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Abstract: In this paper, we present a real-time object detection and depth estimation approach
based on deep convolutional neural networks (CNNs). We improve object detection through the
incorporation of transfer connection blocks (TCBs), in particular, to detect small objects in real time.
For depth estimation, we introduce binocular vision to the monocular-based disparity estimation
network, and the epipolar constraint is used to improve prediction accuracy. Finally, we integrate the
two-dimensional (2D) location of the detected object with the depth information to achieve real-time
detection and depth estimation. The results demonstrate that the proposed approach achieves better
results compared to conventional methods.

Keywords: object detection; depth estimation; stereo vision; deep learning

1. Introduction

Autonomous driving techniques [1–3] have been studied intensively for several
decades. Because of the advances in sensor technology and the demands of commuters,
manufacturers have expended considerable resources on developing autonomous vehicles.
The Society of Automotive Engineers classifies five levels of automated driving, the third
level of which is conditional automation, or self-driving under ideal conditions with limita-
tions. This level has drawn much attention as developers attempt to implement effective
detection and recognition of the surrounding environment (e.g., the road, traffic signs,
other vehicles, and pedestrians) so that the vehicle can detect and recognize objects ahead
and estimate their depth from a visual sensor.

Conventional approaches to object detection use multiple windows of varying sizes
to slide repeatedly over images at fixed distances to detect objects of interest. Felzenszwalb
et al. [4] presented a pedestrian detection approach that used a deformable part model
with a histogram of oriented gradients and a support vector machine. Recently, the advent
of convolutional neural networks (CNNs) [5–11] rapidly superseded traditional object
detection. These deep neural networks hypothesize bounding boxes, extract features from
them, and use high-quality object classifiers.

In this paper, we propose a real-time object detection and depth estimation approach
using learning-based techniques for images acquired from a vehicle’s onboard camera. First,
we present an improved object detection approach—in particular for small objects—and
then use deep neural networks and epipolar geometry to create stereo images and generate
depth maps. Our approach modifies the monocular depth estimation network [12] for
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binocular images and introduces a new correlation function to generate disparity maps
through model training with some image reconstruction loss. Finally, the two-dimensional
(2D) location is integrated with depth information to achieve effective object detection and
depth estimation. This paper is organized as follows: Section 2 reviews related works.
Section 3 is the proposed approach. Section 4 describes the implementation and results.
Section 5 presents the conclusions.

2. Related Works

CNN-based object detection approaches [7–11] were primarily divided into two cate-
gories, namely, one-stage and two-stage detection. In two-stage detection, features were
extracted from candidate regions and targets were classified. Such methods included the
faster region-based CNN (Faster R-CNN) [7], region-based fully convolutional network
(R-FCN) [8], and feature pyramid network (FPN) [9]. A network structure with heuristic
sampling was used to target the class imbalance problem, and cascading can regress the
parameters of the bounding box. Generally, CNN representation played a key role in these
methods. The learned features were designed to encode highly discriminative and robust
object characteristics with a moderate position bias. Several approaches were proposed to
address these problems. For instance, ResNet and Inception both extracted features from
deeper CNN backbones [13,14]. The FPN introduced a top-down architecture to construct
feature pyramids and integrated low- and high-level information [9]. However, extracting
such features from deeper neural networks led to high computational costs and networks
with a low inference rate.

In a one-stage detection method, designed to be efficient and computationally low
cost, candidate region extraction and target classification are performed in an end-to-end
network, such as a Single Shot MultiBox Detector (SSD) [10] or a You Only Look Once
(YOLO) [11]. To accelerate the detection phase, a single-stage framework was proposed and
an object proposal generation was removed. YOLO [11] and SSD [10] have demonstrated
the possibility of real-time processing with a clear drop of 10 to 40% of current two-stage
solutions. RetinaNet [15] substantially improved the precision scores so that they become
comparable to the highest scores reported for two-stage detectors. Unfortunately, these
performance gains were credited to the deep ResNet-101 model [13], which greatly limited
efficiency.

The SSD used multiple bounding boxes of different sizes to detect dense objects
quickly and accurately. However, its small-vehicle detection performance was low because
it ignored the smaller features between layers. The average precision (AP) and average
recall for small objects in the Microsoft Common Objects in Context (COCO) dataset [16]
were only 5.3 and 9.6%, respectively [10]. Other approaches for detecting small objects must
be developed for particular applications. Because shallow convolutional networks produce
feature and texture loss, previous approaches could not detect small objects effectively. To
address this problem, RefineDet [17] was adopted as the main detection framework. It
used the advantages of the Faster R-CNN and SSD and incorporated the FPN for shared
features. It exhibited an AP of 25.6% on the COCO dataset over the original SSD and a high
frame rate. In our approach, we used the global information in the convolutional layers
to improve the transfer connection blocks (TCBs). The detection benchmarks were then
evaluated based on the PASCAL Visual Object Classes (VOC) and COCO datasets [16,18].

