Underwater In Situ Dissolved Gas Detection Based on Multi-Reflection Raman Spectroscopy
Abstract
:1. Introduction
2. System Configurations
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pilson, M.E. An Introduction to the Chemistry of the Sea, 2nd ed.; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar] [CrossRef]
- Dunk, R.M.; Peltzer, E.T.; Walz, P.M.; Brewer, P.G. Seeing a deep ocean CO2 enrichment experiment in a new light: Laser Raman detection of dissolved CO2 in seawater. Environ. Sci. Technol. 2005, 39, 9630–9636. [Google Scholar] [CrossRef]
- Bollmann, M.; Bosch, T.; Colijn, F.; Ebinghaus, R.; Froese, R.; Guessow, K.; Khalilian, S.; Krastel, S.; Koertzinger, A.; Lagenbuch, M.; et al. World Ocean. Review 2010: Living with the Oceans; Gelpke, N., Visbeck, M., Eds.; Maribus gGmbH: Hamburg, Germany, 2010; p. 234. [Google Scholar]
- Moore, T.S.; Mullaugh, K.M.; Holyoke, R.R.; Madison, A.S.; Luther, G.W. Marine chemical technology and sensors for marine waters: Potentials and limits. Annu. Rev. Mar. Sci. 2009, 1, 91–115. [Google Scholar] [CrossRef]
- Kang, D.; Seyfried, W.E. In situ measurement of pH and dissolved H2 in mid-ocean ridge hydrothermal fluids at elevated temperatures and pressures. Chem. Rev. 2007, 107, 601–622. [Google Scholar] [CrossRef]
- Hsu, L.; Selvaganapathy, P.R.; Brash, J.; Fang, Q.; Xu, C.Q.; Deen, M.J.; Chen, H. Development of a low-cost hemin-based dissolved oxygen sensor with anti-biofouling coating for water monitoring. IEEE Sens. J. 2014, 14, 3400–3407. [Google Scholar] [CrossRef]
- Mahoney, E.J.; Hsu, H.; Du, F.; Xiong, B.; Selvaganapathy, P.R.; Fang, Q. Optofluidic dissolved oxygen sensing with sensitivity enhancement through multiple reflections. IEEE Sens. J. 2019, 19, 10452–10460. [Google Scholar] [CrossRef]
- Quaranta, M.; Borisov, S.; Klimant, I. Indicators for optical oxygen sensors. Bioanal. Rev. 2012, 4, 115–157. [Google Scholar] [CrossRef] [Green Version]
- Chu, C.S.; Yu-Lung, L.O.; Sung, T.W. Review on recent developments of fluorescent oxygen and carbon dioxide optical fiber sensors. Photonic Sens. 2011, 1, 234–250. [Google Scholar] [CrossRef] [Green Version]
- Fietzek, P.; Kramer, S.; Esser, D. Deployments of the HydroC™ (CO2/CH4) on stationary and mobile platforms—Merging trends in the field of platform and sensor development. In Proceedings of the Oceans’11 MTS/IEEE KONA, Waikoloa, HI, USA, 19–22 September 2011. [Google Scholar] [CrossRef]
- Fiedler, B.; Fietzek, P.; Vieira, N.; Silva, P.; Krtzinger, A. In situ CO2 and O2 measurements on a profiling float. J. Atmos. Ocean. Technol. 2013, 30, 112–126. [Google Scholar] [CrossRef]
- Hu, Q.; Zhang, X.; Wang, B.; Wang, C.B.; Luan, Z.D.; Chen, C.G.; Yan, J. In situ detection of CO2 /CH4 dissolved in vent-associated seawater at the CLAM and Iheya North hydrothermal vents area, Okinawa Trough. In Proceedings of the Oceans 2015—Genova, Genova, Italy, 18–21 May 2015. [Google Scholar] [CrossRef]
- Totland, C.; Eek, E.; Blomberg, A.E.A.; Waarum, I.K.; Walta, A. The correlation between pO2 and pCO2 as a chemical marker for detection of offshore CO2 leakage. Int. J. Greenh. Gas. Control 2020, 99, 103085. [Google Scholar] [CrossRef]
- Park, H.; Chung, S. pCO2 Dynamics of stratified reservoir in temperate zone and CO2 pulse emissions during turnover events. Water 2018, 10, 1347. [Google Scholar] [CrossRef] [Green Version]
