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Abstract: Orthogonal frequency division multiplexing (OFDM) has been widely adopted in un-
derwater acoustic (UWA) communication due to its good anti-multipath performance and high
spectral efficiency. For UWA-OFDM systems, channel state information (CSI) is essential for channel
equalization and adaptive transmission, which can significantly affect the reliability and throughput.
However, the time-varying UWA channel is difficult to estimate because of excessive delay spread
and complex noise distribution. To this end, a novel Bayesian learning-based channel estimation
architecture is proposed for UWA-OFDM systems. A clustered-sparse channel distribution model
and a noise-resistant channel measurement model are constructed, and the model hyperparameters
are iteratively optimized to obtain accurate Bayesian channel estimation. Accordingly, to obtain
the clustered-sparse distribution, a partition-based clustered-sparse Bayesian learning (PB-CSBL)
algorithm was designed. In order to lessen the effect of strong colored noise, a noise-corrected
clustered-sparse channel estimation (NC-CSCE) algorithm was proposed to improve the estimation
accuracy. Numerical simulations and lake trials are conducted to verify the effectiveness of the
algorithms. Results show that the proposed algorithms achieve higher channel estimation accuracy
and lower bit error rate (BER).

Keywords: clustered-sparse channel estimation; Bayesian learning; underwater acoustic communica-
tion; orthogonal frequency division multiplexing

1. Introduction

Underwater acoustic (UWA) sensor networks can be applied to a variety of under-
water activities, including environment monitoring, resource exploration and equipment
navigation. Reliable high-rate communication is significant for massive data transmission
between sensor nodes [1]. However, the UWA channel is widely known as one of the most
difficult communication media, and high-rate communication with high reliability is quite
challenging. Since the sound attenuation rapidly increases with frequency, the bandwidth
available for communication is extremely limited. Due to the reflection and refraction of
sound in the ocean, the multipath spread in a medium-range shallow water channel can ex-
tend over tens or even hundreds of milliseconds [2], resulting in severe frequency-selective
signal distortion. Due to the dynamic environment and moving transceivers in ocean, the
UWA channel is time-varying. In particular, the normalized frequency offset factor induced
by Doppler can be on the order of 10−3 compared with 10−7 for high-speed mobile radio
channels [2].

Due to high spectral efficiency and good anti-multipath performance, orthogonal fre-
quency division multiplexing (OFDM) and some OFDM-based modulation techniques are
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widely adopted for UWA communications [3–6]. In UWA-OFDM systems, accurate channel
state information (CSI) is vital for channel equalization and adaptive transmission [7,8],
which can significantly affect the reliability and throughput. However, it is difficult to
estimate the time-varying channel impulse responses (CIRs) with excessive delay spread.
To overcome this problem, some structural information such as sparsity can be exploited
to improve channel estimation performance. The paths of the UWA channel tend to be
clustered-sparse, which carry comprehensive structural information [9–13]. As shown in
Figure 1, there are many weak paths centering around the eigen-paths associated with
the medium refractions and surface/bottom bounces, which form the clustered-sparse
structure. As different clusters are usually derived from different transmission routes, the
channel coherence time usually varies across clusters. Thus, the path variation for different
clusters can reflect the channel variation characteristics [14], and can be used for predicting
the time-varying UWA channel [15]. However, the fading process of the UWA channel may
randomly vary [2], which makes it difficult to accurately obtain the path variation for differ-
ent clusters between adjacent OFDM blocks. To obtain the clustered-sparse structure of the
UWA channel, we proposed a clustered-sparse Bayesian channel estimation method in [16],
which is the preliminary version of this work (This work extends the conference paper [16])
by (i) adding a Bayesian learning-based channel estimation architecture; (ii) adding a
noise-corrected clustered-sparse channel estimation algorithm to lessen the effect of strong
colored noise; (iii) giving the detailed derivation and performance analysis of the proposed
algorithms; and (iv) presenting more complete performance results related to modulation
order, model hyperparameters and noise distribution).

0 5 10 15 20 25

Delay [ms]

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Fr
am

e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized 
  path gain

Figure 1. Time-varying multipath channel with clustered-sparse structure estimated in a lake com-
munication trial.