For traditional stereopsis, environmental parameters were limited and certain parts of
the left and right images were inconsistent because the angles at which the user viewed
the images prevented the calculation of disparity values. To solve the two problems,
several depth estimation approaches were proposed. The conventional stereo vision
approaches [19–22] included CNN-based methods and video-based processing. Deep
learning techniques markedly improved depth estimation performance on the KITTI
dataset [23]. For different input sources, the existing networks were modified for single-
view [12,24] and stereo-view depth estimation [19,25,26] with a multi-scale CNN and
probabilistic graphical models.
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Several approaches based on fully convolutional networks (FCNs) for view synthesis
and depth estimation have been proposed, wherein ground-truth depth maps were not
necessary in the training stage. In Deep3D [27], left images were input to binocular vision
images to create the corresponding right images. The core idea was to use a single image
to reconstruct stereopsis, with the disparity values of the single image predicted on the
basis of the probabilities of such values occurring for each image pixel. Next, the disparity
images were used to synthesize the right images. To predict more accurate stereo images
in unsupervised monocular image depth estimation networks (e.g., Monodepth [12]), the
consistency and gray-scale smoothness of the left–right stereo images and right–left stereo
images were carefully considered before the loss function was modified. Unsupervised
training-based depth estimation networks were subsequently introduced to solve these
problems.

3. Proposed Approach

In the proposed approach, we presented a real-time object detection and depth estima-
tion approach based on a light-network structure. Our approach consisted of two parallel
modules: object detection and depth estimation. In the flowchart in Figure 1, input images
were acquired from a vehicle’s onboard camera from which we presented an improved
object detection approach. Then, we use deep neural networks and epipolar geometry to
create stereo images and generate depth maps. We modified the stereo image network for
disparity prediction and used the epipolar constraint to derive depth images from these
disparities. Finally, we integrated the 2D location with the depth information and output
the results for applications.
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Figure 1. Flowchart of the proposed approach.

3.1. Object Detection

Object detection networks are plagued by problems such as high computational
cost and inaccurate identification of small and faraway objects. Because small objects
occupy a small space in the images, their detailed features are filtered out in the first few
convolutional layers, and they are consequently ignored. To address this problem, we
consulted the FPN, in which the feature information of all feature layers is shared and
detailed patterns or context features are retained. Additionally, to reduce computational
cost, we employ VGG16 as the backbone network.
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RefineDet [17], which focuses on small-object detection and real-time computing
capabilities, contains a network model that combines a two-stage and a one-stage detection
network. It consists of two inter-connected modules: the anchor refinement module (ARM)
and the object detection module (ODM). The ARM is used to remove negative anchors
to reduce search space and roughly adjust the locations and sizes of anchors for better
initialization. The ODM is used to regress correct locations of objects and predict multi-class
labels based on the refined anchors. The TCBs are designed to fuse the information of the
upper and lower convolutional layers between the ARM and the ODM. In our approach,
we modified RefineDet [17] to improve small-object detection based on the following two
improvements.

(1) Enhanced fine-feature extraction:

Inspired by single-shot face detection with feature fusion and segmentation supervi-
sion [28], we replaced element-wise addition with element-wise multiplication to prevent
overflow. To suppress noise, we use the parametric rectified linear unit (PReLU) [29]
as the activation function. The differences between correct classification and misclassifi-
cation were strengthened and the lower computational cost improved object detection.
This solved the problem of poor object detection for small and distant objects and high
extraction rates in incorrect candidate regions.

(2) Shared global information with features of each pixel:

We imported global features, all feature maps could share the global information of
other feature maps. Hence, we strengthened crucial features and suppress noise.

In the following, we introduced improvements for object detection in more detail.
The proposed approach combined the concept of a two-stage detector into a one-stage
network. We first extracted the object–agnostic region from the ARM and then used the
ODM to classify the multi-scale object within the selected region. Finally, we added the
TCBs to connect the feature maps to share information between low- and high-level layers.
Figure 2 shows a flowchart of the improved TCB used for the modified RefineDet. We first
up-sampled Layer (L) to match the dimensions between Layer (L) and Layer (L-1). Then,
we replaced element-wise addition with element-wise multiplication. Third, transferred
features were obtained by multiplying up-sampled Layer (L) and Layer (L-1) in the element-
wise way. After that, we concatenated Layer (L-1) to the obtained transferred features.
Finally, we applied the PReLU activation function before the convolutional layer.

