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Abstract: It has been proven that Logarithmic Image Processing (LIP) models provide a suitable
framework for visualizing and enhancing digital images acquired by various sources. The most
visible (although simplified) result of using such a model is that LIP allows the computation of
graylevel addition, subtraction and multiplication with scalars within a fixed graylevel range without
the use of clipping. It is claimed that a generalized LIP framework (i.e., a parameterized family of
LIP models) can be constructed on the basis of the fuzzy modelling of gray level addition as an
accumulation process described by the Hamacher conorm. All the existing LIP and LIP-like models
are obtained as particular cases of the proposed framework in the range corresponding to real-world
digital images.

Keywords: logarithmic image processing; image processing models; fuzzy image processing;
T-conorms

1. Introduction

Logarithmic Image Processing (LIP) models provide a suitable framework for visu-
alizing and enhancing digital images, acquired from various sources and obtained by
transmitted/reflected light through absorbing/reflecting media, where the effects are natu-
rally of a multiplicative form. Such an approach was pioneered by the work of Stockham [1],
who proposed an enhancement method based on the homomorphic theory introduced
by Oppenheim [2,3]. The key to this approach is a homomorphism which transforms the
product into a sum (by the use of the logarithm) and thus it allows the use of the classical
linear filtering in the presence of multiplicative components.

The underlying initial reason for the introduction of such models has been the necessity
to deal with multiplicative phenomena (as in the case of an X-ray image, where the image
values represent the transparency/opacity of the real objects). Later, it has been proven
that LIP models have a precise mathematical structure and, hence, are suitable for various
image processing applications, not necessarily of multiplicative nature. The most used
logarithmic representation, evolving from the multiplicative properties of the transmission
of light and of the human visual perception, was developed by Jourlin and Pinoli [4,5],
under a very well elaborated and rigorous mathematical form. The model has been later
extended to color images [6].

The practical importance of the LIP models also comes from another perspective.
As one may easily notice, the image functions that are currently used are bounded (taking
values in a bounded interval [0, D)). In the course of image processing, the mathematical
operations defined on real valued functions, implicitly using the algebra of the real numbers
(i.e., on the whole real axis), may produce results that do not belong anymore to the given
value interval [0, D)—the only values with physical meaning. Such an approach was
discussed for instance in [7] for X-ray image enhancement or in [8] for the creation of high
dynamic range images by bracketing. The most recent and comprehensive review of the
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use of the LIP in various image processing and computer vision applications is presented
in [9].

In this paper, we show that a generalized LIP framework (i.e., a parameterized family
of LIP models) can be constructed, based on the fuzzy modelling of graylevel addition as
an accumulation process described by fuzzy conorms. All the existing LIP and LIP-like
models are obtained as particular cases of the proposed framework, under the use of the
Hamacher conorm and within the [0, D) range corresponding to real-world digital images.
Thus, the paper presents the following claims: (i) a new, fuzzy logic based model for
the generation of a parametric set of logarithmic-type image processing models that (ii)
generalizes the main existing LIP models and (iii) can provide for some fundamental image
processing operations a marginally better performance than the classical LIP.

The remainder of the paper is organized as follows: Section 2 describes the existing
LIP models, Section 3 presents the background of the proposed fuzzy logic aggregational
approach to graylevel addition and the subsequent construction of the resulting image
processing model, which are proven to generalize the existing LIP models, and Section 4
suggests some applications of the proposed parametric LIP model family. The paper ends
with some conclusions and suggestions for further research.

2. Logarithmic Image Processing Models

In this section, the key points of the existing logarithmic image processing models—
the classical model introduced by Jourlin and Pinoli [5,10], and the model introduced by
Pătraşcu [11] will be briefly presented, together with the pseudo-LIP model introduced
in [12] and two parametric LIP models. This presentation will employ the original notation
of the operators, as proposed by their respective authors.

2.1. The Classical LIP Model

The classical LIP model, introduced in [5,10], starts by modelling the scalar intensity
image by a gray tone function, with values in the bounded domain [0, D). The basic
arithmetic operations (addition and subtraction) between two gray tone functions (i.e.,
images) and the multiplication of the gray tone function via a real-valued scalar are defined
in terms of classical operations on R as pixel-level operations. Thus, image addition,
subtraction and scalar multiplication are defined by operations on the pixel (scalar) values,
denoted generally as v.

The addition of gray tones (pixel values) v1 and v2, denoted by the operator ∆+ , is
defined as:

v1∆+ v2 = v1 + v2 −
v1v2

D
= D

(v1

D
+

v2

D
− v1

D
v2

D

)
(1)

The subtraction of (or difference between) gray tones (pixel values) v2 and v1, denoted
by the operator ∆− , is defined as:

v2∆− v1 = D
v2 − v1

D− v1
= D

v2
D −

v1
D

1− v1
D

. (2)

The multiplication of a gray tone (pixel value) v by a real scalar λ, denoted by the
operator ∆× , is defined as:

λ∆× v = D− D
(

1− v
D

)λ
= D

(
1−

(
1− v

D

)λ
)

. (3)

The key mathematical fundamental of implementing the LIP operations defined
above via classical, real-number operations, is the isomorphism between the vector space
of gray tone functions ((−∞, D),∆+ ,∆× ) and the vector space of real numbers (R,+, ·).
The isomorphism is realized through the function T : (−∞, D)→ R, defined as:

T(v) = D log
D

D− v
= −D log

(
1− v

D

)
. (4)
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The particular nature of this isomorphism induces the logarithmic character of the
mathematical model. In the following, we will consider only the [0, D) part of the functional
domain of transform T above, since this is the only one in which gray tones correspond to
real-world digital images (that is, images with bounded, positive values), similarly to the
observation in [13].

Recently, the logarithmic adaptive neighborhood image processing (LANIP) was
proposed [14]; this approach is based on the logarithmic image processing (LIP) and on
the general adaptive neighborhood image processing (GANIP) [15,16]. The logarithmic
part of the model involves the use of the LIP operations instead of the real-axis arithmetic
operations. The authors claim an impressive collection of applications arising from the
intensity and spatial properties of the human brightness perception that are mathemati-
cally modelled and implemented through the combination of logarithmic arithmetics and
adaptive selection of the spatial support of the operations.