In addition to the time-varying CIRs with excessive delay spread, the complex distri-
bution of noise in the UWA channel also makes the channel estimation difficult. Generally,
there are two kinds of channel noise, including the ambient noise and site-specific noise.
The former type is presented in the background of the quiet deep sea, and exhibits a colored
characteristic when approximated by Gaussian distribution, while for the site-specific noise,
significant non-Gaussian components should be carefully considered [2]. Some experi-
ments have confirmed that the noise is non-uniform across different locations, times and
frequencies [17]. As a popular noise model in most UWA-OFDM systems, additive white
Gaussian noise (AWGN) is straightforward for modeling and solving the noise distribution
of the UWA channel, but it deviates from the actual underwater noise. Obviously, the
deviation of the noise model means the estimation error of the noise distribution, which
will lead to the degradation of channel estimation and signal detection performance.
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To tackle the challenge of estimating the time-varying UWA channel with excessive
delay spread and complex noise distribution, we adopted Bayesian learning to obtain
the multipath and noise distribution characteristics of the UWA channel, based on which
Bayesian channel estimation is derived to improve the performance of pilot-based channel
estimation. The main contributions of this work are summarized as follows:

• To estimate the time-varying multipath channel with colored noise, we propose
a novel Bayesian learning-based channel estimation architecture for UWA-OFDM
systems. Specifically, a clustered-sparse channel distribution model is constructed to
characterize the delay power spectrum and temporal correlation of each cluster in the
multipath channel, and a noise-resistant channel measurement model is constructed
to reduce the noise disturbance. By learning the model hyperparameters, the Bayesian
channel estimation based on the two models can be iteratively optimized.

• To obtain the clustered-sparse distribution, we propose a partition-based clustered-
sparse Bayesian learning (PB-CSBL) algorithm. Through the cluster partition, different
clusters can learn different channel correlation coefficients, and thus the inter-cluster
interference of the multipath channel can be suppressed.

• To lessen the effect of strong colored noise, we propose a noise-corrected clustered-
sparse channel estimation (NC-CSCE) algorithm. Based on the iterative symbol
decision and noise correction, the more accurate hyperparameters of the models can
be obtained, which can improve the accuracy of the Bayesian channel estimation.

The rest of this paper is organized as follows. Section 2 discusses the related works. In
Section 3, the system architecture and channel models are constructed. Then, the Bayesian
learning-based clustered-sparse channel estimation method is designed in Section 4. In
Section 5, the noise-corrected clustered-sparse channel estimation method is presented. The
evaluation and result analysis are shown in Section 6. In Section 7, conclusions are given.

2. Related Works

The UWA channel is severely band-limited, and exhibits time-varying excessive delay
spread. To this end, the sparse structure of the UWA channel can be exploited to improve
the estimation performance, as most channel energy of the UWA channel is concentrated
on a few paths [18,19]. The paths of the UWA channel also tend to be clustered-sparse [20],
which has been frequently observed based on field experiments at different locations [9–13].
A detailed investigation on the variation of the significant paths in each cluster is presented
in [21]. Based on the observation of channel sparsity, compressed sensing (CS)-based
sparse channel estimation methods [22–24] have been studied, such as the greedy matching
pursuit (MP) and orthogonal matching pursuit (OMP), which were adopted in [18,25],
aiming to estimate the UWA channel impulse response (CIR) and the channel delay-
Doppler-spread function, respectively. In order to reduce the convergence error of the OMP
algorithm, the compressed sampling matching pursuit (CoSaMP) algorithm is proposed
in [26]. However, CoSaMP-based channel estimators require knowledge of the channel
sparsity level, which is difficult to obtain accurately in advance in practical applications.
The joint sparsity among adjacent OFDM blocks was exploited by the simultaneous OMP
(SOMP) [27] for higher estimation accuracy, but only stable path delays were considered
and the temporal correlation of path gains was ignored. Typical convex optimization
algorithms including basis pursuit (BP) and basis pursuit denoising (BPDN) tackle the
NP-hard l0 norm problem by transforming the l0 norm to a convex l1 norm. The BP
algorithm was applied to estimate the path delays and Doppler scale factors of the UWA
channel in [25], and the BPDN algorithm was proposed to estimate the slowly time-
varying UWA channels in [28]. However, the global minimum of the cost function in BP
or BPDN is not necessarily consistent with the sparsest solution. An empirical channel
variation model, in which different clusters vary independently, was proposed in [14], and
demonstrated that adaptation with multiple clusters outperforms that with one cluster for
UWA channel estimation.
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In recent years, Bayesian learning (BL) has been used to improve the performance
of channel estimation. Compared with the CS-based methods that provide point estima-
tion, Bayesian techniques can give the interval estimation of channel response and have
a desirable property of preventing structural errors [29]. By using BL-based methods,
the high accuracy of channel estimation was achieved in OFDM systems [30–33]. The
temporal multiple sparse Bayesian learning (TMSBL)-based estimation method was fur-
ther proposed in [32] to estimate the sparse channels by taking advantage of the channel
coherence between consecutive OFDM blocks, and it can achieve better performance in
strong correlated channels and maintains robustness in weak temporal correlated chan-
nels. Due to the high computational complexity of BL, some accelerated algorithms were
proposed, such as the approximate message passing (AMP)-based method in [34]. More
recently, some researchers utilized deep learning (DL)-based channel estimators for OFDM
systems [35–37], which showed better channel estimation or equalization performance for
nonlinear channel distortion. However, how to go about improving the generalization
performance of pre-training DL models and reduce the complexity of training and inferring
remain challenging.

