± SD | Body Mass [kg] ± SD | Body Height [m] ± SD | BMI [kg/m2] ± SD | |
---|---|---|---|---|---|---|
FXS Full Mutation | 7 | 0/7 | 9.57 ± 2.51 | 35.4 ± 14.5 | 1.34 ± 0.12 | 19.0 ± 5.54 |
FXS Mosaics | 5 | 0/5 | 9.00 ± 3.74 | 34.8 ± 19.1 | 1.32 ± 0.25 | 18.7 ± 2.61 |
CS | 10 | 1/9 | 9.55 ± 2.79 | 35.1 ± 9.49 | 1.39 ± 0.16 | 20.7 ± 4.67 |
CSF | 6 | 0/6 | 11.4 ± 1.80 | 49.7 ± 13.3 | 1.50 ± 0.10 | 23.9 ± 3.25 |
CSL | 3 | 0/3 | 11.0 ± 3.60 | 41.3 ± 12.5 | 1.40 ± 0.21 | 19.4 ± 0.95 |
RMSD Mean (SD) | GS vs. Marker | GS vs. Tape | GS vs. No Tape | Marker vs. Tape | Marker vs. No Tape | Tape vs. No Tape | Castelli 2014 [39]—Gait Speed Normal | Castelli 2015 [40]—Comfortable | Ceseracciu 2014 [38] |
Hip | 1.83 (1.23) | 2.59 (1.37) | 2.44 (1.39) | 0.88 (0.38) | 4.17 (2.08) | 2.96 (1.72) | 2.3 | 4.8 | 17.6 (8.5) |
Knee | 3.38 (1.75) | 4.29 (2.35) | 3.51 (2.48) | 2.57 (1.64) | 2.12 (1.85) | 2.21 (2.00) | 2.44 | 3.6 | 11.8 (2.5) |
Ankle | 2.58 (1.72) | 4.73 (2.14) | 2.38 (2.05) | 2.91 (0.98) | 8.77 (1.65) | 3.67 (2.05) | 3.53 | 3 | 7.2 (1.8) |
RMSD% Mean | GS vs. Marker | GS vs. Tape | GS vs. No Tape | Marker vs. Tape | Marker vs. No Tape | Tape vs. No Tape | Castelli 2014 [39]—Gait Speed Normal | Castelli 2015 [40]—Comfortable | Ceseracciu 2014 [38] |
Hip | 3.22 | 4.55 | 4.29 | 1.54 | 6.04 | 5.21 | 4 | / | 44.7 |
Knee | 4.57 | 5.81 | 4.74 | 3.48 | 2.15 | 2.99 | 3 | / | 18.3 |
Ankle | 5.07 | 9.31 | 6.48 | 5.72 | 14.3 | 7.22 | 4 | / | 33.1 |
Normalized Peak of the Envelope Median (IQR) | Left TA | Right TA | Left GL | Right GL | Left RF | Right RF | Left BF | Right BF |
FXS Full Mutation | 260.84 (108.29) *** **** | 254.28 (91.37) ** **** | 333.99 (139.47) *** **** ***** | 319.19 (152.85) **** | 273.22 (185.08) ** **** | 244.97 (159.18) *** **** | 268.94 (151.99) ** *** **** | 322.27 (141.50) ** |
FXS Mosaics | 249.27 (167.94) *** **** | 309.39 (28.26) * *** **** | 296.29 (157.44) *** **** ***** | 251.38 (63.47) **** | 222.69 (69.48) * *** ***** | 223.29 (53.66) **** | 229.77 (157.63) * **** | 219.88 (118.33) * *** **** ***** |
CS | 206.37 (97.75) * ** | 220.65 (121.82) ** ***** | 234.72 (107.11) * ** | 254.10 (154.23) **** | 238.64 (49.87) ** **** | 210.92 (117.49) * **** ***** | 267.34 (66.76) * | 286.04 (76.23) ** |
CSF | 206.84 (21.71) * ** | 213.77 (41.93) * ** ***** | 219.30 (51.13) * ** | 175.24 (69.04) * ** *** ***** | 183.06 (50.01) * *** ***** | 253. 50 (661.66) *** ***** | 217.06 (79.96) * ** ***** | 297.01 (117.31) ** |
CSL | 233.77 (46.19) | 308.95 (176.72) *** **** | 229.73 (83.32) * ** | 209.34 (66.91) **** | 275.27 (73.73) ** **** | 337.24 (205.14) * ** *** ***** | 262.44 (133,03) **** | 305.05 (44.33) ** |
