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Abstract: Humans interact with computers through various devices. Such interactions may not
require any physical movement, thus aiding people with severe motor disabilities in communicating
with external devices. The brain–computer interface (BCI) has turned into a field involving new
elements for assistive and rehabilitative technologies. This systematic literature review (SLR) aims to
help BCI investigator and investors to decide which devices to select or which studies to support
based on the current market examination. This examination of noninvasive EEG devices is based
on published BCI studies in different research areas. In this SLR, the research area of noninvasive
BCIs using electroencephalography (EEG) was analyzed by examining the types of equipment used
for assistive, adaptive, and rehabilitative BCIs. For this SLR, candidate studies were selected from
the IEEE digital library, PubMed, Scopus, and ScienceDirect. The inclusion criteria (IC) were limited
to studies focusing on applications and devices of the BCI technology. The data used herein were
selected using IC and exclusion criteria to ensure quality assessment. The selected articles were
divided into four main research areas: education, engineering, entertainment, and medicine. Overall,
238 papers were selected based on IC. Moreover, 28 companies were identified that developed wired
and wireless equipment as means of BCI assistive technology. The findings of this review indicate that
the implications of using BCIs for assistive, adaptive, and rehabilitative technologies are encouraging
for people with severe motor disabilities and healthy people. With an increasing number of healthy
people using BCIs, other research areas, such as the motivation of players when participating in
games or the security of soldiers when observing certain areas, can be studied and collaborated
using the BCI technology. However, such BCI systems must be simple (wearable), convenient (sensor
fabrics and self-adjusting abilities), and inexpensive.

Keywords: adaptive technology; assistive technology; brain–computer interface; EEG equipment;
rehabilitative technology

1. Introduction

Most people know someone or have heard of someone who suffers from paralysis.
In most cases, people become paralyzed because of accidents or medical conditions that par-
tially or entirely affect the way their muscles and nerves function. People with disabilities
do not usually receive the support they need because caring for them can be very expensive.
Brain–computer interface (BCI) technology is now implemented in the treatment of pa-
tients suffering from physical impairments [1–3]. This technology promises to significantly
enhance the quality of life of such patients by considerably improving their autonomy and
mobility. Moreover, the idea of interfacing brains with machines has long captured human
imagination [2]. Paralyzed people with neurological diseases (e.g., locked-in syndrome,
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muscular dystrophy, amyotrophic lateral sclerosis, brainstem stroke, and spinal cord in-
jury) experience difficulties, such as in walking, speaking, and writing, because they lose
fine motor control or lack a complete control of their voluntary muscles. However, their
thinking capabilities are usually the same as those of nondisabled individuals. Generally,
such patients are conscious and their mental abilities are unimpaired.

Consequently, research in neurology focuses on monitoring brain activities and incor-
porating the resulting data into BCIs. For instance, brain data can be used to allow patients
to control home appliances or the movement of a wheelchair in four directions [4,5], send
a message [6], or write an e-mail [6,7]. While Fazel-Rezai et al. [8] discussed some other
applications that use the BCI technology. The brain activities can be noninvasively recorded
using sensors on the scalp or invasively recorded using terminals set on the brain surface
or inside the cerebrum. The popularity of such technologies is increasing because they
can support the daily activities of people suffering from severe motor disabilities [9,10].
Healthy people can also use BCIs with other applications, particularly in games such as
Tetris [11] and Brain Invaders, using the P300 paradigm with the OpenViBE platform [12].
They can also be used in virtual environments (aircraft simulators) [13].

BCI applications mainly aim to help people with severe motor impairments in living
their lives like ordinary people as much as possible. Several devices using BCIs have
been developed to assist in human activities [14]. Furthermore, several studies have
proposed ways for helping people with severe impairments, such as paralysis and brain
strokes, to ensure communication using direct links between brains and devices [4,15,16].
A BCI device’s main objective is to re-establish usable capacities of individuals with
neuromuscular disorders. BCI procedures require the extraction of signal features from the
cerebrum. Then, these features are analyzed and transformed into commands. An overview
of a typical BCI system is illustrated in Figure 1.

Figure 1. Brain–computer interface system.

The methods used to observe brain activities can be classified into noninvasive and
invasive methods, and the contrast between these methods is based on the electrode
placement. For invasive procedures, a patient must undergo neurosurgery, where an
electrode is directly implemented into the brain using a single BCI unit or multiple units.
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The brain area can be monitored using the BCI unit [17]. Here, the signals produced
are of high quality; however, the negative impact of this method is significant owing
to the increase in the brain’s scar tissue [18]. An example of the invasive method is
electrocorticography (ECoG), where brain activities are straightforwardly recorded from
the brain surface [19].

The noninvasive method is less costly than the invasive method and causes minimal
discomfort, and it is highly decisive [14]. For instance, an EEG tracks and records the
brain wave patterns using electrodes placed on the scalp. Based on the acquired wave
patterns, the signals are then dispatched to a computer. Figure 2 shows some commercial
noninvasive EEG equipment.