3. System Architecture and Channel Models

In this section, the system architecture of Bayesian learning-based channel estimation
is presented first. Then, the noise-resistant channel measurement model and the clustered-
sparse channel distribution model are constructed.

3.1. Bayesian Learning-Based Channel Estimation Architecture

A typical UWA-OFDM communication scenario was shown at the top of Figure 2. The
receiver can obtain the transmitted OFDM signal through dynamic multipaths, and the
received signal may be affected by random colored noise. At the bottom of Figure 2, the
system architecture of Bayesian learning-based channel estimation is given. To characterize
the delay power spectrum and temporal correlation of each cluster in the UWA channel, the
clustered-sparse channel distribution model is constructed and the model hyperparameters
can be optimized by the iterative partition-based cluster evolution. Demodulated signal
and pilot symbols were utilized to measure the instantaneous channel response, and the
iterative noise measurement and data detection can improve the anti-noise performance of
the channel measurement model. Based on the channel distribution model and the channel
measurement model, the Bayesian channel estimation can be obtained.

Important notations used in following sections are given by:

• Uppercase and lowercase bold symbols are reserved for matrices and vectors, re-
spectively. Particularly, IM denotes the identity matrix with size M×M. When the
dimension is evident from the context, for simplicity, we only used I;

• AT and AH represent the transpose and conjugate transpose of A, respectively;
• A ⊗ B denotes the Kronecker product of the two matrices A and B;
• vec(A) denotes the vectorization of A formed by stacking its columns into a single

column vector;
• Tr(A) denotes the trace of A;
• Toeplitz(a1, a2, . . . , aN) denotes a Toeplitz matrix taking a1, . . . , aN as first row;
• diag(a) or diag(a1, a2, . . . , aN) denotes a diagonal matrix with principal diagonal

elements being a1, a2, . . . , aN in turn; diag(A1, A2, . . . , AN) denotes a block diagonal
matrix with principal diagonal blocks being the square matrices A1, . . . , AN in turn;

• If A is a square matrix, Prdiag(A) denotes a diagonal matrix with principal diagonal
elements being the principal diagonal elements of A in turn.

• If some terms in a cost function do not contribute to the subsequent optimization of
the parameters, ∝ is used to indicate that these terms have been dropped.
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Figure 2. Architecture of Bayesian learning-based channel estimation in UWA-OFDM communication.