Moreover, we used the SENet [30] to enable the received global information in the
feature maps to be shared with each cell. All feature maps shared the global information of
other feature maps, strengthening crucial context features and suppressing noise. Figure 3
illustrates the TCB model with incorporated squeeze-and-excitation flow. For a convolu-
tional layer, SE-Block proposes to share the global features by using global pooling. Then,
SE-Block uses a fully connected (FC) layer, the Sigmoid function, and the ReLU function to
limit model complexity. The final output of the SE-Block is obtained by scaling.
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3.2. Depth Estimation

For depth estimation, the proposed approach was based on Monodepth [12] and
used stereo vision to predict the disparity maps [31,32]. The original Monodepth was
designed for disparity estimation from monocular images but not binocular images. Hence,
we modified the network structure for binocular images, as depicted in Figure 4. The
improvements made to the depth estimation network architecture are as follows:

(1) Input layer: We input left and right images;
(2) Shared convolutional layer: With shared weights, we used the same convolution

kernel to extract features of left and right images;
(3) Correlation layer: We use mathematical inner product operations to match the com-

mon regions between left and right feature maps;
(4) Disparity map prediction: We predicted all the possible disparity values for all

matching points using a normal distribution method for six different scales; and
(5) Grayscale image reconstruction: We reconstructed the left and right images on the

basis of the predicted disparity maps and the internal camera parameters for the
six scales.
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Moreover, we proposed a learning method to perform single-image depth estimation
with a deep neural network despite the lack of ground-truth depth information. Compared
with other approaches, the accuracy of the output disparities was lower for the single-image
input. We therefore introduced a training loss to improve the robustness and consistency
of the generated left and right images. We defined an image reconstruction loss function
Ltotal with the epipolar constraint for the disparity map generation as follows:

Ltotal = αap

(
Ll

ap + Lr
ap

)
+ αds

(
Ll

ds + Lr
ds

)
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(
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i,j

)
‖, (2)

Ll
ds =

1
N ∑

i,j

∣∣∣∣∣δxdl
i,j

∣∣∣∣∣e−‖δx Il
i,j‖ +

1
N ∑

i,j

∣∣∣∣∣δydl
i,j

∣∣∣∣∣e−‖δy Il
i,j‖, (3)

Ll
lr =

1
N ∑

i,j

∣∣∣∣∣dl
i,j − dr

i,j+dl
i,j

∣∣∣∣∣. (4)

In Equation (1), Ltotal consists of Ll
ap, Lr

ap, Ll
ds, Lr

ds, and Ll
lr,L

r
lr with weights αap, αds,

and αlr. In (2), Ll
ap indicates the structural similarity (SSIM) index consistency between

the two left images (the original ground-truth image and the generated image); N is the
number of pixels; and Il

i,j, Îl
i,j, and SSIM (·) represent the real image, generated image, and

SSIM, respectively. In (3), Ll
ds indicates the smoothness of the generated image for the

surrounding pixels, where δx, δy, di,j, and Ii,j represent the Gaussian standard deviation on
the x-axis direction, the Gaussian standard deviation on the y-axis direction, the depth of
the pixel, and the original image, respectively. In (4), Ll

lr indicates the consistency between
the two predicted disparity maps, where dl

i,j and dr
i,j+dl

i,j
are the left and right disparity

values, respectively. Also, Lr
ap, Lr

ds, and Lr
lr can be defined similarly;

Another component of our approach was the input of the image pair to the low-level
layers of the convolutional network to determine common features between the left and
right images. The features are then sent to DispNetC [19] for correlation prediction. In the
network training stage, DispNetC extracts the inner product of the conjugate epipolar lines
for feature matching. The correlation of two feature maps centered at xl in the left feature
map and xr in the right feature map is defined by

c(xl , xr) = ∑
o∈[−k,k]×[−k,k]

< fl(xl + o), fr(xr + o) >, (5)

where fl and fr are the left and right feature maps, respectively; k is a constant.
All possible disparities Di,j in the image are predicted by the normal distribution

∑
d

Dd
i,j = 1, 0 < d < 1, (6)

where d is the probability of the matching point corresponding to each disparity value and

D =
f ·B
Z

, (7)

where f, B, and Z are the focal length, stereo baseline, and depth, respectively. The disparity
map is then converted to a gray-level image by

Îr
i,j = ∑

d
Id
i,jD

d
i,j, (8)
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and
Ir
i,j = Il

i,j+D. (9)

Finally, the L1 norm is used and the loss function for network prediction is calculated
by

L1 =‖ Îr − Ir ‖ . (10)

4. Implementation and Results

This section reported the implementation and results of the proposed approach for
object detection and depth estimation.