Figure 2. Examples of the commercial noninvasive EEG equipment based on the BCI technology.
EEGSmart, Nihon Kohden, and Cognixion refer to the future noninvasive EEG designs.
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The EEG primary paradigm includes motor imagery (MI), P300, and steady-state
visual evoked potential (SSVEP) [20], which are different in the way in which they capture
signals. These three paradigms have different approaches and potentials. In P300, if the
subject is passionately engaged in a task, the EEG wave occurs with a high positive peak
after 300 ms of a stimulus in a human-event-related potential. Conversely, MI is concerned
with the psychological process of a movement without muscle actuation [21].

Rehabilitation is one of the therapy and training methods to restore the motor and
muscle damage. Examples are robot-aided therapy [22] or using imagery cues to transform
activity practices into daily routines suitable for therapy. For instance, a patient only
imagines the action, such as grasping a bottle. Then, the brain signal sends the command
to the device to control the movement. Remsik et al. [23] proposed two methods of using
BCI systems for people with impairments to regain motor control. The first method is
to train patients to deliver additional motor brain signals, and the second one is to train
patients to activate devices that improve the motor function. The EEG method is revealing
the remarkable improvements and continuous changes, even though individuals with
procured motor impairments regularly display damaged cortices or problems with motor
connections. Ramos-Murguialday et al. [24] introduced the aftereffects of the randomized
control of a preliminary of 16 patients with chronic stroke using a BCI for the hand and
arm orthotic feedback.

Assistive technology enables people with physical impairments to communicate,
participate in communities, play, and move like ordinary people using a piece of equipment.
This technology can reduce the stress of caregivers in terms of thinking about people with
disabilities [25,26].

Adaptive technology refers to the enhanced versions of the existing tools that offer
extra features and interaction opportunities to help people perform specific tasks [27], such
as in education. Zhang [28] proved that students, particularly Chinese students, can better
learn English using BCIs. Chiang et al. [29] measured the attention level of students and
concluded that they can become more focused and learn better using BCIs.

To sum up, herein, a systematic literature review (SLR) is conducted to address the
following research questions (RQs) as shown in Table 1.

Table 1. SLR research questions.

Research Question Rationale

RQ1 What are the publication trends based
on EEG equipment?

To identify the sector that collaborates
with BCI technology using the
EEG method

RQ2

What are the most common types
(wired or wireless) of noninvasive
EEG-based BCI equipment that have
been used in brain studies?

To discover whether the EEG
equipment mostly uses the wired or
wireless type based on a specific
research area

Therefore, the main aim of this review is to identify the related literature with BCI
equipment that can support various research fields. Further, the existing brands and
types of commercial EEG equipment used for assistive, adaptive, and rehabilitative BCI
technologies are reviewed.

This SLR is structured as follows. First, a research methodology was used to retrieve
all the related articles by using online search databases (IEEEXplore, Scopus, PubMed, and
ScienceDirect). Then, the analysis results from systematic review are summarized based
on the company and type of devices. Finally, a discussion was performed, conclusions
were drawn based on the findings, and future research areas were proposed to enhance the
impact of the result.
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2. Methods
2.1. Search Strategy

This SLR was investigated considering the rehabilitative, assistive, and adaptive tech-
nologies using the noninvasive BCI technology based on the preferred reporting items for
systematic reviews meta-analyses (PRISMA) [30] (Figure 3). The following online electronic
databases were used to search for relevant studies: PubMed, IEEE, Scopus, and ScienceDi-
rect. The search string used in the search process was “(BCI OR “Brain–computer interface”
OR BMI OR “brain–machine interface”) AND (EEG OR electroencephalogram) AND (re-
hab* OR assist* OR adapt*).” This search string was used in the digital libraries to search
for the title, keywords, and abstract of candidate publications. The search was finalized in
early February 2021.

Figure 3. Flow process using the PRISMA method.
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2.2. Inclusion and Exclusion Criteria

The studies included in this SLR were selected based on the following inclusion
criteria (IC): (IC1) studies in which EEG was used as a noninvasive BCI, (IC2) studies in
which commercial brands and companies of EEG equipment were mentioned, and (IC3)
studies focusing on devices and applications for rehabilitation, assistive, and adaptive
environments in real life.

The exclusion criteria (EC) for this SLR are (EC1) publications published before 2016
and after 2020, (EC2) studies that are not prereview papers or survey/review papers
and chapters, (EC3) non-English articles, (EC4) studies that did not focus on devices and
focused more on the outcomes of algorithms, classifications, and brain areas, and (EC5)
articles that cannot be retrieved as full articles.

2.3. Data Extraction

We extract the following characteristic:

1. Brand and company: The brand names of the EEG equipment and the company names
that produce them.

2. Type of EEG equipment: The articles that use either wired or wireless equipment.
Nowadays, many applications provide wireless equipment because of its low cost
and physical mobility [31].