3.2. Noise-Resistant Channel Measurement Model

Considering the OFDM system with cyclic prefix (CP) and K subcarriers, the non-
overlapping sets of Kd data subcarriers xd, Kp pilot subcarriers xp and Kn null subcarriers
xn satisfy K = Kd + Kp + Kn. Let T denotes the OFDM symbol period without CP, Tcp
denotes the length of CP and Ts = T + Tcp is the whole OFDM symbol period. The kth
subcarrier is at the frequency:

fk = fc + k/T, k = −K/2, . . . , K/2− 1, (1)

where fc is the carrier frequency. Assuming that there are M OFDM blocks in one frame,
a passband waveform of the mth OFDM block at time t′ ∈ [−Tcp + mTs, T + mTs] is then
given by

x̃(m)(t) = 2Re{ 1√
K

K/2−1

∑
k=−K/2

x(m)
k ej2π fktq(t)}, (2)

where m = 1, 2, . . . , M, t = t′ − mTs, x(m)
k is defined as a transmitted symbol on the kth

subcarrier at the mth OFDM block and q(t) is the pulse shaping filter:

q(t) =

{
1, t ∈ [−Tcp, T],

0, otherwise.
(3)

The UWA channel is a typical sparse multipath channel. For horizontal shallow water
multi-path transmission with a range much greater than depth, each path has almost the
same Doppler factor [38]. Thus, we assume that all the paths have the equal Doppler
scale factor a, and the Doppler effect can be almost eliminated through effective Doppler
estimation and compensation. Furthermore, the path delay remains stable across several
consecutive OFDM blocks, and the path gains and Doppler scale factors are constant during
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one OFDM block, but vary from block to block. The time-varying channel response during
the mth OFDM block can be expressed as

h(m)(τ, t) =
L−1

∑
l=0

A(m)
l δ

[
τ −

(
τl − a(m)t

)]
, (4)

where L is the path number of the multipath channel, which may be distributed in more
than one cluster. Al and τl denote the gain and delay of the lth path.

Through the time-varying channel, the received passband signal during the mth
OFDM block can be expressed as

ỹ(m)(t) =
L−1

∑
l=0

A(m)
l x̃(m)

[(
1 + a(m)

)
t− τl

]
+ w̃(m)(t), (5)

where w̃(t) is the additive noise. After synchronization, a popular two-step approach [39]
can be adopted to mitigate the Doppler effect, which takes a coarse Doppler estimation
and resampling as the first step and then performs the fine Doppler shift compensation
using the null subcarriers. Moreover, CP can also be used for Doppler shift estimation [40].
Performing CP-OFDM demodulation, the output K× 1 vector of the mth OFDM block can
be expressed as

y(m) = X(m)Fh(m) + w(m), (6)

where X(m) is an K × K diagonal matrix whose diagonal entries are the K transmitted
symbols, F is an K × L discrete Fourier transform (DFT) matrix and w(m) is an K × 1
additive noise vector. h(m) is the discretized CIR vector as h(m) = [h(m)

1 , h(m)
2 , · · · , h(m)

L ].
For M consecutive OFDM blocks, the transmission model of all K×M symbols can

be expressed as

Y =
[
Φ(1)h(1), Φ(2)h(2), · · · , Φ(M)h(M)

]
+ W, (7)

where Y = [y(1), y(2), · · · , y(M)], W = [w(1), w(2), · · · , w(M)], and H = [h(1), h(2), · · · , h(M)].
Φ(m) is defined as Φ(m) , X(m)F. Considering the comb-type pilot arrangement, the trans-
mission model of Kp ×M pilot symbols can be expressed as

YP = ΦPH + WP, (8)

where YP = [y(1)
p , y(2)

p , · · · , y(M)
p ] and WP = [w(1)

p , w(2)
p , · · · , w(M)

p ] are the submatrixs of
Y and W at the location of the pilot subcarriers, respectively. ΦP , XPFP is the known
dictionary matrix where XP is the Kp × Kp diagonal matrix with the known pilots along its
diagonal and FP is the Kp × L DFT matrix.

By vectorizing H as h = vec(HT), a pilot-based channel measurement model can be
constructed according to (8), as

yp = UPh + wp, (9)

where yp = vec(YT
P), wp = vec(WT

P) and UP = ΦP ⊗ IM. AWGN can be adopted to
approximate the additive noise wp. However, the attenuation and noise of the UWA
channel may vary over the signal bandwidth. When a small number of pilot symbols are
used to estimate the UWA channel with strong colored noise, the accuracy of the pilot-
based channel measurement will decrease severely. To improve the performance of channel
measurement, a noise-resistant channel measurement model is constructed according to (7)
and it can be expressed as

y = Uh + w, (10)
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where y = vec(YT), w = vec(WT) and U is the KM× LM matrix as

U =

 diag{Φ(1)[1, 1], · · · , Φ(M)[1, 1]} · · · diag{Φ(1)[1, L], · · · , Φ(M)[1, L]}
...

