A Cost-Efficient Multiwavelength LED-Based System for Quantitative Photoacoustic Measurements
Abstract
:1. Introduction
2. Materials and Methods
2.1. LED-Based PA System Configuration
2.2. Phantom Sample Preparation
2.3. Spectral Unmixing Methods
2.4. LED Performance Evaluation and Phantom Samples Optical Characterization
3. Results
3.1. LED Operation Evaluation
3.2. Phantom Samples Optical Characterization
3.3. Repeatability of PA Measurements
3.4. Parametric Study of PA Response
3.5. PA Spectral Unmixing of Absorbers
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, L.V.; Wu, H.I. Biomedical Optics: Principles and Imaging; John Wiley and Sons: Hoboken, NJ, USA, 2012; pp. 283–293. [Google Scholar]
- Xu, M.; Wang, L.V. Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 2006, 77, 041101. [Google Scholar] [CrossRef] [Green Version]
- Beard, P. Biomedical photoacoustic imaging. Interface Focus 2011, 1, 602–631. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Yao, J.; Wang, L. Photoacoustic tomography: Principles and advances (Invited Review). Prog. Electromagn. Res. 2014, 147, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Ntziachristos, V. Going deeper than microscopy: The optical imaging frontier in biology. Nat. Methods 2010, 7, 603–614. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.V.; Hu, S. Photoacoustic Tomography: In Vivo Imaging from Organelles to Organs. Science 2012, 335, 1458–1462. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.; Wang, L.V. Photoacoustic microscopy. Laser Photon-Rev. 2013, 7, 758–778. [Google Scholar] [CrossRef] [PubMed]
- Tserevelakis, G.J.; Mavrakis, K.G.; Pantazopoulou, D.; Lagoudaki, E.; Detorakis, E.; Zacharakis, G. Hybrid autofluorescence and photoacoustic label-free microscopy for the investigation and identification of malignancies in ocular biopsies. Opt. Lett. 2020, 45, 5748–5751. [Google Scholar] [CrossRef] [PubMed]
- Tserevelakis, G.; Avtzi, S.; Tsilimbaris, M.K.; Zacharakis, G. Delineating the anatomy of the ciliary body using hybrid optical and photoacoustic imaging. J. Biomed. Opt. 2017, 22, 060501. [Google Scholar] [CrossRef] [Green Version]
- Tserevelakis, G.; Tsagkaraki, M.; Zacharakis, G. Hybrid photoacoustic and optical imaging of pigments in vegetative tissues. J. Microsc. 2016, 263, 300–306. [Google Scholar] [CrossRef]
- Olefir, I.; Mercep, E.; Burton, N.C.; Ovsepian, S.V.; Ntziachristos, V. Hybrid multispectral optoacoustic and ultrasound tomography for morphological and physiological brain imaging. J. Biomed. Opt. 2016, 21, 86005. [Google Scholar] [CrossRef]
- Cox, B.; Laufer, J.; Arridge, S.; Beard, P.C. Quantitative spectroscopic photoacoustic imaging: A review. J. Biomed. Opt. 2012, 17, 0612021–06120222. [Google Scholar] [CrossRef] [Green Version]
- Tzoumas, S.; Ntziachristos, V. Spectral unmixing techniques for optoacoustic imaging of tissue pathophysiology. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2017, 375, 20170262. [Google Scholar] [CrossRef] [PubMed]
- Hariri, A.; Fatima, A.; Mohammadian, N.; Mahmoodkalayeh, S.; Ansari, M.A.; Bely, N.; Avanaki, M.R.N. Development of low-cost photoacoustic imaging systems using very low-energy pulsed laser diodes. J. Biomed. Opt. 2017, 22, 75001. [Google Scholar] [CrossRef] [PubMed]
- Allen, T.J.; Beard, P.C. Pulsed near-infrared laser diode excitation system for biomedical photoacoustic imaging. Opt. Lett. 2006, 31, 3462–3464. [Google Scholar] [CrossRef] [Green Version]