3. The sector of using EEG equipment: A broad area of applications that use BCIs as
information sources [32].

3. Results

A considerable number of papers were analyzed, including those concerned with
assistive, adaptive, and rehabilitative BCI technologies. This SLR retrieved 1860 articles;
however, only 238 articles were included after screening using the aforementioned eligi-
bility criteria. EC2 was employed again because some databases did not provide specific
research type filters (Figure 3). Further, some reviews and survey papers are often identified
as journal types.

RQ1: What are the publication trends based on EEG equipment?

Figure 4 shows the percentage proportion chart of the four main research areas
identified in this SLR: education, engineering, entertainment, and medicine. Overall, 81%
of the articles discussed BCI in medicine areas because rehabilitation is synonymous with
health and medical care. While the engineering area covered approximately 10% of the
total articles, some articles proposed BCI systems to assist while drive the vehicles [33].
The engineering area here does not focus on medical purposes such as on controlling the
drone or vehicles [34]. Further, 6% and 3% of the articles were based on the entertainment
and education areas [35], respectively.

A total of 28 companies were identified from the selected studies in this SLR. Figure 5
presents information on the EEG equipment in the selected studies and their companies.
According to Figure 5, the g.Tec company leads with 60 articles. One of the reasons many
studies used the equipment of g.Tec is that this company has four headquarters in Austria,
Spain, USA, and Hong Kong (https://www.gtec.at/, accessed on 25 February 2021) which
can be easily obtained and purchased and at the same time can match the power consump-
tion in different countries. The equipment from Emotiv company was used in 49 articles
and that from Compumedics Neuroscan company was used in 29 articles. The equipment
of Brain Products, NeuroSky, and OpenBCI was used in 20, 15, and 10 articles, respectively.
The equipment of the rest of the companies was less, i.e., 10 articles.

https://www.gtec.at/
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Figure 4. Proportion chart of published article research areas based on noninvasive BCI technology.

Figure 5. Mapping between the companies and research areas identified in the selected articles.
Different colors represent the proportions of the reviewed studies, as shown by the indicators.
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The details of each research area and the equipment from different companies are:

Education: Only eight articles were found in this area with two companies. Five
articles used Emotiv equipment [36–40] and another three articles used the equipment
from InteraXon company [41–43].

Engineering: This is the second highest research area in this SLR, with 24 articles and 9
companies. Eight articles used Emotiv equipment [5,44–50], five articles used g.Tec equip-
ment [51–55], three articles used Brain Products equipment [56–58], two articles used Com-
pumedics Neuroscan equipment [59,60], and two articles used NeuroSky equipment [61,62].
For the equipment for Cognionics Inc. [63], Electrical Geodesics Inc. [64], Neuroelectrics [65],
and Advanced Brain Monitoring [66], one article each used their equipment.

Entertainment: Only 13 articles were discussed in this area. Compumedics Neu-
roscan [67–69], and Emotiv [70–72] equipment was employed in three articles each. Two
articles used OpenBCI equipment [73,74] and one article each used the equipment of
Biosemi [75], g.Tec [76], ANT Neuro [77], Brain Products [78], and Advance Brain Monitor-
ing [79].

Medical: This is the most popular research area in this SLR, with 193 articles. g.Tec
equipment was used in 54 articles for the EEG method [80–133], 33 articles used Emotiv
equipment [134–166], and 24 articles used Compumedics Neuroscan equipment [167–190].
Further, 16 articles used Brain Products equipment [191–206], 13 articles used NeuroSky
equipment [207–219], and Neuroelectrics [220–227] and OpenBCI [228–235] equipment were
used in eight articles each. Moreover, seven articles used Biosemi equipment [236–242],
and four articles used Medical Computer Systems equipment [243–246]. Three articles used
Medicom MTD equipment [247–249], and another three articles used the equipment from
InteraXon company [250–252]. Two articles each used Advanced Brain Monitoring [253,254]
and Nihon Kohden [255,256] equipment. One article each used the equipment of Mega
Electronic [257], Jordan NeuroScience Inc. [258], BIOPAC Systems Inc. [259], Laxtha Inc. [260],
TMSi [261], NeuroBioLab [262], Cognionics Inc. [263], Jingahi [264], VIASYS Healthcare [265],
ANT Neuro [266], Wearable Sensing [267], Netech [268], MindMedia [269], NCC Medical
Co. [270], and Electrical Geodesics Inc. [271].

RQ2: What are the most common types (wired or wireless) of noninvasive EEG-based
BCI equipment that have been used in brain studies?