Very recently, based on the fundamental model described by (4) an asymmetric version
was proposed in [17], by translating the isomorphic transformation T from Equation (4)
along the real axis.

2.2. The Homomorphic LIP Model

The logarithmic model introduced by Pătraşcu (presented for instance in [11]) does
work with bounded, symmetrical real sets: the gray-tone values of the involved images,
defined in [0, D), are linearly transformed into the standard set (−1, 1) by:

v =
2
D

(
u− D

2

)
(5)

where u ∈ [0, D) and v ∈ (−1, 1).
The (−1, 1) interval plays the central role in the proposed model: it is endowed with

the structure of a linear (moreover, Euclidean) space over the scalar field of real numbers,
R. In this space, the addition between two graylevels, v1 and v2 is defined as:

v1 ⊕ v2 =
v1 + v2

1 + v1v2
(6)

The multiplication of a graylevel v with a real scalar λ ∈ R is:

λ⊗ v =
(1 + v)λ − (1− v)λ

(1 + v)λ + (1− v)λ
. (7)

The difference between two graylevels v2 and v1 is given by:

v2 	 v1 =
v2 − v1

1− v1v2
. (8)

The vector space of graylevels ((−1, 1),⊕,⊗) is isomorphic to the space of real num-
bers (R,+, ·) by the function T : (−1, 1)→ R, defined as:

T(v) = log
(

1 + v
1− v

)
(9)

2.3. The Pseudo-LIP Model

Another LIP-like model was introduced in [12] under the name of pseudo-LIP model.
The graylevels that are processed are considered within the [0, 1) range, which is isomorphic
with R+ via a transform T : [0, 1)→ R defined as:

T(v) =
v

1− v
(10)
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The transform defined above in (10) is just resembling a logarithmic function (we
should note that the functions used for the definitions of the isomorphisms in the classical
LIP model (4) and in the homomorphic LIP model (9) are logarithmic functions), thus
justifying the pseudo-LIP name.

Under the proposed isomorphism, the addition of graylevels v1 and v2, denoted by
the operator ⊕ is defined as:

v1 ⊕ v2 =
v1 + v2 − 2v1v2

1− v1v2
, (11)

The subtraction of (or difference between) graylevels v2 and v1 (with v2 ≥ v1), denoted
by the operator 	 is defined as:

v2 	 v1 =
v2 − v1

1 + v1v2 − 2v1
. (12)

The multiplication of a graylevel v by a real scalar λ, denoted by the operator ⊗ is
defined as:

λ⊗ v =
λv

1 + (λ− 1)v
. (13)

2.4. The Multiparametric LIP

A first parametric LIP (PLIP) model was introduced in [18], by means of the functional
modification of the upper range of the values involved in the computations. As such,
instead of using the normalization to the upper range values, say D, the model proposed
in [18] uses a set of functions (γ and k) that depend on the upper range of graylevels, D,
as described in equations below.

v1⊕̃v2 = v1 + v2 −
v1v2

γ(D)
(14)

λ⊗̃v = γ(D)− γ(D)

(
1− v

γ(D)

)λ

. (15)

The difference between two graylevels v2 and v1 is given by:

v2	̃v1 = k(D)
v2 − v1

k(D)− v1
. (16)

The authors recommend that the γ and k functions used in (14) and (16) should
be affine functions whose values should be experimentally determined following the
optimization of the operations with respect to the given problem.

In order to set up a link between classical LIP and linear arithmetic operation, an ex-
tended parametric model, the PLIP model has been further proposed by Panetta et al. [19],
by using five parameters, µ, γ, λ, k and β, which allow for fine tuning of the classical LIP
model, giving users greater control over the result. This model can switch between linear
arithmetic operation and classical LIP with various parameters. The basic PLIP operations
are defined as follows:

v1⊕̃v2 = v1 + v2 −
v1v2

γ
(17)

and, respectively:

c⊗̃v = λ− λ
(

1− v
λ

)c
. (18)

The difference between two graylevels v2 and v1 is given by:

v2	̃v1 = k
v2 − v1

k− v1
. (19)
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It can be shown that the graylevel interval is isomorphic with R+ via the transform T
defined as:

T(v) = λ
(

ln
(

1− v
λ

))β
(20)

One may notice that the proposed multi-parametrization is cumbersome, not related
to any physical or theoretical setup and is intrinsically subject to unmentioned constraints.

2.5. The Gigavision-Camera LIP Model

More recently, Deng [20] proposed a generalization of the classical LIP model of
Jourlin and Pinoli as a result of the interpretation of the newly proposed Gigavision sensor
model [21]. At first glance, the paper suggests a bridge between two, apparently different
image models and proves that the classic LIP can be obtained under particular conditions
from the functions that describe the Gigavision sensor.

In the Gigavision camera, each pixel of the sensor consists of N identical subpixels,
each of them receiving the same amount of light, say λ/N. The output of the sensor, at each
pixel, is the number of subpixels that have received at least a fixed amount T of incoming
light, which is

v = Φ−1
T (λ) = N

(
1− Γ(T, λ/N)

Γ(T)

)
(21)

In the equation above, Γ(x) and Γ(x, y) are the complete and incomplete Gamma
functions. The bridge between the models comes from the consideration of the number of
graylevels (maximal graylevel range) from the LIP equal to the number of the subpixels
of the Gigavision sensor model (that is, D = N). The proposed generalization simply
accommodates the use of different number of subpixels for various pixels being processed,
under various Gigavision subpixel threshold values. Particularly, for T = 1, one obtains the
classical LIP isomorphism; for T > 1, the transforms defining the model are not analytical.

2.6. The Spherical Color Coordinates Model

Within the framework of a very specific application (image compositing), in [22],
Grundland et al. propose new operations for colors, such that the color space becomes
an ordered field. The original RGB color components and mapped into R by a new
isomorphism, that has a logarithmic nature and has a fuzzy logic background, being the
generator of the Frank T-conorm. The proposed isomorphism is:

T(v) = 1− logλ

(
1 +

λ− 1
λvλ/(λ−1)

)
. (22)

The original color components are scaled into the (−1, 1) interval; all the basic mathe-
matical operations (addition, subtraction, scalar multiplication) are defined by the proposed
isomorphism and applied for image blending, in conjunction with contrast enhancement,
saliency computation and multiscale processing. This application is further discussed in
Section 4.4.