. . .
...

diag{Φ(1)[K, 1], · · · , Φ(M)[K, 1]} · · · diag{Φ(1)[K, L], · · · , Φ(M)[K, L]}

, (11)

where Φ(m)[i, j] denotes the entry in the ith row and the jth column of Φ(m). All subcarriers
are used for channel measurement in (10), as the unknown data symbols can be obtained
by data detection or decoding. Assuming that the power distribution over all subcarriers is
non-uniform, λ = [λ−K/2, λ−K/2+1, · · · , λK/2−1], w in (10) satisfies:

w ∼ CN (0, Λ), (12)

where Λ = diag(λ)⊗ IM.

3.3. Clustered-Sparse Channel Distribution Model

According to the measurement equation in (9) or (10), the channel vector h can be
estimated. However, the UWA channel usually has an excessive multipath delay spread.
With so many undetermined channel taps, the prior clustered-sparse structure of the UWA
channel can be exploited to obtain the sparse solution of the channel vector. First, we
assume all that the L paths (i.e., L rows) in H are mutually independent, which can form
C clusters. There are Ld paths in the dth cluster and these clusters do not overlap, each of
which occupies dense path delays. With the same time correlation characteristics, the dth
cluster satisfies a first-order auto-regressive (AR) model, given by

Hd[i, j + 1] = βdHd[i, j] +
√

1− |βd|2Vd[i, j], (13)

where βd is the temporal correlation coefficient of the dth cluster. Hd is a Ld ×M submatrix
of H, i = 1, 2, . . . , Ld and j = 1, 2, . . . , M − 1 are the row and column indices of Hd,
respectively. Vd is the model noise matrix with complex Gaussian distribution and assumed
that vec(VT

d ) ∼ CN (0, Γd ⊗ IM), where:

Γd = diag
(
γd,1, γd,2, . . . , γd,Ld

)
(14)

is a positive semi-definite diagonal real-valued matrix. Although a higher-order AR model
may express better model approximation performance, it would lead to higher complexity.
More importantly, a higher-order AR model means a higher overfitting risk, especially
when there are only a few OFDM blocks in one frame. Hence, a first-order AR process was
adopted to model the temporal correlation characteristic for each cluster of CIRs.

By vectorizing Hd as hd = vec(HT
d ), the parameteric Bayesian prior of hd can be

written by
p(hd; βd, γd) = CN (0, Γd ⊗ Bd), (15)

where γd =
[
γd,1, γd,2, · · · , γd,Ld

]
controls the sparsity of the Ld paths in the dth cluster.

When Tr(Γd)→ 0, the associated hd → 0. In other words, Γd reflects the probability density
of the dth cluster. Bd is a Toeplitz matrix with the following form:

Bd = Toeplitz
(

1, βd, . . . , βM−1
d

)
, (16)

and it reflects the variation characteristics of the dth cluster. Γd and Bd jointly determine the
cluster distribution of the dth cluster. Accordingly, the prior probability density function
of h can be written as

p(h; γ1, γ2, . . . , γC, β1, β2, . . . , βC) = CN (0, Σ0), (17)
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where Σ0 = diag(Γ1 ⊗ B1, Γ2 ⊗ B2, . . . , ΓC ⊗ BC).

4. Bayesian Learning-Based Clustered-Sparse Channel Estimation

In this section, the parametric form of Bayesian channel estimation is given first,
and followed by the cluster distribution learning. Then, the partition-based clustered-
sparse Bayesian learning algorithm is presented to obtain the clustered-sparse distribution
and Bayesian channel estimate. At last, the complexity and performance analysis of this
algorithm is given.