Figure 6 illustrates the proportion chart of wired EEG equipment. Overall, 45 articles
used the wired equipment from the g.Tec company, followed by Compumedics Neuroscan
and Brain Products, with 29 and 18 articles, respectively. The fourth popular brand of
wired equipment was Biosemi, with eight articles. Figure 7 illustrates the proportion
chart of wireless EEG equipment. Most articles used the wireless equipment of Emotiv,
with 49 articles. The second highest were g.Tec and NeuroSky, each with 15 articles. Only
two companies provided both types of EEG equipment, namely, Brain Products and g.Tec.
The rest of the companies either provided wired or wireless equipment for BCI, and the
devices could communicate with the brain using either wired or wireless models. The wired
model is a standard system, whereas the wireless model is an evolving solution. Many
companies have designed portable headsets to provide greater comfort at a low cost [272].
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Figure 6. Proportion of companies that used noninvasive-wired equipment.

Figure 7. Proportion chart of companies that used noninvasive wireless equipment.

Table 2 summarizes the companies and their equipment, which were used in specific
research areas. In Table 2, the SLR is divided into three main categories: company name
(n = 28), the type of EEG equipment (wired or wireless), and research area (education,
engineering, entertainment, and medicine). Furthermore, only the wireless equipment
from Emotiv company covered all four research areas, even though the sector of Emo-
tiv mostly offers entertainment options and performance (http://bnci-horizon-2020.eu/
images/bncih2020/FBNCI_Roadmap.pdf, accessed on 25 February 2021).

http://bnci-horizon-2020.eu/images/bncih2020/FBNCI_Roadmap.pdf
http://bnci-horizon-2020.eu/images/bncih2020/FBNCI_Roadmap.pdf
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Table 2. Types of EEG equipment for each company.

Company
Type of EEG Equipment

Research Area
Wired Wireless

Advanced Brain Monitoring × B-Alert® X10 EG [66], MD [253,254]
B-Alert X24 ET [79]

ANT Neuro × eegosports ET [77]
eego™rt MD [266]

BIOPAC Systems Inc. EEG100C × MD [259]

Biosemi ActiveTwo × ET [75], MD [236–242]

Brain Products

actiCAP system MD [194,199,205]
actiHamp MD [192,198,201,203]
BrainAmp EG [57], ET [78], MD [195–197,200,204]
BrainVision EG [58]
capTrak MD [206]
QuickAmp USB EG [56]

V-amp MD [191]
MOVE system MD [193]

Cognionics Inc. × HD-72 EEG EG [63]
Quick-20 MD [263]

Compumedics Neuroscan

Grael
×

ET [67,68], MD [187,188]
NuAmps MD [167–170,172,176,180,183,185,186,189,190]
SynAmps EG [59,60], ET [69], MD [171,173–175,177–179,

181,182,184]

Electrical Geodesics Inc. Geodesic EEG System 400 × EG [64], MD [271]

Emotiv
× Emotiv EPOC ED [37,39,40], EG [5,44–50], ET [70–72],

MD [134–160,162,164–166]
Emotiv Insight ED [36,38], MD [161,163]

g.Tec

g.BSamp MD [110]
g.Hiamp MD [85,97,100,106,127,132]
g.USBamp EG [52,54], ET [76], MD [80–84,87,89,92,94–

96,98,99,101,102,104,105,107,108,111,112,114,
117–122,125,126,128,130,131,133]

g.MOBIlab+® MD [86,93,103,113,115,129]
g.Nautilus EG [51], MD [88,90,91,109,116,123,124]
Unicorn Hybrid Black EG [55]

InteraXon × Muse headband ED [41–43], MD [250–252]

Jingahi × JAGA16 MD [264]

Jordan NeuroScience Inc. BrainNet × MD [258]

Laxtha Inc. PolyG-I × MD [260]

Medical Computer Systems NVX52 × MD [243–246]

Medicom MTD Encephalan-EEGR-19/26 × MD [247–249]

Mega Electronic NeurOne × MD [257]

MindMedia Nexus10 Biosignal × MD [269]

NCC Medical Co., NGERP-P × MD [270]

NeuroBioLab NBL640 × MD [262]

Netech × MinSim300 MD [268]

Neuroelectrics ×

Enobio 8 EG [65], MD [220,223,224,226]
Enobio 32 MD [227]
StarSim 8 MD [222]
StarSim R32 MD [221,225]

NeuroSky ×

BrainWave MD [208,210]
MindFlex MD [219]
MindWave Mobile EG [61,62], MD [207,209,211–214,216–218]
ThinkGear AM (TGAM) MD [215]

Nihon Kohden JE-921A × MD [256]
AB-611J MD [255]

OpenBCI ×

OpenBCI 32 bit MD [232,235]
Open BCI Cyton ET [73,74], MD [228,229,231,234]
OpenBCI Ganglion MD [233]
Ultracortex BCI MD [230]

TMSi Refa 32 × MD [261]

VIASYS Healthcare Nicolet 1 × MD [265]

Wearable Sensing × DSI-24 MD [267]
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Overall, 17 companies provided more than two brands/products with different char-
acteristics. For example, the company Neuroelectrics offers Enobio 8 and Enobia 32, which
have up to 8 and 32 channels for EEG recording, respectively (https://www.neuroelectrics.
com, accessed on 25 February 2021). Therefore, researchers can select the necessary equip-
ment based on their specific goals, including user acceptance, usability, and performance.
The education research area used the wireless equipment from two companies: Emo-
tiv (Emotiv EPOC and Emotiv Insight) and InteraXon (Muse headband). While Augus-
tian et al. [64] used the equipment of Electrical Geodesics Inc. to propose applications and
devices for assisting forestry crane control.