- Canal, C.; Laugustin, A.; Kohl, A.; Rabot, O. Portable multiwavelength laser diode source for handheld photoacoustic devices. In Proceedings of the Biophotonics Photonic Solutions Better Health Care V, Brussels, Belgium, 4–7 April 2016. [Google Scholar]
- Stylogiannis, A.; Prade, L.; Buehler, A.; Aguirre, J.; Sergiadis, G.; Ntziachristos, V. Continuous wave laser diodes enable fast optoacoustic imaging. Photoacoustics 2018, 9, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Li, M.-L.; Wang, P.-H. Optical resolution photoacoustic microscopy using a Blu-ray DVD pickup head. In Proceedings of the Photons Plus Ultrasound: Imaging and Sensing, San Francisco, CA, USA, 3 March 2014. [Google Scholar]
- Wang, P.-H.; Li, M.-L. DVD pickup head based optical resolution photoacoustic microscopy. In Proceedings of the Photons Plus Ultrasound: Imaging and Sensing 2012, San Francisco, CA, USA, 23 February 2012. [Google Scholar]
- Kolkman, R.G.M.; Steenbergen, W.; van Leeuwen, T. In vivo photoacoustic imaging of blood vessels with a pulsed laser diode. Lasers Med. Sci. 2006, 21, 134–139. [Google Scholar] [CrossRef]
- Kellnberger, S.; Soliman, D.; Tserevelakis, G.J.; Seeger, M.; Yang, H.; Karlas, A.; Prade, L.; Omar, M.; Ntziachristos, V. Optoacoustic microscopy at multiple discrete frequencies. Light. Sci. Appl. 2018, 7, 109. [Google Scholar] [CrossRef]
- Allen, T.J.; Beard, P.C. Light emitting diodes as an excitation source for biomedical photoacoustics. In Proceedings of the Photons Plus Ultrasound: Imaging and Sensing, Prague, Czech Republic, 21–25 July 2013. [Google Scholar]
- Hansen, R.S. Using high-power light emitting diodes for photoacoustic imaging. SPIE Med. Imaging 2011, 7968, 79680. [Google Scholar] [CrossRef]
- Allen, T.J.; Beard, P.C. High power visible light emitting diodes as pulsed excitation sources for biomedical photoacoustics. Biomed. Opt. Express 2016, 7, 1260–1270. [Google Scholar] [CrossRef]
- Dai, X.; Yang, H.; Jiang, H. In vivo photoacoustic imaging of vasculature with a low-cost miniature light emitting diode excitation. Opt. Lett. 2017, 42, 1456–1459. [Google Scholar] [CrossRef]
- Agano, T.; Sato, N.; Nakatsuka, H.; Kitagawa, K.; Hanaoka, T.; Morisono, K.; Shigeta, Y. Development of environmentally friendly LED light source module for photoacoustic imaging system. In Proceedings of the Light-Emitting Diodes: Materials, Devices, and Applications for Solid State Lighting XIX, San Francisco, CA, USA, 27 April 2015. [Google Scholar]
- Agano, T.; Sato, N.; Nakatsuka, H.; Kitagawa, K.; Hanaoka, T.; Morisono, K.; Shigeta, Y. Comparative experiments of photoacoustic system using laser light source and LED array light source. In Proceedings of the Photons Plus Ultrasound: Imaging and Sensing, San Francisco, CA, USA, 22 April 2015. [Google Scholar]
- Halbritter, H.; Jäger, C.; Weber, R.; Schwind, M.; Mollmer, F. High-Speed LED Driver for ns-Pulse Switching of High-Current LEDs. IEEE Photon-Technol. Lett. 2014, 26, 1871–1873. [Google Scholar] [CrossRef]
- Zhong, H.; Duan, T.; Lan, H.; Zhou, M.; Gao, F. Review of Low-Cost Photoacoustic Sensing and Imaging Based on Laser Diode and Light-Emitting Diode. Sensors 2018, 18, 2264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.; Feng, T.; Cheng, Q.; Wang, X.; Du, S.; Sato, N.; Yuan, J.; Singh, M.K.A. Towards Clinical Translation of LED-Based Photoacoustic Imaging: A Review. Sensors 2020, 20, 2484. [Google Scholar] [CrossRef] [PubMed]