4.1. Bayesian Channel Estimation

To simplify the implementation complexity of Bayesian channel estimation, only
known pilot symbols are used for channel measurement. As pilot symbols are sparsely
distributed, it is difficult to estimate the non-uniform power spectrum at the location of
pilot subcarriers. Therefore, the additive noise in (9) is approximated as white Gaussian
noise with noise variance λ in this section. According to (9) and (17), using the Bayes rule,
the posterior density of h can be obtained as

p(h|yp; λ, γ1, γ2 . . . , γC, β1, β2, . . . βC) = CN (µh, Σh), (18)

which is the complex Gaussian distribution with the posterior mean and covariance matrix:

µh = λ−1ΣhUH
P yp = Σ0UH

P

(
λI + UPΣ0UH

P

)−1
yp, (19)

Σh =
(

Σ−1
0 + λ−1UH

P UP

)−1
= Σ0 − Σ0UH

P

(
λI + UPΣ0UH

P

)−1
UPΣ0. (20)

Obviously, the maximum posterior (MAP) estimates ĥMAP , µh and the covariance
matrix Σh are related to the hyperparameters [λ, γ1, γ2, · · · , γC, β1, β2, · · · , βC]. Using
Kn ×M null subcarriers YN = [y(1)

n , · · · , y(M)
n ], λ can be estimated as

λ =
1
K

E[‖ y(m)‖2
2] ≈

1
MKn

M

∑
j=1

Kn

∑
i=1
|YN[i, j]|2, (21)

where i and j are the row and column indexes of YN, respectively. The remaining hyperpa-
rameters [γ1, γ2, · · · , γC, β1, β2, · · · , βC] are related to the cluster distribution information.

4.2. Cluster Distribution Learning

The hyperparameters θ , [γ1, γ2, · · · , γC, β1, β2, · · · , βC] can be estimated by max-
imizing the marginal likelihood function p(yp; θ). This is equivalent to minimizing
−log p(yp; θ), giving the effective cost function:

L(θ) = yH
p Σ−1

yp (θ)yp + log|Σy(θ)|, (22)

where Σyp(θ) = λI + UPΣ0(θ)UH
P . The above problem cannot be solved in closed form,

and the expectation maximization (EM) method [41] can be employed to solve it iteratively.
For unknown values of hyperparameters governing the prior density, h is considered as
the nuisance variable and θ is estimated by maximizing:

Q(θ|θ(old)) = Eh|yp ;θ(old) [log p(yp, h; θ)] = Eh|yp ;θ(old) [log p(yp|h; λ)] + Eh|yp ;θ(old) [log p(h; θ)], (23)

where θ(old) denotes the estimated hyperparameters in the previous iteration. Ignoring
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the first term unrelated to θ, the Q Function (23) can be simplified to:

Q(β1, β2, . . . , βC,γ1, γ2, . . . , γC) = Eh|yp ;θ(old){log p[h; B1, B2, · · · , BC, Γ1, Γ2, · · · , ΓC]}

∝− 1
2

C

∑
d=1

[
log (|Γd|M|Bd|Ld) + hH

d (Γ−1
d ⊗ B−1

d )hd

]
∝− 1

2

C

∑
d=1

{
Mlog (|Γd|) + Ldlog (|Bd|) + Tr

[(
Γ−1

d ⊗ B−1
d

)(
Σd

h + µd
h(µ

d
h)

H
)]}, (24)

where hd ∈ CMLd×1, µd
h ∈ CMLd×1 and Σd

h ∈ CMLd×MLd denote the corresponding dth
cluster in h ∈ CML×1, µh ∈ CML×1 and Σh ∈ CML×ML, respectively. µh and Σh are evalu-
ated according to (19) and (20), given the estimated hyperparameters θ(old) and the noise
variance λ. As shown in (14) and (16), Γd and Bd are determined by the hyperparameters
γd and βd, respectively.

The partial derivative of (24) with respect to γd,i (d = 1, 2, . . . , C; i = 1, 2 . . . , Ld) is
given by

∂Q
∂γd,i

= − M
2γd,i

+
1

2γ2
d,i

Tr
[

B−1
d

(
Σd,i

h + µd,i
h

(
µd,i

h

)H
)]

, (25)

where µd,i
h ∈ CM×1 denotes the corresponding ith path in µd

h, and Σd,i
h ∈ CM×M is the

corresponding principal diagonal block for the ith path in Σd
h. So the learning rule for γd,i

can be given by

γd,i =
1
M

Tr
[

B−1
d

(
Σd,i

h + µd,i
h

(
µd,i

h

)H
)]

. (26)

The gradient of (24) over Bd (d = 1, 2, . . . , C) is:

∂Q
∂Bd

= − Ld
2

B−1
d +

1
2

Ld

∑
i=1

1
γd,i

B−1
d

(
Σd,i

h + µd,i
h

(
µd,i

h

)H
)

B−1
d . (27)

Thus, the learning rule for Bd can be derived as

Bd =
1
Ld

Ld

∑
i=1

Σd,i
h + µd,i

h

(
µd,i

h

)H

γd,i
. (28)

here, we constrain Bd to have the form as shown in (16), and thus βd can be empirically
calculated as βd , α1

α0
where α0 (resp. α1) is the average of the elements along the main

diagonal (resp. the main sub-diagonal) of the matrix Bd in (28).

4.3. Partition-Based Clustered-Sparse Bayesian Learning Algorithm

When the cluster partition information is known, the hyperparameters θ, the posterior
mean µh and the posterior covariance Σh can be iteratively obtained through the EM
method. In other words, cluster partition and cluster distribution jointly determine the
clustered-sparse channel distribution. However, it is usually difficult to obtain the cluster
partition in advance. As shown in Figure 1, several significant clusters with high energy
in CIRs are scattered over a long time spread, and usually do not overlap each other. As
shown in (28), the boundary information of these clusters is important for calculating Bd,
because different clusters have different coherence times (i.e., different AR coefficients). In
particular, some weak clusters that can be ignored will cause the hyperparameter estimation
error of significant clusters when these clusters are not distinguished. Therefore, the PB-
CSBL algorithm is proposed to update cluster partition by pruning the paths with very
small energy (i.e., γd,i → 0). As shown in Algorithm 1, the PB-CSBL algorithm mainly
includes three sub-parts: Channel Estimation, Cluster Partition, Cluster Evolution, and they
will loop until the iteration stop condition is reached. In the sub-part of Cluster Partition,
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only the dense paths with high energy are retained to form clusters and the paths with
negligible energy are pruned. For a cluster with some pruned paths, it can further split
into more clusters according to the positions of the pruned paths. To reduce the impact of
an inaccurate clustering structure at the beginning of the iteration, the maximum possible
number of discrete paths in one cluster is given. In the sub-part of Cluster Evolution, the
derived cluster distribution learning rules are included. A good initial estimation of the
unknown hyperparameters is significant for achieving the global maximum instead of a
local maximum. For practical implementation, it was found that an initial estimation given
by Γd = ILd and Bd = IM was sufficient for the proposed PB-CSBL algorithm.

Algorithm 1: Partition-Based Clustered-Sparse Bayesian Learning Algorithm
Input: the received pilot signal yp; the dictionary matrix UP; the noise variance λ;

the length of discrete paths L; the maximum number of iterations rmax;
the maximum number of discrete paths in one cluster LCmax; the threshold for
prunning small hyperparameters γth; the threshold to stop the whole
algorithm ε.

Initialize: the list of path power γlist = 1L; the number of clusters C = 1;
the list of cluster structure CLS : Γ1 = IL, B1 = IM and the delay range of
the 1st cluster Rd = [0, L− 1]; the iteration counter r = 0.

Channel Estimation:
1: Σ0 ← diag(Γ1 ⊗ B1, Γ2 ⊗ B2, . . . , ΓC ⊗ BC).
2: Σh = Σ0 − Σ0UH

P
(
λI + UPΣ0UH

P
)−1UPΣ0.

3: µh ← λ−1ΣhUH
P yp.

Cluster Evolution:
4: for d = 1, 2, . . . , C do
5: for i = 1, 2, . . . , Ld do

6: γd,i ← 1
M Tr

[
B−1

d

(
Σd,i

h + µd,i
h

(
µd,i

h

)H
)]

, and update γlist with γd,i.

7: end for
8: L′d ← min(Ld, LCmax).

9: Bd ← 1
L′d

L′d
∑

i=1

Σd,i
h +µd,i

h

(
µd,i

h

)H

γd,i
using the L′d most significant continuous paths.