Table 3 shows the comparison between EEG equipment that is used in the selected
studies. The details of the information about EEG equipment were found through the com-
pany’s website and some from the company’s representative. Unfortunately, three pieces of
EEG equipment are no longer available, which are Refa32 (TMSi) and QuickAmp USB and
V-amp (Brain Products). Soufineyestani et al. [273] made the comparison and limitation
of EEG sensors available in the market specially for engineers, scientists, and clinicians,
to understand more about EEG equipment that can match their preference. The symbol
“-” implies that it could not uncover the information for the price. Some of the equipment
have to request a quotation. Additionally, the symbol “X” in the Medical license represents
that the company does not have the certificate for medical use. In column “Additional
sensor”, the “X” indicates the equipment is without an additional sensor. There is a wide
range of companies in the market with very different goals, driven by new applications and
approaches. Each of the companies have specific goals to produce the BCI-based system.
Advanced Brain Monitoring develops tools for alertness and monitoring sleep, and Emotiv
focuses on the gaming and research market. Different companies target the other market
sector such as Brain Products and Biosemi for research, g.Tec more on health and neu-
rofeedback, assistive technology, and research. While Emotiv pivots on entertainment
and performance (http://bnci-horizon-2020.eu/images/bncih2020/FBNCI_Roadmap.pdf,
accessed on 25 February 2021). Based on the gathered information, each company has
approximate applications for each EEG equipment in column “Recommendation” as shown
in Table 3.

https://www.neuroelectrics.com
https://www.neuroelectrics.com
http://bnci-horizon-2020.eu/images/bncih2020/FBNCI_Roadmap.pdf
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Table 3. A systematic comparison of the EEG devices.

Company EEG Equipment Medical Certificate Recommendation Electrode Number,
Type and Placement

Additional Sensor
(Optional) Size and Shape (Cap) Approximated 2021

Cost
No. of

Publication

Advanced Brain
Monitoring

B-Alert® X10 ISO 13485,
CE,

FDA

Neuromarketing,
BCI,

identify biomarkers

9 channels, electrolyte
cream , and cover

whole brain

ECG,
EMG,
EOG

Adjustable (from
adolescent to adult) $9950 up to $14,950 4

B-Alert X24
20 channels, electrolyte

cream , and cover
whole brain

ANT Neuro eegosports
eego™rt

CE,
FDA

BCI,
neurofeedback,

neurorehabilitation,
neurogaming

8 to 64 channels,
gel/soft dry and cover

whole brain
EMG,

physiological sensor
6 sizes - 2

BIOPAC Systems Inc. EEG100C X

Epilepsy,
tumor pathology,

sleep studies,
evoked responses,
cognition studies.

16 channels, wet and
cover whole brain X 4 sizes $2000 1

Biosemi ActiveTwo X Electrophysiology
research

16 to 256 channels,gel
and cover whole brain

EMG,
ECG 15 sizes e17,000 up to e75,000 8

Brain Products

actiCAP system
actiHamp
BrainAmp

BrainVision
capTrak

MOVE system

X
Neuroscience,

neurofeedback,
neurophysiological

8 to 256 channels,
gel/dry and cover

whole brain

EOG,
EMG 14 sizes $12,000 to $28,500 20

QuickAmp USB
V-amp

No longer available

Cognionics Inc. HD-72 EEG X Neurofeedback,
neurodiagnostic

64 channels, dry and
cover whole brain

ECG,
EMG,
EOG,
RESP,
GSR

Adjustable $14,500 up to $26,000 2

Quick-20
21 channels, dry

electrode and whole
brain

Compumedics
Neuroscan

Grael
NuAmps
SynAmps

FDA Clinical
neuro-diagnostics,

research

up to 256 channels,
gel/saline and cover

whole brain

EOG,
ECG,
EMG

5 sizes - 29
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Table 3. Cont.

Company EEG Equipment Medical Certificate Recommendation Electrode Number,
Type and Placement

Additional Sensor
(Optional) Size and Shape (Cap) Approximated 2021

Cost
No. of

Publication

Electrical Geodesics
Inc.