- Yao, Q.; Ding, Y.; Liu, G.; Zeng, L. Low-cost photoacoustic imaging systems based on laser diode and light-emitting diode excitation. J. Innov. Opt. Health Sci. 2017, 10, 1730003. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Xu, G.; Yuan, J.; Jo, J.; Gandikota, G.; Demirci, H.; Agano, T.; Sato, N.; Shigeta, Y.; Wang, X. Light Emitting Diodes based Photoacoustic Imaging and Potential Clinical Applications. Sci. Rep. 2018, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Bulsink, R.; Singh, M.K.A.; Xavierselvan, M.; Mallidi, S.; Steenbergen, W.; Francis, K.J. Oxygen Saturation Imaging Using LED-Based Photoacoustic System. Sensors 2021, 21, 283. [Google Scholar] [CrossRef]
- Hariri, A.; Lemaster, J.; Wang, J.; Jeevarathinam, A.S.; Chao, D.L.; Jokerst, J.V. The characterization of an economic and portable LED-based photoacoustic imaging system to facilitate molecular imaging. Photoacoustics 2018, 9, 10–20. [Google Scholar] [CrossRef]
- Xavierselvan, M.; Singh, M.K.A.; Mallidi, S. In Vivo Tumor Vascular Imaging with Light Emitting Diode-Based Photoacoustic Imaging System. Sensors 2020, 20, 4503. [Google Scholar] [CrossRef] [PubMed]
- Assadi, H.; Karshafian, R.; Douplik, A. Optical Scattering Properties of Intralipid Phantom in Presence of Encapsulated Microbubbles. Int. J. Photoenergy 2014, 2014, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Cox, B.; Laufer, J.; Beard, P.C. The challenges for quantitative photoacoustic imaging. In Proceedings of the Photons Plus Ultrasound: Imaging and Sensing 2009, San Jose, CA, USA, 28 August 2009. [Google Scholar]
- Di Ninni, P.; Martelli, F.; Zaccanti, G. The use of India ink in tissue-simulating phantoms. Opt. Express 2010, 18, 26854–26865. [Google Scholar] [CrossRef]
- Cook, J.R.; Bouchard, R.; Emelianov, S. Tissue-mimicking phantoms for photoacoustic and ultrasonic imaging. Biomed. Opt. Express 2011, 2, 3193–3206. [Google Scholar] [CrossRef]
- Optical Absorption of Hemoglobin. Available online: https://omlc.org/spectra/hemoglobin/ (accessed on 13 May 2021).
- Nitzan, M.; Nitzan, I.; Arieli, Y. The Various Oximetric Techniques Used for the Evaluation of Blood Oxygenation. Sensors 2020, 20, 4844. [Google Scholar] [CrossRef] [PubMed]
- Hui, J.; Li, R.; Phillips, E.H.; Goergen, C.; Sturek, M.; Cheng, J.-X. Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves. Photoacoustics 2016, 4, 11–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanellis, V.G. A review of melanin sensor devices. Biophys. Rev. 2019, 11, 843–849. [Google Scholar] [CrossRef] [PubMed]
- Khoury, S.; Canlet, C.; Lacroix, M.Z.; Berdeaux, O.; Jouhet, J.; Bertrand-Michel, J. Quantification of Lipids: Model, Reality, and Compromise. Biomolecules 2018, 8, 174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzales, W.V.; Mobashsher, A.T.; Abbosh, A. The Progress of Glucose Monitoring—A Review of Invasive to Minimally and Non-Invasive Techniques, Devices and Sensors. Sensors 2019, 19, 800. [Google Scholar] [CrossRef] [Green Version]
- Ntziachristos, V.; Pleitez, M.A.; Aime, S.; Brindle, K.M. Emerging Technologies to Image Tissue Metabolism. Cell Metab. 2019, 29, 518–538. [Google Scholar] [CrossRef] [Green Version]