3. Fuzzy Aggregation of Graylevels

All image processing algorithms must deal with the imprecision and vagueness that
naturally arise in the digital representation of visual information. Noise, quantization,
sampling errors, and the tolerance of the human visual system are some of the causes of
this imprecision. This strongly suggests that fuzzy models could be used for dealing with
the mentioned challenges, as proven by the important number of reported fuzzy image
processing applications. Image content fuzziness was thoroughly investigated over the
last two decades [23–25] and fuzzy image processing applications now range from image
enhancement to segmentation and recognition.

Another quality of fuzzy logic, less exploited in the literature, is its ability to model
accumulation of items (such as the image graylevels) within fixed bounds. The addition
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operation of the graylevels can be viewed as the accumulation of the contribution of each
individual pixel into a global contribution (the result of the addition). Thus, the addition
between the graylevels is modelled as a “stockpile” and described by a sum operation.
This is the classical, real-number algebra operation, that clearly may exceed the interval of
values with physical meaning. We propose here to view the above accumulation of pixel
values as a fuzzy interaction model that groups together the individual pixel contributions
(an idea that was previously used in the construction of fuzzy histograms in the context
of content-based image retrieval [26,27]). Such an accumulation process (or aggregation
of individual entities) is modelled at the most simple level in the fuzzy theory by a fuzzy
T-conorm [28].

3.1. Fuzzy T-Conorms

Formally, any fuzzy T-conorm, denoted by S, applied on the fuzzy values a and b, is
defined as the dual of its associated T-norm T [28], such that:

S(a, b) = 1− T(1− a, 1− b), ∀a, b ∈ [0, 1]. (23)

In a more theoretical manner, any T-norm can also be constructed by an additive
generator function f : [0, 1]→ R, a function that is decreasing and has the property that
f (1) = 0. The T-norm is defined ∀a, b ∈ [0, 1] as:

T(a, b) = f−1( f (a) + f (b)). (24)

It follows that the associated T-conorm S is given, ∀a, b ∈ [0, 1], by:

S(a, b) = 1− f−1( f (1− a) + f (1− b)). (25)

Over the time, several T-conorms have been proposed, such as the ones introduced by
Zadeh, Lukasiewicz, Hamacher, etc. [28]. In the continuation of this work, the use of the
Hamacher form, introduced in the late 1970s, will be the solely retained. The Hamacher T-
conorm [28] is obtained from the following parametric additive generator function f = fH,p,
with p ∈ R+:

fH,p(x) =

{
1−x

x , p = 0
log p+(1−p)x

x , p > 0
(26)

Obviously, one can easily compute the inverse of the Hamacher parametric additive
generator function from Equation (26) above, obtaining:

f−1
H,p(x) =

{
1

x+1 , p = 0
p

ex−(1−p) , p > 0 (27)

3.2. Hamacher T-Conorm Induced Parametric LIP

It can be considered that the original graylevels g from an image can be transformed
into fuzzy values by a typicality approach, normalizing all the values by the upper end
of the graylevel range, D, namely v = g/D. The fuzzy number v obtained following this
approach measures how close (or typical, or representative) is the given graylevel g with
respect to white (the brightest graylevel). This type of fuzzification of the graylevel is the
most similar with respect to the notion of “gray tone function”, introduced in the classical
LIP model. Any other fuzzification procedure may be applied on g, but discussing this
matter is beyond the scope of the current contribution.

As a result of the above fuzzification of the graylevels, the addition of any two
graylevels can be defined as the fuzzy Hamacher T-conorm of their fuzzified values, say v1
and v2. The expression holds for all v1, v2 ∈ [0, 1):

v1∆+ pv2 = S(v1, v2) = 1− f−1
H,p
(

fH,p(1− v1) + fH,p(1− v2)
)

(28)
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The operation in (28) is called the generalized addition. Similarly to the way of
obtaining the definition (3) in the classical LIP model, as explained in [10] (following the
generalization of an inductive approach), the scalar multiplication of a fuzzified graylevel
v ∈ [0, 1), ∀α ∈ R+ can be defined as:

α∆× pvs. = S(v, . . . , v︸ ︷︷ ︸
α times

) = 1− f−1
H,p

(
∑

α times
fH,p(1− v)

)
= 1− f−1

H,p
(
α fH,p(1− v)

)
. (29)

The replacement of the analytical expression of the Hamacher generator defined in (26)
in the equations above produces the analytical form of the generalized parametric graylevel
addition and scalar multiplication, ∀v1, v2 ∈ [0, 1), ∀α, p ∈ R+:

α∆+ pvs. =

{
1− (1−v1)(1−v2)

1−v1v2
, p = 0

1− (1−v1)(1−v2)
1−(1−p)v1v2

, p > 0
(30)

α∆× pvs. =


αv

1−v+αv , p = 0
1−
(

1−(1−p)v
1−v

)α

1−p−
(

1−(1−p)v
1−v

)α , p > 0
(31)

The detailed demonstrations for obtaining Equations (30) and (31) are presented
in Appendixes A and B, respectively. One can easily check that the basic properties
for addition (v1∆+ pv2 = v2∆+ pv1, v∆+ p0 = v, v∆+ p1 = 1) and multiplication (1∆× pvs. = v,
0∆× pvs. = 0) hold for the new operations defined in (30) and (31).