Geodesic EEG System
400

FDA Clinical applications
up to 256 channels,

saline and cover whole
brain

ECG Available in sizes from
infant to adult - 2

Emotiv Emotiv EPOC X Research,
personal use

14 channels, saline
soaked felt pads and

cover whole brain

Quaternions,
accelerometer,
magnetometer

Adjustable $299 up to $849 49

Emotiv Insight
5 channels, semi dry

and cover frontal,
temporal and parietal

g.Tec g.BSamp
g.Hiamp

g.USBamp
g.MOBIlab+®

g.Nautilus
Unicorn Hybrid Black

ISO 14971,
FDA

BCI,
neuroscience,

neurotechnology

up to 256 channels,
dry/gel and cover

whole brain

ECoG,
ECG,
EMG,
EOG,

accelerometer,
external body sensor

3 sizes
e1000(Unicorn Hybrid

Black) to
e30,000(customize)

60

Jingahi JAGA16 X Neuroscience,
suitable for rat

16 channels and cover
whole brain X Standard size - 1

Jordan NeuroScience
Inc.

BrainNet FDA Neurodiagnostic,
neurofeedback

14 to 21 channels,
cream and cover whole

brain
X 4 sizes - 1

Laxtha Inc. PolyG-I ISO 13485,
KFDA

Scientific research,
forensic science

8 channels and
prefrontal area

ECG,
EMG,
PPG,
GSR,
RESP

Standard size - 1

Medical Computer
Systems

NVX52 ISO 13485 Research for any
application

48 channels,wet and
cover whole brain Any biosensor 9 sizes e4860 5

Medicom MTD Encephalan-EEGR-
19/26

ISO 13485 Neurology,
neurophysiology,

epileptology,
sleep studies,

scientific research

20 channels, wet and
cover whole brain

EOG,
ECG,
EMG

5 sizes $5000 up to $40,000 3
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Table 3. Cont.

Company EEG Equipment Medical Certificate Recommendation Electrode Number,
Type and Placement

Additional Sensor
(Optional) Size and Shape (Cap) Approximated 2021

Cost
No. of

Publication

Mega Electronic NeurOne European Medical
Directive 93/42/EEC,

ISO 13485,
CE

Neuroscience,
psychological

aplication

32 to 128 channels and
cover whole brain

Gyro,
EMG,
GSR,

accelerometer,

Standard size - 1

MindMedia Nexus10 Biosignal CE,
FDA

Biofeedback,
neurofeedback,

psychophysiological
research.

4 channels, electrogel
and cover whole brain

EMG,
EOG,
ECG

4 sizes ˜e1050 1

Interaxon Muse
headband

X EEG-powered sleep,
tracking,

meditation

2 channels, dry and
cover frontal lobe

Gyro,
PPG,

accelerometer
Adjustable $294.98 up to $369.98 6

NCC Medical Co. NGERP-P ISO 13485 - 24 channels and cover
whole brain - Standard size - 1

NeuroBioLab NBL640 - Neurobiofeedback
24 channels, dry/gel
electrode and cover

whole brain
X Standard size - 1

Netech MinSim300 CE,
FDA

Recorders,
sleep study monitors

10 channels - Standard size - 1

Neuroelectrics Enobio 8
Enobio 32
StarSim 8

StarSim R32

CE,
FDA

Neuroscience,
BCI,

neurogaming,
neurofeedback

8 to 32 channels,
dry/gel and cover

whole brain
Accelerometer 6 sizes - 9

NeuroSky BrainWave
MIndFlex

MindWave
ThinkGearAM (TGAM)

X BCI,
neurogaming,

neurofeedback,
neuroscience,

meditation

1 channel, dry and
cover frontal lobe ECG Adjustable $109.99 15

Nihon Kohden JE-921A
AB-611J

ISO 13485,
MDSAP

Epilepsy monitoring,
medical research

5 to 32 channels and
cover whole brain Oximetry 4 sizes and 1 adjustable

silicone cap - 2
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Table 3. Cont.

Company EEG Equipment Medical Certificate Recommendation Electrode Number,
Type and Placement

Additional Sensor
(Optional) Size and Shape (Cap) Approximated 2021

Cost
No. of

Publication

OpenBCI OpenBCI 32bit
Open BCI Cyton

OpenBCI Ganglion
Ultracortex BCI

X BCI,
biosensing,

neurofeedback

4 to 21 channels,
dry/gel and cover

whole brain

EMG,
ECG,

accelerometer

3 sizes and 3D
printable can be adjust up to $3200 10

TMSi Refa 32 No longer available 1

VIASYS Healthcare Nicolet 1 FDA Respiratory care,
neuroscience,

medical,
surgical care

32 to 44 channels and
cover whole brain EMG Standard size - 1

Wearable Sensing DSI-24 X Psychological research,
neuroscience,

neuromarketing,
BCI,

neurogaming,
neurofeedback

21 channels, dry and
cover whole brain

ECG,
EMG,
EOG

Adjustable $̃20,000 1

ISO-International Organization for Standardization, CE-Conformitè Europëenne, FDA–Food and Drug Administration, KFDA-Korea MFDS (KFDA) Medical Device Registration and Approval, MDSAP-
Medical Device Single Audit Program, ECG-Electrocardiogram, EMG-Electromyography, EOG-Electrooculography, ECoG-Electrocorticography, PPG-Photoplethysmography, GSR-Galvanic Skin Response,
RESP-Respiratory. NB: Some EEG device prices could not be easily found from the company website. Therefore, we did not show the costs of all devices in the table.
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4. Discussion