- Kang, D.; William, E.S., Jr.; Tivey, M.K.; Bradley, A.M. In situ measurement of dissolved H2 and H2S in high-temperature hydrothermal vent fluids at the Main Endeavour Field, Juan de Fuca Ridge. Earth Planet. Sci. Lett. 2001, 186, 417–425. [Google Scholar] [CrossRef]
- Bjornsson, L.; Murto, M.; Jantsch, T.G. Evaluation of new methods for the monitoring of alkalinity, dissolved hydrogen and the microbial community in anaerobic digestion. Water Res. 2001, 35, 2833–2840. [Google Scholar] [CrossRef]
- Zhang, R.H.; Hu, S.M.; Zhang, X.T.; Wang, Y. Hydrogen sensor based on Au and YSZ/HgO/Hg electrode for in situ measurement of dissolved H2 in high-temperature and -pressure fluids. Anal. Chem. 2008, 80, 8807–8813. [Google Scholar] [CrossRef]
- Chua, E.J.; William, S.; Timothy, S.R.; Cardenas-Valencia, A.M.; Fulweiler, R.W. A review of the emerging field of underwater mass spectrometry. Front. Mar. Sci. 2016, 3, 209. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Zheng, C.; Zhang, T.; Li, Y.; Tittel, F.K. Midinfrared Sensor system based on tunable laser absorption spectroscopy for dissolved carbon dioxide analysis in the South China Sea: System-level integration and deployment. Anal. Chem. 2020, 92, 8178–8185. [Google Scholar] [CrossRef]
- Zhang, X.; Hester, K.C.; Ussler, W.; Walz, P.M.; Peltzer, E.T.; Brewer, P.G. In situ Raman-based measurements of high dissolved methane concentrations in hydrate-rich ocean sediments. Geophys. Res. Lett. 2011, 38, L08065. [Google Scholar] [CrossRef]
- Zhang, X.; Li, L.F.; Du, Z.F.; Hao, X.L.; Sun, W.D. Discovery of supercritical carbon dioxide in a hydrothermal system. Sci. Bull. 2020, 65, 958–964. [Google Scholar] [CrossRef]
- Li, L.; Zhang, X.; Luan, Z.; Du, Z.; Yan, J. In situ Raman quantitative detection of methane concentrations in deep-sea high-temperature hydrothermal vent fluids. J. Raman Spectrosc. 2020, 51, 2328–2337. [Google Scholar] [CrossRef]
- Li, L.; Xin, Z.; Luan, Z.; Du, Z.; Xi, S.; Wang, B.; Lei, C.; Lian, C.; Yan, J. In situ quantitative raman detection of dissolved carbon dioxide and sulfate in deep-sea high-temperature hydrothermal vent fluids. Geochem. Geophys. Geosyst. 2018, 19, 1809–1823. [Google Scholar] [CrossRef]
- Mccall, S.L.; Platzman, P.M.; Wolff, P.A. Surface-enhanced Raman scattering. Phys. Lett. A 1980, 77, 381–383. [Google Scholar] [CrossRef]
- Smith, E.; Dent, G. Modern Raman Spectroscopy: A Practical Approach, 2nd ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2005. [Google Scholar] [CrossRef]
- Herriott, D.; Kogelnik, H.; Kompfner, R. Off-axis paths in spherical mirror interferometers. Appl. Opt. 1964, 3, 523–526. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Guo, J.J.; Ye, W.Q.; Li, N.; Zhang, Z.H.; Zheng, R.E. Study on TDLAS system with a miniature multi-pass cavity for CO2 measurements. Spectrosc. Spectr. Anal. 2018, 38, 697–701. [Google Scholar] [CrossRef]
- Sturtevant, A.H. Focused multiple-pass cell for Raman scattering: Comment. Appl. Opt. 1974, 13, 1739. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Y.; Xia, Y.X.; Huang, J.M.; Zhan, L. A Raman system for multi-gas-species analysis in power transformer. Appl. Phys. B 2008, 93, 665. [Google Scholar] [CrossRef]
- Li, X.; Xia, Y.; Zhan, L.; Huang, J. Near-confocal cavity-enhanced Raman spectroscopy for multitrace-gas detection. Opt. Lett. 2008, 33, 2143–2145. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D.J.; Glugla, M.; Penzhorn, R.D. Enhanced Raman sensitivity using an actively stabilized external resonator. Rev. Sci. Instrum. 2001, 72, 1970–1976. [Google Scholar] [CrossRef]