- Kottmann, J.; Rey, J.M.; Sigrist, M.W. Mid-Infrared Photoacoustic Detection of Glucose in Human Skin: Towards Non-Invasive Diagnostics. Sensors 2016, 16, 1663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laufer, J.; Elwell, C.; Delpy, D.; Beard, P. In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: Accuracy and resolution. Phys. Med. Biol. 2005, 50, 4409–4428. [Google Scholar] [CrossRef] [Green Version]
- Laufer, J.; Delpy, D.; Elwell, C.; Beard, P. Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: Application to the measurement of blood oxygenation and haemoglobin concentration. Phys. Med. Biol. 2006, 52, 141–168. [Google Scholar] [CrossRef] [Green Version]
- Tzoumas, S.; Nunes, A.; Olefir, I.; Stangl, S.; Symvoulidis, P.; Glasl, S.; Bayer, C.; Multhoff, G.; Ntziachristos, V. Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues. Nat. Commun. 2016, 7, 12121. [Google Scholar] [CrossRef]
- An, L.; Cox, B. Estimating relative chromophore concentrations from multiwavelength photoacoustic images using independent component analysis. J. Biomed. Opt. 2018, 23, 076007-10. [Google Scholar] [CrossRef] [Green Version]
LED Type | Ink Type | Mean Signal (mV) | St. Deviation (mV) | CV% |
---|---|---|---|---|
SST90B (Blue) | Cobalt Blue | 53.2 | 1.3 | 2.4 |
SST90B (Blue) | Light Green | 174.8 | 3.1 | 1.8 |
SST90R (Red) | Cobalt Blue | 181.1 | 1.6 | 0.9 |
SST90R (Red) | Light Green | 84.8 | 2.7 | 3.2 |
LED Type | Ink Type | Slope | Intercept | Adj. R2 Value |
---|---|---|---|---|
SST90B (Blue) | Cobalt Blue | 11.64 | 16.27 | 0.91 |
SST90B (Blue) | Light Green | 70.92 | 17.78 | 0.98 |
SST90R (Red) | Cobalt Blue | 70.66 | 18.04 | 0.98 |
SST90R (Red) | Light Green | 28.27 | 16.14 | 0.95 |
LED Type | Ink Type | Slope | Intercept | Adj. R2 Value |
---|---|---|---|---|
SST90B (Blue) | Cobalt Blue | 0.81 | 20.10 | 0.05 |
SST90B (Blue) | Light Green | 27.13 | 21.35 | ~1 |
SST90R (Red) | Cobalt Blue | 35.06 | 22.29 | 0.98 |
SST90R (Red) | Light Green | 14.08 | 14.08 | 0.96 |
Sample | Cobalt Blue % | Light Green % | St. Deviation | Absolute Diff. % |
---|---|---|---|---|
100B | 101.9 | −1.9 | 1.2 | 1.9 |
80B20G | 79.3 | 20.7 | 0.9 | 0.7 |
60B40G | 64.9 | 35.1 | 1.7 | 4.9 |
40B60G | 51.1 | 48.9 | 1.6 | 11.1 |
20B80G | 37 | 63 | 1.0 | 17 |
100G | 3.7 | 96.3 | 2.3 | 3.7 |
Sample | Cobalt Blue % | Light Green % | St. Deviation | Absolute Diff. % |
---|---|---|---|---|
100B | 98.0 | 2.0 | 4.7 | 2.0 |
80B20G | 86.6 | 13.4 | 3.9 | 6.6 |
60B40G | 59.6 | 40.4 | 4.9 | 0.4 |
40B60G | 44.1 | 55.9 | 3.5 | 4.1 |
20B80G | 32.3 | 67.7 | 3.7 | 12.3 |
100G | −5.4 | 105.4 | 1.9 | 5.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orfanakis, M.; Tserevelakis, G.J.; Zacharakis, G. A Cost-Efficient Multiwavelength LED-Based System for Quantitative Photoacoustic Measurements. Sensors 2021, 21, 4888. https://doi.org/10.3390/s21144888
Orfanakis M, Tserevelakis GJ, Zacharakis G. A Cost-Efficient Multiwavelength LED-Based System for Quantitative Photoacoustic Measurements. Sensors. 2021; 21(14):4888. https://doi.org/10.3390/s21144888
Chicago/Turabian StyleOrfanakis, Michalis, George J. Tserevelakis, and Giannis Zacharakis. 2021. "A Cost-Efficient Multiwavelength LED-Based System for Quantitative Photoacoustic Measurements" Sensors 21, no. 14: 4888. https://doi.org/10.3390/s21144888
APA StyleOrfanakis, M., Tserevelakis, G. J., & Zacharakis, G. (2021). A Cost-Efficient Multiwavelength LED-Based System for Quantitative Photoacoustic Measurements. Sensors, 21(14), 4888. https://doi.org/10.3390/s21144888