4.1. Implementation

Unlike the conventional approaches, this proposed approach did not require the
parameters to be adjusted for different environments. Considering the computational
constraint on mobile systems for vehicular applications, we used the same hardware
platform (NVIDIA GTX 1080) to evaluate the performance of different algorithms. The
stereo camera system used for data acquisition cost much less than light detection and
ranging (LiDAR) or other time of flight (ToF) sensors. We performed quantitative analysis
on several datasets and compared the proposed approach with previous methods. Datasets
used for evaluation included PASCAL VOC [18], KITTI [23], BDD100K [33] and our own
database. The software environment contained Ubuntu-16.04, Python 3.5, a Machine
Learning API PyTorch graphics processing unit 0.40 [34], and a Tensorflow graphics
processing unit 1.40 v. It was not easy to determine the parameters appropriately. In the
experiments, these were set heuristically for the best performance. The training parameters
were as follows: the learning rate, iteration, and batch size for the detection network were
0.01, 120,000, and 16, respectively; those for the depth estimation network were 0.01, 50,
and 8, respectively.

4.2. Evaluation on Object Detection

For the detection network, the improved TCB structure over RefineDet increased the
accuracy but not the network complexity as the processing frame rate was maintained at a
stable value. Small object detection was also improved for faraway vehicles. As shown in
Figure 5, the detection range was increased approximately from 25 to 50 m and the frame
rates of the two methods were maintained in real time.

The comparison of the various detection algorithms tested on the PASCAL VOC
dataset is shown in Table 1. Our approach provided the best mAP compared with that
of RefineDet [17], SSD [10], YOLOv2 [11], Faster R-CNN [7], and R-FCN [8]. Moreover, it
maintained a rate of 25 frames per second (FPS). Hence, we detected objects in real time.
For the KITTI dataset, we simplified the number of classes from 16 to 3 (car, person, and
bicycle) for the evaluation and sped up the frame rate to 50 FPS on the NVIDIA GTX 1080
platform, as shown in Figure 6. Comparative test results for RefineDet are presented in
Figure 7, where the mAP of the proposed approach was better than that of RefineDet.
In addition, our approach detected the person class more effectively. For the BDD100K
dataset, seven classes were used for evaluation. This dataset contained more challenging
scenes, such as those in low illumination or containing occlusions. The object detection
evaluation is illustrated in Figure 8. The results showed that the mAP of the proposed
approach was larger than that of RefineDet. Moreover, our approach performed better
than RefineDet for detecting objects. Although the accuracy was lower compared with
the KITTI dataset results, our approach exhibited the desired improvements. Finally, we
collected our own dataset from Taiwan road scenes for evaluation. The image sequences
were captured from a car recorder at 30 FPS with a resolution of 1280 × 720. The object
detection evaluation in our dataset is illustrated in Figure 9. From the results, the mAP of
the proposed approach was much better than that of RefineDet. In addition, our approach
outperformed RefineDet for detection in each class.
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Table 1. Comparison of detection algorithms tested on the PASCAL VOC dataset.

Approach Zhang et al.
[17] Liu et al. [10] Redmon et al.

[11] Ren et al. [7] Dai et al. [8] Our Approach

Backbone VGG-16 VGG-16 VGG-16 ResNet-50 ResNet-50 VGG-16
Training Data PASCAL VOC PASCAL VOC PASCAL VOC PASCAL VOC PASCAL VOC PASCAL VOC

Input Size 320 × 320 300 × 300 416 × 416 320 × 320 320 × 320 320 × 320
Boxes 6375 6200 Unknown Unknown Unknown 6500
FPS 25 35 67 2.4 5.9 25

mAP 79.49 75.3 76.8 73.8 77.6 79.75
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4.3. Evaluation of Depth Estimation

The depth estimation network was trained with unsupervised learning and had a
lower computational cost, which for the proposed fully convolutional neural network
depended on the size of the input images. Using low-resolution images as inputs, we
reduced the cost with rough depth estimation. Using PyD-Net [32] as a reference for the
depth estimation network, we designed a light fully convolutional neural network with
only six FPN layers for the image reconstruction loss, which reduced the complexity of
Monodepth as well as the computational cost.