- Kc, U.; Silver, J.A.; Hovde, D.C.; Varghese, P.L. Improved multiple-pass Raman spectrometer. Appl. Opt. 2011, 50, 4805–4816. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.Y.; Chen, W.G.; Wan, F.; Wang, J.X.; Hu, J. Cavity-enhanced Raman spectroscopy with optical feedback frequency-locking for gas sensing. Opt. Express 2019, 27, 33311–33324. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.S.; Yang, D.W.; Guo, J.J.; Yan, A.S.; Zheng, R.E. Raman spectroscopy for gas detection using a folded near-concentric cavity. Spectrosc. Spect. Anal. 2020, 40, 3390–3393. [Google Scholar] [CrossRef]
- Guo, J.; Luo, Z.; Liu, Q.; Yang, D.; Dong, H.; Huang, S.; Kong, A.; Wu, L. High-sensitivity Raman gas probe for in situ multi-component gas detection. Sensors 2021, 21, 3539. [Google Scholar] [CrossRef]
- Yang, D.; Guo, J.; Liu, Q.; Luo, Z.; Zheng, R. Highly sensitive Raman system for dissolved gas analysis in water. Appl. Opt. 2016, 55, 7744. [Google Scholar] [CrossRef] [PubMed]
- Wiesler, F. Membrane contactors: An introduction to the technology. Ultrapure Water 1996, 27–31. [Google Scholar]
Module | Apparatus | Specifications |
---|---|---|
Mechanics | vessel | 6061 aluminum alloy, anodized surface L 380 × D 133 mm (degassing vessel) L 790 × D 256 mm (detecting vessel) 60 kg/weight in air 2 MPa/pressure-proof |
Gas–liquid separation | degasser | 0.54 m2/membrane surface area 2.5 L/min/maximum liquid flow rate |
dryer | anhydrous calcium chloride and cobalt chloride | |
gas sample chamber | stainless steel 15 × 16 × 20 mm/dimensions 1 mL/inner volume | |
Optics | laser | 532 nm, Nd:YAG 300 mW/power |
near-concentric cavity | 25.4 mm/diameter of the spherical mirrors 25 mm/focal length of the spherical mirrors | |
detector | 2000 × 256/active pixels 15 × 15 μm/pixel size −70 °C/cooling temperature | |
spectrograph | −600–4900 cm−1/spectral range 8 cm−1/spectral resolution | |
Electronics | power supply | 220VAC from the shored-based system |
microcomputer | PC 104/Advantech | |
communication | Ethernet Remote desktop connection |
Sample | C(CO2)/ppm | C(O2)/ppm | C(H2)/ppm | C(N2) |
---|---|---|---|---|
1 | 50.5 | 50.8 | 50 | other |
2 | 99.6 | 101 | 101 | other |
3 | 312 | 302 | 307 | other |
4 | 503 | 517 | 512 | other |
5 | 1025.2 | 1025.4 | 498.2 | other |
Flow Rate (mL/min) | Equilibrium Time (s) |
---|---|
125 | 579 |
225 | 494 |
380 | 332 |
440 | 317 |
550 | 253 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Liu, Q.; Yang, D.; Guo, J.; Si, G.; Wu, L.; Zheng, R. Underwater In Situ Dissolved Gas Detection Based on Multi-Reflection Raman Spectroscopy. Sensors 2021, 21, 4831. https://doi.org/10.3390/s21144831
Li M, Liu Q, Yang D, Guo J, Si G, Wu L, Zheng R. Underwater In Situ Dissolved Gas Detection Based on Multi-Reflection Raman Spectroscopy. Sensors. 2021; 21(14):4831. https://doi.org/10.3390/s21144831
Chicago/Turabian StyleLi, Meng, Qingsheng Liu, Dewang Yang, Jinjia Guo, Ganshang Si, Lulu Wu, and Ronger Zheng. 2021. "Underwater In Situ Dissolved Gas Detection Based on Multi-Reflection Raman Spectroscopy" Sensors 21, no. 14: 4831. https://doi.org/10.3390/s21144831
APA StyleLi, M., Liu, Q., Yang, D., Guo, J., Si, G., Wu, L., & Zheng, R. (2021). Underwater In Situ Dissolved Gas Detection Based on Multi-Reflection Raman Spectroscopy. Sensors, 21(14), 4831. https://doi.org/10.3390/s21144831