Several researchers are currently studying BCI technologies in different domains, such
as medicine, entertainment, finance, education, and wellness. Many of the studies included
in this SLR covered the medicine sector because BCIs are commonly used in assistive
technologies, particularly for people with severe disabilities [121,189,274] with regard to
rehabilitation and treatment. This observation is not surprising because BCIs are commonly
viewed as prospects for enhancing the lives of innumerable disabled people using assistive
technologies. For instance, the wearable knee exoskeleton device is used to strengthen and
rehabilitate the gait and restore the movement of people with knee motion disabilities [275].
Another application is controlling wheelchairs so that paralyzed or quadriplegic patients
can move around without the need for caregivers [37,214,215].

Moreover, in the field of engineering, BCIs can provide disabled and healthy people
with an alternative communication medium that involves minimum movement of muscles
for activities such as controlling home appliances. Even healthy people may face circum-
stances where they cannot use their hands to operate appliances, e.g., during cooking or
dealing with hazardous materials or chemicals. Therefore, hands-free systems have been
established to control home appliances [48] or control robots that can help perform house
chores, such as cleaning [5]. Currently, BCI-based home appliances can only handle one
application at a time, thus limiting their effectiveness in real-world circumstances. Future
research is needed to overcome this issue.

The prospect of BCI is applicable to both indoor and outdoor applications. The out-
door applications include helping security teams explore opponent areas for safety and
security [50,276]. Other innovations using the BCI technology influence researchers to use
BCIs as a part of daily life, such as controlling vehicles for assistance in remote driving [49].
With this approach, BCIs can help in programming vehicles for self driving whenever the
vehicle detects that the driver feels drowsy or tired.

Nevertheless, intense attention is now centered on assistive applications meant to
support healthy users, for example, in the entertainment and gaming areas. With some
music, such applications can stir feelings and generate various emotional responses because
music itself is a central feature of media-based entertainment [277]. Therefore, using BCI
technology, music can be successfully produced based on emotion-based qualities using
EEG data. However, there are some challenges when producing the same music for
different people. For example, two people in one room may feel excited when listening to
the same music; however, there is the possibility that one of them may not like the music.
Hence, personal preferences also affect this sector.

Additionally, research on the use of BCI for gaming is increasing in the entertainment
industry. Laar et al. [278] discussed the performance and experience of gaming using BCI
equipment. Nevertheless, BCIs are radically different from other input devices, such as
keyboards and mice, as they offer users alternative input channels for controlling games.
Moreover, BCIs can assist players in being more engaged with games [71]. Some companies
have established BCI games, and some BCI companies engage in game production, such as
NeuroSky, Emotiv, and MindGames. Furthermore, games can help in rehabilitation and
people can enjoy them and feel entertained. Vega et al. [70] proposed a game for controlling
video games using prosthetic devices and Rashid et al. [61] proposed a game for increased
attention, particularly for people with attention deficit disorder. However, the challenge in
implementing BCIs in gaming can be the user experience. Wearing another device on the
head can be uncomfortable for some users who play games for a long duration.

Further, BCIs can be tools for students to increase their learning ability and for educa-
tors to further understand their students. A BCI can analyze a student’s cognitive states,
assess the information and visualizations to be used, and change the training method
to respond to a student’s individual learning needs [38]. Furthermore, a BCI can help
students refocus and increase their interest and engagement in the learning process [40].
The neurofeedback system in BCIs can help teachers to better observe and understand
students, and it can aid them in customizing their approach based on a student’s needs.
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The Unicorn Hybrid Black brand of the g.Tec company was specifically designed for the
education area. However, none of the articles discussed here used the Unicorn Hybrid
Black equipment in the education area. The issues regarding BCI and education are mainly
concerned with the costs of providing all students with the necessary equipment and
collecting their EEG data and disturbances attributed to external variables, such as shifting
students’ attention and noise in the class environment.

Furthermore, when the various industries’ potential expands, like entertainment
and education, many companies join the market with very different objectives influ-
enced by the emerging market sectors and approaches. Not all companies design
conventional BCI systems; however, investments in consumer goods would undoubt-
edly and significantly affect the infrastructure, price, and usability for the BCI systems
(http://bnci-horizon-2020.eu/images/bncih2020/FBNCI_Roadmap.pdf, accessed on
25 February 2021). Some companies provide both wired and wireless systems, and some
companies only focus on developing and designing wireless equipment, such as InteraXon,
Emotiv, and Neuroelectrics. Over the decades, the EEG hardware technology has also
advanced. Many wireless multichannel devices have been developed, offering high-quality
EEG and physiological signals in more straightforward, compact, and comfortable config-
urations compared with conventional complicated systems. Wireless systems are more
convenient for users because they facilitate free movement. Moreover, wireless equipment
has proven to be suitable for clinical trials [279]. However, some challenges need to be
addressed regarding EEG equipment in sensor development. Not many researchers are
deeply engaged in studying the BCI sensor design because it is generally a very compli-
cated subject [280]. Sensors are applied to both wired and wireless equipment because they
are attached to the human head. The electrode position must be accurate. Furthermore,
the sensor material must be selected appropriately to avoid any side effect.