Position of the Peak of the Envelope (%Gait Cycle) Median (IQR) | Left TA | Right TA | Left GL | Right GL | Left RF | Right RF | Left BF | Right BF |
FXS Full Mutation | 58.40 (49.05) ** **** ***** | 46.35 (55.66) ** **** ***** | 72.18 (38.75) *** **** ***** | 68.98 (43.36) *** **** ***** | 61.58 (33.87) *** **** ***** | 60.29 (54.47) ** ***** | 60.28 (54.61) *** **** ***** | 52.98 (43.47) ***** |
FXS Mosaics | 64.83 (31.51) ** **** ***** | 27.06 (43.01) * *** | 67.91 (46.47) *** ***** | 68.81 (20.37) *** **** ***** | 78.29 (34.56) *** **** ***** | 30.40 (14.98) * *** | 80.23 (28.23) *** **** ***** | 51.04 (44.47) ***** |
CS | 45.46 (39.10) * ** | 30.87 (34.93) ** ***** | 44.66 (42.10) * ** | 38.85 (23.26) * ** | 60.79 (40.71) * ** ***** | 57.11 (48.38) ** ***** | 26.74 (33.27) * ** | 29.37 (36.35) |
CSF | 31.82 (69.48) * ** | 14.18 (61.50) * | 27.72 (65.13) * | 23.81 (33.66) * ** | 29.79 (47.01) * ** ***** | 27.53 (35.61) ***** | 22.73 (52.96) * ** ***** | 58.44 (45.81) ***** |
CSL | 15.32 (11.77) * ** | 11.26 (12.16) * *** | 19.87 (31.11) * *** | 24.90 (59.32) * ** | 19.64 (5.81) * ** *** **** | 19.48 (36.62) * *** **** | 21.95 (15.10) * ** **** | 15.14 (7.98) * ** **** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sawacha, Z.; Spolaor, F.; Piątkowska, W.J.; Cibin, F.; Ciniglio, A.; Guiotto, A.; Ricca, M.; Polli, R.; Murgia, A. Feasibility and Reliability Assessment of Video-Based Motion Analysis and Surface Electromyography in Children with Fragile X during Gait. Sensors 2021, 21, 4746. https://doi.org/10.3390/s21144746
Sawacha Z, Spolaor F, Piątkowska WJ, Cibin F, Ciniglio A, Guiotto A, Ricca M, Polli R, Murgia A. Feasibility and Reliability Assessment of Video-Based Motion Analysis and Surface Electromyography in Children with Fragile X during Gait. Sensors. 2021; 21(14):4746. https://doi.org/10.3390/s21144746
Chicago/Turabian StyleSawacha, Zimi, Fabiola Spolaor, Weronika Joanna Piątkowska, Federica Cibin, Alfredo Ciniglio, Annamaria Guiotto, Marco Ricca, Roberta Polli, and Alessandra Murgia. 2021. "Feasibility and Reliability Assessment of Video-Based Motion Analysis and Surface Electromyography in Children with Fragile X during Gait" Sensors 21, no. 14: 4746. https://doi.org/10.3390/s21144746
APA StyleSawacha, Z., Spolaor, F., Piątkowska, W. J., Cibin, F., Ciniglio, A., Guiotto, A., Ricca, M., Polli, R., & Murgia, A. (2021). Feasibility and Reliability Assessment of Video-Based Motion Analysis and Surface Electromyography in Children with Fragile X during Gait. Sensors, 21(14), 4746. https://doi.org/10.3390/s21144746