The graylevel subtraction v1∆− pv2 can be introduced in a similar manner, under the
constraint that v1 ≥ v2, by:

v1∆− pv2 =
v1 − v2

1 + (1− p)v1v2 + (p− 2)v2
(32)

If one relates the subtraction operation to the classical LIP model, where the subtraction
operation can issue both positive and negative results, it is obvious that the proposed FLIP
subtraction does not. This is related to a more complex question: what is the nature of
the graylevel difference? Is this difference a graylevel, or does it have another, different,
nature (such as the edge intensity)? Through this paper, the graylevel difference is seen as
another graylevel, and thus, is constrained to positive values (that is, we compute v1∆− pv2
only if v1 ≥ v2). If needed for applications that require negative values (such as Canny
edge extraction), one can redefine the subtraction for any pair of values as follows:

v1 	 v2 =

{
v1∆− pv2, i f v1 ≥ v2,
−(v2∆− pv1), i f v2 > v1,

(33)

The basic operations defined in Equations (30)–(32) are linked to the real axis by the
generator function (fundamental isomorphism) of the corresponding class of LIP models,
given by:

T(v) = fH,p(1− v) =

{
v

1−v , p = 0
log p+(1−p)(1−v)

1−v , p > 0
with p ∈ R+. (34)

This set of models, parametrized by p, is named Fuzzy Logarithmic Image Processing
model set and denoted by FLIP.

The generator function fH,p is a bijective function and since it is strictly monotonic, it
thus becomes more than an isomorphism; it becomes a homeomorphism. Still, in order to
keep the same expression as in the various references used for comparison, the function
in (34) will be denoted as an isomorphism. Indeed, the isomorphism in (34) is parametrized
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by the parameter p; specific choices for p are presented in Table 1 and graphically shown in
Figure 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2
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6

7

8

9

10

v

T
(v

)
p=100

p=10

p=5

p=2

p=1

p=0

Figure 1. Plot of the fundamental isomorphisms for some of the discussed LIP models particularized
from the proposed FLIP: pseudo-logarithmic model (continuous line with diamond marks, p = 0),
Jourlin and Pinoli’s classical model (4) (lower continuous line with square marks, p = 1), Pătraşcu’s
model (9) (continuous line, p = 2)), and new LIP models (dashed line, p = 5, dash-dotted line, p = 10
and upper dotted line, p = 100).

The proof for obtaining the classical LIP, the homomorphic LIP and the pseudo-
logarithmic model as particular cases of the proposed FLIP, with p parameters chosen
according to the values in Table 1 is straightforward. Still, it must be taken into account the
fact that for the proposed FLIP, the graylevel range is [0, 1], and thus the maximal allowed
graylevel becomes D = 1, value which must be taken into account when evaluating the
equivalence of (30) and (31) with the classical LIP addition (1) and multiplication (3).

Table 1. Particular cases of the proposed FLIP framework.

p Model Fundamental Isomorphism Domain for v

0 pseudo-LIP (10) T(v) = v
1−v [0, 1)

1 classical LIP (4) T(v) = log 1
1−v [0, 1)

2 homomorphic LIP (9) T(v) = log 1+v
1−v (−1, 1)

p > 2 new models T(v) = log 1−(1−p)v
1−v [0, 1)

One might notice that the result of the addition of any two graylevels increases with
respect to the order of the FLIP model, and the difference between the graylevels decreases
with respect to the order of the FLIP model.

4. Applications

Although the main contribution of this paper is theoretical, as it presents an unifying
framework to approach most LIP models under the proposed FLIP, on the practical side
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several application may be developed. A few obvious applications, such as dynamic range
enhancement, noise reduction and edge detection based on linear derivative filtering will
be briefly discussed in the following subsections.

4.1. Dynamic Range Enhancement

The problem of dynamic range enhancement was addressed (within the classical LIP
framework, i.e., FLIP with p = 1) in [5], proposing an optimal derivation (analytical proof)
of a single scalar multiplication constant of the entire image that maximizes the overall
dynamic range. The problem can be expressed as follows: for a given image f , find the real
scalar α, such that the dynamic range obtained by graylevel amplification (multiplication
by the α scalar) is maximized. As proposed in the framework of the classical LIP in [4], the
analytical solution for α was:

α0 =
ln
(

ln(1−max f )
ln(1−min f )

)
ln(1−min f )/(1−max f )

. (35)

For the implementation of the multiplication operation by the scalar α will be used
the generalized expression of FLIP scalar multiplication from (31); the problem can be now
formulated as to maximize, for the given image f , the dynamic range defined as:

DR(α, p, f ) = α∆× p max f − α∆× p min f . (36)

The FLIP form of the dynamic range is obtained by replacing in Equation (36) the ∆× p
operation with its analytical form from (31); one obtains (after minor algebraic simplifica-
tions, which are explained in Appendix C) that:

DR(α, p, f ) =
p

1− p− π(max f )
− p

1− p− π(min f )
. (37)

where

π(x) =
(

1− (1− p)x
1− x

)α

. (38)

Determining the maximum achievable dynamic range for a given image f means to
optimize DR(α, p, f ) with respect to both α and p. Obviously, there is no analytic solution
for the required optimization, such that numerical optimization was used instead. Simple
tests show that one might expect, at least in some conditions, that the FLIP with p > 1
performs better than the classical LIP. We shall denote in the following by p0 the order of
the best FLIP model achieving maximal dynamic range for a given image f , that is:

p0 = arg max
p

DR(α, p, f ). (39)

Testing of the optimal solution for (37) was performed extensively, over the entire
range of possible image graylevels. Figure 2a,b show the most important results: p0, the or-
der of the FLIP model that is the best (Figure 2a) and the ratio DR(α, p0, f )/DR(α0, 1, f )
(Figure 2b). The ratio of the best FLIP dynamic range to the best classical LIP dynamic
range is mostly bigger than 1, showing that in 67% of the image cases, one can achieve a
bigger dynamic range using a FLIP with p > 1. The dynamic range increase ranges from
0.1% to 100%, with an average of 7.5%.

The images from Figure 3 show the result of such a dynamic range enhancement
applied on the luminance component of a typical poorly illuminated image, taken from the
Data for Computer Vision and Computational Colour Science set, described in [29].
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(a) (b)

Figure 2. (a) Order p0 of the FLIP model that achieves optimal dynamic range as a function of the minimal (horizontal axis)
and maximal (vertical axis) values within the image (data is obviously symmetric with respect to the diagonal). (b) Ratio
DR(α, p0, f )/DR(α0, 1, f ) of the optimal dynamic range of the FLIP model to the optimal dynamic range of the classical LIP
model as a function of the minimal (horizontal axis) and maximal (vertical axis) values within the image (data is obviously
symmetric with respect to the diagonal). The parameter and ratio values are color-coded.