5. Limitation

This SLR may have several limitations that can impact its overall quality

• Other digital libraries could have been used in the search for studies, which may
impact candidate studies. However, we selected the largest libraries that deal with
the SLR’s topic. Using other libraries may have just resulted in more duplicates.

• Herein, the number of selected studies can impact the conclusion drawn. The studies
are pertaining to the medicine sector because of the keyword “rehab*”. However, we
included two other keywords related to other sectors in the search string.

• This review mainly focused on English publications; however, there could be relevant
publications in other languages.

6. Conclusions

Assistive technology can benefit people with cognitive problems and physical im-
pairments. In this review, a variety of equipment that can be successfully implemented
using BCIs in four sectors (i.e., education, engineering, entertainment, and medicine) is
highlighted. Overall, the EEG channel is a reference for adapting the technology based on
different levels of impairments and disabilities. Moreover, rehabilitation can help people
increase their independence using BCIs.

Based on the obtained results, numerous studies were biased toward the medicine
sector. However, with further research and experiments, this trend can also be observed
for the other sectors. EEG data could be efficiently obtained from all four research areas.
Moreover, EEG devices can be used by healthy people, not only by people with disabilities.
With an increasing number of wireless devices, EEG can be recorded in many natural ways
in daily life, such as in crowded places or during exercise.

We do believe that using relatively expensive EEG devices that have FDA certificate in
developing medical BCI applications is mandatory rather than using cheap portable devices
due to their high quality signals in terms of signal-noise ratio (SNR) and spatio-temporal
resolutions. For developing noninvasive BCI applications, investigators can refer to market

http://bnci-horizon-2020.eu/images/bncih2020/FBNCI_Roadmap.pdf
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size to decide which research studies to support. Nowadays, the BCI market is large and
popular in terms of gaming applications. The manufacturer of the game console and some
game developers can integrate with a BCI-based gaming device. For BCI technology to
succeed and gain wide adoption, affordability should be guaranteed and focus on specific
end-user products based on market demand for BCI investors (researchers) to decide which
devices to select for the application. Wireless devices are more comfortable to move around
and suitable for long-term use in daily life and outdoor applications. Additional, dry EEG
electrode is easy to use and does not require additional instruments like syringes and there
is no need to wash the head afterward.

Furthermore, a limited number of studies have reported using BCI in the engineering
area, suggesting more room for exploration. With COVID-19, using EEG-based robot or
drone control can explore and detect the location of the virus. The rationale is to reduce
the risk of exposure of COVID-19 to the people. Next, in the entertainment sector, rather
than focusing only on games, EEG-based BCI can predict the market for the movie genres
(e.g., which genre can give more excitement to the audience). In the same way, portable
EEG devices are important in neuro-education. Due to COVID-19, all the schools and
institutes were closed and were instructed to perform distance learning. When studying
online, the optimal learning strategy can be determined by analyzing the behavior of
student brains.

The BCI-based system can expand into the new market, which gives more significant
opportunities by merging the current market with another field, such as medicine, with
the robotic sector to reduce overall healthcare costs. Due to EEG devices’ widespread
availability and becoming portable, the treatment and rehabilitation are not limited to
the hospital but may also occur in the home. Another instance is engineering with the
automotive and aerospace sectors for people’s safety in the road or outer space. Diverse
considerations should be made before choosing and purchasing a suitable device.

Numerous factors need to be considered for selecting the devices such as medical
certificate, electrode type (dry/saline/gel), size and shape for the cap, and type of devices
(wired/wireless). The applications specific to medical and clinical treatment need approval.
Kasim et al. [281] mentioned the dry electrode exhibited a greater resistance to line noise.
Using several different sizes and shapes (cap) for head size variability experiments and
studies can increase the overall price because of the need to buy more than one cap.
Li et al. [282] mentioned that the wired EEG devices give better quality but are more
expensive, while wireless devices are more convenient for daily life application [283].
The wireless device was suited for underlying cognitive processes and body motion such
as sport science and physical therapy.

More user-experience evaluations and data-integrity policies are required to ensure
that the needs and preferences of the end users are met and that their personal data are
secured. Therefore, the obtained findings can impact policymakers with regard to using
EEG devices, particularly wireless devices, to prevent data from being stolen and for
researchers to explore new sectors to adapt the BCI technology.

Moreover, SLR results provide directions for future research. In future studies, we
intend to measure the user experience based on different devices to identify the extra
features of each EEG equipment and determine which of them is suitable for each sector.
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