The evaluation of the depth estimation network was performed with the KITTI dataset.
A stereo image pair and the estimated disparity map are shown in Figure 10, which shows
that the proposed approach can accurately estimate a dense depth map. Figure 11 shows
several results of the depth map prediction with the input image (upper left), ground-truth
disparity map (upper right), estimated disparity map (bottom left), and disparity difference
between the ground-truth and prediction (bottom right). For traffic scene 1, there was
an approaching vehicle and some objects. The depths of the vehicle and the objects were
greatly estimated. For traffic scene 2, there were faraway small vehicles and some objects
in the scene. The proposed approach estimated the depths well for the faraway small
vehicles and the objects. For traffic scene 3, there was a vehicle for roadside parking and
some objects in the scene, and the depths of the vehicle and the objects were reasonably
estimated. These results showed that the proposed approach produces visually reasonable
depth maps.
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Moreover, we adopted common evaluation metrics. Let P be the number of pixels.
The notations di and d̂i are the ground-truth disparity value and estimated disparity value,
respectively. Each metric was defined in the followings. The root mean square error RMS
was defined by

RMS =

√√√√ 1
P

P

∑
i=1

(
d̂i − di

)2
. (11)

The absolute relative difference Abs-rel was defined by

Abs− rel =
1
P

P

∑
i=1

∣∣∣∣∣∣d̂i − di

∣∣∣∣∣∣
di

. (12)
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The square relative difference Sq-rel was defined by

Sq− rel =
1
P

P

∑
i=1

‖ d̂i − di ‖2

di
. (13)

The root mean square logarithmic error Log-rms was defined by

Log− rms =

√√√√ 1
P

P

∑
i=1

(
Logd̂i − Logdi

)2
. (14)

The depth error ratio of one pixel Er was defined by

Er = max

(
di

d̂i
,

d̂i
di

)
< t , where t ε

[
1.25, 1.252, 1.253

]
. (15)

Finally, the evaluation metric D1-all was defined as the percentage of misclassified
pixels (error > 3 pixels) in the whole image.

The comparison of different algorithms is shown in Table 2, where the proposed
approach outperformed all previous methods on Log-rms and D1-all metrics. Our approach
had similar accuracy as the methods of Lai et al. (stereo only) [35] and Godard et al. [12] +
Stereo and was better than the other methods on Abs-rel, Sq-rel, and RMS metrics; however,
it was less accurate on Er < 1.25 and Er < 1.253 metrics. To summarize, the results indicated
that the proposed approach had the same levels of error as the previous methods, and
compared with the previous networks demonstrated its feasibility.

Table 2. Comparison of algorithms with various evaluation metrics.

Approach Abs-rel Sq-rel RMS Log-rms D1-all Er < 1.25 Er < 1.253

Godard et al. [12] 0.124 1.40 6.137 0.217 30.350 0.841 0.975
Pilzer et al. [24] (half-cycle stereo) 0.228 4.277 7.646 0.318 Null 0.748 0.945
Pilzer et al. [24] (full-cycle+D+SE) 0.190 2.556 6.927 0.353 Null 0.751 0.951

Lai et al. (stereo only) [35] 0.078 0.811 4.700 Null Null 0.983 Null
Poggi et al. [32] 0.153 1.363 6.030 0.252 Null 0.789 0.630

Godard et al. [12] + Stereo (no correlation) 0.083 0.944 4.765 0.163 13.087 0.927 0.986
The Proposed Approach 0.08 0.925 4.846 0.160 12.480 0.929 0.987

To accelerate the image processing, the resolution of each image was reduced to 512 ×
256 pixels. Figure 12 shows the real-time processing results of two stereo image pairs. For
each scene, the upper two images were stereo images. The disparity maps derived using
our approach (bottom left) showed clear improvements compared with the disparity maps
obtained from the original lightweight network (bottom right).
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5. Conclusions

We presented an object detection and depth estimation approach based on deep
learning techniques. Object detection was improved through the incorporation of the
TCBs with the CNN as small objects were detected in real-time. Moreover, we applied
binocular vision to the monocular-based disparity estimation network. The comparison
with previous networks demonstrated the feasibility of the proposed approach. In future
studies, object detection and depth estimation networks can be integrated into the feature
extraction process within a convolutional network to reduce network and computational
resources. Additionally, transfer learning will be used to enable the networks to train in
object detection and depth estimation independently.
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