(a)

(b) (c)

Figure 3. From top to bottom: (a) original underexposed image; (b) enhanced image (DR = 0.7) under the classical LIP
model (FLIP with p = 1); (c) enhanced image (DR = 0.71) under the proposed FLIP model (p = 5). The original image in
(a) is taken from the Data for Computer Vision and Computational Colour Science set, described in [29].
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4.2. Average-Based Noise Reduction
The simplest linear noise reduction method is the averaging operation, suited for

white, additive, Gaussian noise (WAGN). It is known that the linear averaging provides
the highest noise reduction from any linear filter with fixed weights. Replacing the linear
averaging with FLIP additions and multiplications can provide an extra performance with
respect to the classical LIP, using models with p > 2. A simple experiment was performed
by applying the arithmetic averaging, implemented with the FLIP models within a 3× 3
filtering window, sliding across various natural images corrupted by WAGN. The FLIP
averaging operation at pixel (i, j) within the chosen 3× 3 filtering window is described in
Equation (40) below:

Averagep(i, j) =
(

1
9∆× p f (i− 1, j− 1)

)
∆+ p

(
1
9∆× p f (i− 1, j)

)
∆+ p

(
1
9∆× p f (i− 1, j + 1)

)
∆+ p(

1
9∆× p f (i, j− 1)

)
∆+ p

(
1
9∆× p f (i, j)

)
∆+ p

(
1
9∆× p f (i, j + 1)

)
∆+ p(

1
9∆× p f (i + 1, j− 1)

)
∆+ p

(
1
9∆× p f (i + 1, j)

)
∆+ p

(
1
9∆× p f (i + 1, j + 1)

)
.

(40)

In the significant majority of cases (as Figure 4a shows for the selection of images
from the classical TID2013 image quality database [30]), the filtering performance (in terms
of SNR) was increased by using FLIP models with a high p value. Figure 4a depicts the
difference between the SNR obtained for the image filtered with FLIP-based averaging
with p > 1 and the SNR obtained for the image filtered with FLIP-based averaging with
p = 1 (that is, SNRp − SNRp=1). The improvements are marginal, but non-negligible.
Another quality estimation of the filtering result can be performed by using a non-reference
image quality measure. One such measure is BRISQUE (Blind/Referenceless Image Spatial
QUality Evaluator) [31], which computes a number within [0, 100] claimed to integrate
the naturalness losses of images due to various distortion types. As such, the smaller
the BRISQUE measure, the more naturally looking (and distortion-free) the image looks.
The BRISQUE measure computed for the averaged TID2013 database images shows that
an increased value of the parameter p can bring a very slight improvement in the natu-
ralness of the image, as the BRISQUE values for the images average filtered by FLIP with
p > 1 (BRISQUE = 32.45 on average for the entire database for p = 10) are consistently
smaller than the BRISQUE values for the images average filtered by the classical LIP
(BRISQUE = 32.71 on average for the entire database).

The same natural images from TID2013, degraded with WAGN, are filtered by averag-
ing at various resolutions. The results, as presented in Figure 4b, show that the performance
increase for the FLIP implementation with p > 1 appear mainly when there is a balance
between the size of the uniform areas and details within the images. Furthermore, this
test shows that the most promising FLIP models are obtained for p ≤ 10. This experiment
suggests that the averaging via FLIP can increase the noise reduction performance of the
classical LIP.

For the investigation of the relative noise reduction power of the FLIP models with
respect to the classical LIP (i.e., FLIP with p = 1) a simple experiment was established.
A fully uniform image was degraded by WAGN (with various dispersions) and the image
was filtered by the averaging filter implemented according to (40). In the filtered image, the
dispersion of the remaining noise was measured and the ratio between the noise dispersion
after filtering according to FLIP with p > 1 and the noise dispersion after filtering with
the classical LIP (p = 1) was measured. This noise reduction factor, in dependence to the
noise level and the order of the FLIP model is presented in Figure 5, showing that for a
significant range of models (i.e., p values and noise dispersions, the classical LIP model
(i.e., FLIP with p = 1) is outperformed by FLIP models with p > 1.
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Figure 4. (a) Plot of the SNR improvement (SNRp − SNRp=1) of the FLIP models with p > 1 with respect to the SNR
obtained by the classical LIP model (FLIP with p = 1) for various images affected by WAGN with a standard deviation
of 7. The SNR improvement is defined as the SNR obtained for p > 1 minus the SNR obtained for p = 1. (b) Plot of the
SNR improvement (SNRp − SNRp=1) of the FLIP models with p > 1 with respect to the SNR obtained by the classical LIP
model (FLIP with p = 1) for various resolutions of images affected by WAGN with a standard deviation of 7.
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Figure 5. (a) Plot of the noise reduction ratio of the FLIP models with p > 1 with respect to the classical LIP model (FLIP
with p = 1) for various WAGN dispersions. (b) Average BRISQUE value (smaller is better) of the average filtered images
from the TID2013 database for various WAGN dispersions, for images processed by the classical LIP model (p = 1) and
FLIP with p = 10.

4.3. Gradient-Based Edge Detection

One of the simplest edge-detection techniques is based on the measuring of the image
derivatives, as indication of pixel value variation along specific directions. The usual
implementations of such edge detectors are based on linearly implemented first- and
second-order derivatives. We will experiment the implementation of such operators under
the FLIP model, considering two common examples: the Sobel smoothed gradient as
a first-order, linear, classical, derivative edge intensity detector and the Laplacian as a
second-order linear, classical, derivative edge intensity detector. Both will be expressed by
FLIP operations and their performance will be investigated, following the two important
criteria established by Canny: noise rejection and edge localization. It will be shown how
the use of the proposed FLIP can increase the performance of a LIP-based derivative edge
extraction operator.
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The classical Sobel derivative filter is implemented under the FLIP framework as:

SobelH(i, j) =
(

f (i− 1, j− 1)∆+ p f (i + 1, j− 1)
)
∆+ p
(

f (i, j− 1)∆+ p f (i, j− 1)
)
∆− p(

f (i− 1, j + 1)∆+ p f (i + 1, j + 1)
)
∆+ p
(

f (i, j + 1)∆+ p f (i, j + 1)
)
.

(41)

SobelV(i, j) =
(

f (i− 1, j− 1)∆+ p f (i− 1, j + 1)
)
∆+ p
(

f (i− 1, j)∆+ p f (i− 1, j)
)
∆− p(

f (i + 1, j− 1)∆+ p f (i + 1, j + 1)
)
∆+ p
(

f (i + 1, j)∆+ p f (i + 1, j)
)
.

(42)

The LIP-based Laplacian operator was already investigated (for instance in [12]) as a
continuation of the work of Deng and Pinoli [32]. The Laplacian used in the experiments
is based on the N4 neighborhood and is implemented, for the graylevel image f , at pixel
location (i, j) in the classical, linear case as:

∆(i, j) = ( f (i, j)− f (i− 1, j)) + ( f (i, j)− f (i + 1, j))+

+ ( f (i, j)− f (i, j− 1)) + ( f (i, j)− f (i, j + 1)).
(43)

and in the FLIP case as:

∆(i, j) =
(

f (i, j)∆− p f (i− 1, j)
)
∆+ p
(

f (i, j)∆− p f (i + 1, j)
)
∆+ p

+
(

f (i, j)∆− p f (i, j− 1)
)
∆+ p
(

f (i, j)∆− p f (i, j + 1)
)
.

(44)

From the derivative values, an edge intensity map is computed as their absolute value
and the edge intensity map is adaptively thresholded by a value computed according to
the Otsu method.

The main issue of linear derivative filters is that any noise existing within the image is
amplified, in the sense that the variation of the noise is also measured by derivation, some-
times exceeding the intrinsic variations of the original image signal. A linear dependency
exists between the noise power within the image and the noise power remaining in the
linearly filtered image. We will show with simple experiments that the use of derivative
operators based on the newly introduced logarithmic image processing operations can lead
to a reduction of the noise power in the filtered image, as compared to the result obtained
via classical, real-numbers implementations, or classical LIP implementations of the same
derivatives. We will consider the case of a fully uniform image degraded by a white,
zero-mean, additive Gaussian noise (WAGN), which is filtered by a Laplacian operator
(which is a second-order derivative operator and thus is prone to high noise amplification)
implemented under the to paradigms: the classical linear model and the FLIP model.
The output noise standard deviation is used as measure of the noise power in both input
and filtered images. The plots presented in Figure 6 present the behavior of several FLIP
implementations of the Laplacian, for initial uniform images with different values, showing
the overall good behavior of the proposed FLIP implementation. The ideal behavior of a
noise-stable Laplacian is to have the noise standard deviation curve in Figure 6 as “low”
as possible and below the curve corresponding to the classical, linear Laplacian. Namely,
the typical behavior is that the Laplacian implemented via the FLIP models exhibits lower
output noise dispersion than the classical, linear Laplacian for WAGN with higher standard
deviation. In this high noise range, the best performance is achieved by the low-order
FLIP models, such as the classical LIP (p = 1). In the lower noise range, some of the FLIP
models perform worse than the classical, linear Laplacian; still, high-order FLIP models
(with p > 5) perform better than the classical Laplacian.
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Figure 6. Output WAGN standard deviation vs. input WAGN standard deviation for the classical Laplacian (dotted
line), Laplacian under the logarithmic-like model from [12] (p = 0) (continuous line with diamond marks), Laplacian
under the classical Jourlin-Pinoli logarithmic model [5] (p = 1) (continous line), Laplacian under the Pătraşcu logarithmic
model [11] (p = 2) (dash-dotted line), Laplacian under the proposed FLIP with p = 5 (continuous line with square marks)
and Laplacian under the proposed FLIP with p = 9 (continuous line with circle marks) for two constant images with gray
levels (a) 75 and (b) 150.

The edge localization property is based on the distance between the actual contour and
the detected contour, measure in the thresholded edge intensity map. The classical Pratt
figure of merit (FOM) is a commonly used tool for the characterization of edge localization.
The FOM is computed as:

FOM =
1

max(DE, IE)

DE

∑
i=1

1
1 + αdi

(45)

In the equation above, DE and IE are the detected and the ideal edge pixels and di is
the distance between any detected edge pixel and the closest ideal edge pixel. The FOM is
computed for test images composed by vertical/ horizontal edges that separate perfectly
uniform regions, affected by white, additive, Gaussian noise with various dispersions.

As Figures 7 shows, the FOM increases (and the Laplacian performs better) with the
increase in the FLIP model order (p), for all noise dispersions. Still, the classical, linear
Laplacian performance is matched and sometimes exceeded in the case of high-order FLIP
models. Figure 7b shows the false positive edge pixel ratio for the same test images; it can
be seen that while there is a general, natural increase in the false positive edge pixels ratio
induced by the increase in the noise standard deviation, the FLIP models with p > 1 can
perform better than the classical, linear Laplacian.

Finally, some typical visual edge extraction results are shown in Appendix D in
Figures A1 and A2; it can be observed that the order of the FLIP model can be seen as a
trimming factor for the selection of the most important edges from the picture and as a
means for rejecting false positive edges due to noise.



Sensors 2021, 21, 4857 15 of 21

5 10 15 20

0.2

0.4

0.6

0.8

1

Input noise standard deviation

F
O

M

linear

p = 1

p = 5

p = 10

5 10 15 20
0

10

20

30

40

Input noise standard deviation

F
P

 r
at

e 
[%

]

linear

p = 1

p = 5

p = 10

(a) (b)

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

input noise standard deviation

F
O

M

linear

p=1

p=5

p=10

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

input noise standard deviation

F
P

 r
a

te
 [

%
]

linear

p=1

p=5

p=10

(c) (d)

Figure 7. Pratt’s Figure of merit (a,c) and False Positives rates (b,d) with respect to the input noise dispersion for the
classical, linear model (dashed line), for the classical Jourlin–Pinoli logarithmic model [5] (p = 1) (continuous line), for the
proposed FLIP with p = 5 (continuous line with circular marks) and for the proposed FLIP with p = 10 (continuous line
with square marks) for a synthetic test image with gray levels difference across the edge of 100 for two standard derivative
models: Sobel gradient (a,b) and Laplacian (c,d).

4.4. Image Blending

Image blending and High Dynamic Range (HDR) image creation are prime applica-
tions in computer graphics; the linear operators, used by their own, have been shown to
fade colors and create false colors. There are approaches that, among other pre- and post-
processing steps, replace the linear operators with more suited ones. Such an example is,
for instance, the logarithmic HDR, proposed in [8], or the image blending via the spherical
color coordinates model, proposed in [22]. These two approaches use logarithmic-type
operators for the addition and scalar multiplication of gray or RGB color components.

In the following example, shown in Figure 8, we compare the simple blending of two
images, with equal weights, via linear and various LIP, LIP-like and FLIP models. Namely,
the images I1 and I2 are composed into image J, for each color channel independently, as:

J = (w1∆× I1)∆+ (w2∆× I2). (46)

Objective evaluation of the blending results can be performed only by the use of a
non-reference image quality measure. We will use BRISQUE [31] again for estimating
the naturalness of the various blending models. In Figure 8, each blended image was



Sensors 2021, 21, 4857 16 of 21

evaluated by BRISQUE (the score is included in the caption) and this evaluation shows
that using FLIP operations with p > 1 the resulting image looks more natural. Subjective
evaluation also shows that the use of the FLIP model with p > 1 produce better results
than the classical LIP and the results are comparable with the ones proposed in [22] (check
for instance the overall appearance of the soap bubble).

(a) (b)

(c) (d)

(e) (f)

Figure 8. Image blending with equal weights of the original color images in (a,b). The blending
is performed according to: (c) linear operations (BRISQUE = 23.60); (d) Grundland et al. without
contrasting, pyramid processing and saliency (BRISQUE = 26.13); (e) FLIP operations with p = 1
(classical LIP, BRISQUE = 30.84); (f) FLIP operations with p = 10 (BRISQUE = 23.72). One can notice
that for pixel-based blending, the FLIP models with p = 10 offer the best visual results.

5. Conclusions

This paper presented a new parametric class of logarithmic models for image process-
ing (LIP), which allows the computation of graylevel addition, subtraction and multiplica-
tion with scalars within a fixed graylevel range [0, D) without the use of clipping. This class
of models was named FLIP—Fuzzy Logarithmic Image Processing models. We may remind
that this work claimed the proposed FLIP as (i) a new, fuzzy logic-based model for the gen-
eration of a parametric set of logarithmic-type image processing models that (ii) generalize
the main existing LIP models and (iii) can provide for some particular cases a marginally
better performance than the classical LIP for various image processing operations.
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The derivation of the proposed model is based on the interpretation of graylevel
addition as a process of accumulation (or reunion), and thus its modelling by a fuzzy
T-conorm (the Hamacher family, in particular). The existing LIP models can be obtained as
particular cases of the proposed parametric family. It should be noted that the proposed
approach has more limited mathematical properties as compared with the classical LIP
models; the most obvious limitation being the fact that the graylevel difference may not
yield a negative result. The supplemental choice of a FLIP model (by choosing a particular
value of the parameter p) may improve the result of some algorithmic approaches (such as
the simple presented application of dynamic range enhancement).
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Appendix A. Derivation of the FLIP Addition

We defined the FLIP addition as the aggregation of the fuzzyfied gray tones v1 and v2
in Equation (28) as:

v1∆+ pv2 = S(v1, v2) = 1− f−1
H,p
(

fH,p(1− v1) + fH,p(1− v2)
)

(A1)

The equation is particularized by replacing the analytical expressions of the Hamacher
generator function fH,p and its inverse f−1

H,p, as defined in (26) and (27):

fH,p(x) =

{
1−x

x , p = 0
log p+(1−p)x

x , p > 0
(A2)

f−1
H,p(x) =

{
1

x+1 , p = 0
p

ex−(1−p) , p > 0 (A3)

We develop the algebraic computation in the case of p = 0 and p > 0, respectively.
First, for p = 0:

v1∆+ pv2 = S(v1, v2) = 1− f−1
H,p
(

fH,p(1− v1) + fH,p(1− v2)
)

= 1− f−1
H,p

(
1− (1− v1)

1− v1
+

1− (1− v2)

1− v2

)
= 1− 1

1 + 1−(1−v1)
1−v1

+ 1−(1−v2)
1−v2

= 1− 1
(1−v1)(1−v2)+v1+v2

(1−v1)(1−v2)

= 1− (1− v1)(1− v2)

1− v1v2
.

(A4)

In the case of p > 0, we have:
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v1∆+ pv2 = S(v1, v2) = 1− f−1
H,p
(

fH,p(1− v1) + fH,p(1− v2)
)

= 1− f−1
H,p

(
log

p + (1− p)(1− v1)

(1− v1)
+ log

p + (1− p)(1− v2)

(1− v2)

)
= 1− p

e
(

log p+(1−p)(1−v1)
(1−v1)

+log p+(1−p)(1−v2)
(1−v2)

)
− (1− p)

= 1− p

e
(

log p+(1−p)(1−v1)
(1−v1)

)
× e

(
log p+(1−p)(1−v2)

(1−v2)

)
− (1− p)

= 1− p
p+(1−p)(1−v1)

(1−v1)
+ p+(1−p)(1−v2)

(1−v2)
− (1− p)

= 1− p(1− v1)(1− v2)

p(1− v2) + (1− p)(1− v1)(1− v2) + p(1− v1)

= 1− (1− v1)(1− v2)

1− (1− p)v1v2
.

(A5)

Finally, we can write compactly that ∀v1, v2 ∈ [0, 1), ∀α, p ∈ R+ (which is Equation (30)):

α∆+ pvs. =

{
1− (1−v1)(1−v2)

1−v1v2
, p = 0

1− (1−v1)(1−v2)
1−(1−p)v1v2

, p > 0
(A6)

Appendix B. Derivation of the FLIP Scalar Multiplication

We defined the FLIP scalar multiplication as the repeated addition of a fuzzyfied gray
tone v by a real scalar α in Equation (29) as:

α∆× pvs. = S(v, . . . , v︸ ︷︷ ︸
α times

) = 1− f−1
H,p
(
∑α times fH,p(1− v)

)
= 1− f−1

H,p
(
α fH,p(1− v)

)
. (A7)

The equation is particularized by replacing the analytical expressions of the Hamacher
generator function fH,p and its inverse f−1

H,p, as defined in (26) and (27). We develop the
algebraic computation in the case of p = 0 and p > 0, respectively. First, for p = 0:

α∆× pvs. = 1− f−1
H,p
(
α fH,p(1− v)

)
= 1− f−1

H,p

(
α

1− (1− v)
(1− v)

)
= 1− f−1

H,p

(
α

v
(1− v)

)
= 1− 1(

α v
(1−v)

)
+ 1

= 1− 1− v
αvs. + 1− v

(A8)

In the case of p > 0, we have:

α∆× pvs. = 1− f−1
H,p
(
α fH,p(1− v)

)
= 1− f−1

H,p

(
α log

p + (1− p)(1− v)
(1− v)

)
= 1− p

e
(

α log p+(1−p)(1−v)
(1−v)

)
− (1− p)

= 1− p

α
p+(1−p)(1−v)

(1−v) − (1− p)
= 1− p(1− v)

α(p + (1− p)(1− v))− (1− p)(1− v)

=
1−

(
1−(1−p)v

1−v

)α

1− p−
(

1−(1−p)v
1−v

)α .

(A9)

Finally, we can write compactly that ∀vs. ∈ [0, 1), ∀α, p ∈ R+ (which is Equation (31):

α∆× pvs. =


αv

1−v+αv , p = 0
1−
(

1−(1−p)v
1−v

)α

1−p−
(

1−(1−p)v
1−v

)α , p > 0
(A10)
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Appendix C. Derivation of the Formula for the Dynamic Range

The dynamic range of an image f is the difference between its maximal and minimal
values. After a simple image stretching performed under the FLIP model, the resulting
dynamic range is given in Equation (36)

DR(α, p, f ) = α∆× p max f − α∆× p min f . (A11)

The FLIP scalar multiplication, for p > 0, as expressed in Equation (31), is:

α∆× pvs. =
1−
(

1−(1−p)v
1−v

)α

1−p−
(

1−(1−p)v
1−v

)α . (A12)

For simplicity, we can compactly denote in the equation above

π(v) =
(

1−(1−p)v
1−v

)α
. (A13)

Then, the scalar multiplication can be expressed as:

α∆× pvs. = 1−π(v)
1−p−π(v) . (A14)

The dynamic range can be simply rewritten, in order to obtain Equation (37):

DR(α, p, f ) = α∆× p max f − α∆× p min f

=
1− π(max f )

1− p− π(max f )
− 1− π(min f )

1− p− π(min f )

=
p

1− p− π(max f )
− p

1− p− π(min f )
.

(A15)

Appendix D. Typical Edge Extraction Results for Natural Images

(a) (b)

(c) (d)

Figure A1. FLIP Laplacian binary edge images of the classical Lena picture computed for various
FLIP models: (a) p = 1 (classical LIP); (b) p = 5; (c) p = 10; (d) p = 50. All the edge maps are
obtained by the Otsu thresholding of the Laplacian. One can notice that with the increase in p small
and un-contrasted contours disappear.
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(a) (b)

(c) (d)

Figure A2. FLIP Laplacian binary edge images of the classical Lena picture, degraded with WAGN
of standard deviation 7, computed for various FLIP models: (a) classical, linear Laplacian; (b) p = 1
(classical LIP); (c) p = 10; (d) p = 50. All the edge maps are obtained by the Otsu thresholding of the
Laplacian. One can notice that with the increase in p the false positive edge points produced by the
noise decrease (image (d)) is much cleaner than image (b)).

References
1. Stockham, T.G. Image processing in the context of visual models. Proc. IEEE 1972, 60, 828–842. [CrossRef]
2. Oppenheim, A.V. Generalized Supperposition. Inf. Control 1967, 11, 528–536. [CrossRef]
3. Oppenheim, A.V.; Shaffer, R.W.; Stockham, T.G., Jr. Nonlinear Filtering of Multiplied and Convolved Signals. IEEE Trans. Audio

Electroaccoustics 1968, 16 , 437–466. [CrossRef]
4. Jourlin, M.; Pinoli, J.C. Image dynamic range enhancement and stabilization in the context of the logarithmic image processing

model. Signal Process. 1995, 41, 225–237. [CrossRef]
5. Jourlin, M.; Pinoli, J.C. A model for logarithmic image processing. J. Microsc. 1998, 149, 21–35. [CrossRef]
6. Jourlin, M.; Breugnot, J.; Itthirad, F.; Bouabdellah, M.; Closs, B. Logarithmic image processing for color images. Adv. Imaging

Electron Phys. 2011, 168, 65–107.
7. Deng, G.; Cahill, L.W.; Tobin, G.R. The Study of Logarithmic Image Processing Model and Its Application to Image Enhancement.

IEEE Trans. Image Process. 1995, 4, 506–512. [CrossRef] [PubMed]
8. Florea, C.; Vertan, C.; Florea, L. Logarithmic Model-based Dynamic Range Enhancement of Hip Xray Images. In Lectures Notes in

Computer Science LNCS; Springer: Berlin/Heidelberg, Germany, 2007; pp. 587–596.
9. Jourlin, M. Logarithmic Image Processing: Theory and Applications. In Advances in Imaging and Electron Physics; Academic Press

(Elsevier): Amsterdam, The Netherlands, 2016; Volume 195.
10. Jourlin, M.; Pinoli, J.C. Logarithmic image processing. The mathematical and physical framework fro the representation and

processing of transmitted images. Adv. Imaging Electron Phys. 2001, 115, 129–196.
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