10: βd ← α1
α0

, where α1 and α0 can be obtained through Bd.
11: end for
Cluster Partition:
12: p(0) ← FindIndex(0 < γlist < γth).
13: if p(0) is not empty then
14: γ

(old)
list ← γlist and γlist[p

(0)]← 0.
15: CLS← Split(CLS, p(0)), where CLS is splitted into C clusters

according to p(0).
16: p(1) ← FindIndex(γlist ≥ γth) and UP ← UP[:, p(1) ⊗ (1 : M)].
17: end if
18: for d = 1, 2, . . . , C do
19: Update Rd, Γd and Bd in CLS according to p(0), γlist and βd, respectively.
20: end for
Check stopping conditions:
21: r ← r + 1.
22: return the sub-part of Channel Estimation until r ≥ rmax or
‖γlist − γ

(old)
list ‖

2
2 < ε.

Output: the pruned channel µh with the covariance matrix Σh and the
cluster list CLS.
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4.4. Complexity and Performance Analysis

Considering the excessive delay spread of the UWA channel and the purpose of saving
pilot overhead, we assumed Kd ≥ L ≥ Kp ≥ M. The time complexity of the proposed
PB-CSBL algorithm is compared with the least squares (LS) [39], OMP [25], SOMP [27] and
TMSBL [32]. In order to avoid involving matrix inversion, pilot subcarriers are equispaced
in the LS method. For fair comparison, the residual Doppler expansion is ignored when
evaluating the time complexity of the OMP method. The comparison of time complexity
is shown in Table 1, where N denotes the average iteration number. It can be seen that
the time complexity of the PB-CSBL algorithm is higher than that of the LS, OMP and
SOMP. This is due to the fact that the temporal correlation of CIRs is ignored in the LS and
OMP. Although the stability of path delays is exploited in the SOMP, the correlation of path
gains is discarded. Therefore, LS, OMP and SOMP may exhibit worse channel estimation
performance compared to the PB-CSBL algorithm. As for the TMSBL with O(LK2

p) per
iteration, it has lower time complexity than the proposed PB-CSBL with O(LK2

p M3) per
iteration. This is mainly because it adopts the measure in [41], assuming that there is no
temporal correlation among consecutive CIRs or no additive noise in received signal, but
this may bring some performance loss, especially for slow-varying or high-noise channels.
Therefore, when M is small, we do not adopt the simplification in [41]. The computational
complexity of the PB-CSBL algorithm can be further reduced by implementing a first-order
algorithm in E-step [34], but the implementation details are omitted here.

Table 1. The comparison of time complexity.

LS OMP SOMP TMSBL PB-CSBL

O(LKp M) O(L2Kp M) O(L2Kp M) O(LK2
pN) O(LK2

p M3N)

According to (20), the mean square error (MSE) bound of the sparse vector h can be
expressed as

E
[
‖h− ĥ‖2

2

]
≥ Tr(Σh) = Tr

[
Σ0 − Σ0UH

P

(
λI + UPΣ0UH

P

)−1
UPΣ0

]
, (29)

where ĥ is the estimate of h, and its estimation accuracy is related to the hyperparameter
vector θ obtained by maximizing the marginal likelihood function. Thus, the lower bound
of MSE is reached (i.e., equality holds) only when the perfect hyperparameters are obtained.

Assume that all L paths are in one cluster (i.e., C = 1) and consider two special cases
of θ:

(1) The temporal correlation coefficient β = 0.
In this case, there is no temporal correlation among CIRs. It is assumed that each
transmitted symbol is normalized to unit power. Then, the MSE bound of h(m) can be
expressed by

E
[
‖h(m) − ĥ(m)‖2

2

]
≥ Tr

[
(Γ−1 + λ−1ΦH

P ΦP)
−1
]
=

L

∑
l=1

(
Kp

λ
+

1
γl

)−1
, (30)

where Γ = diag(γ), γ = [γ1, γ2, · · · , γL] and γl controls the variance of the lth
channel coefficient.

(2) The temporal correlation coefficient β = 1
In this case, the CIRs are time-invariant across M OFDM blocks. Thus, the addi-
tive noise variance λ can be reduced to λ/M, and the MSE bound of h(m) can be
expressed by

E
[
‖h(m) − ĥ(m)‖2

2

]
≥

L

∑
l=1

(
MKp

λ
+

1
γl

)−1
. (31)
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As shown in the case of the high temporal correlation (i.e., β = 1), the anti-noise
performance of channel estimation can be improved. As for the low temporal correla-
tion among CIRs (i.e., β = 0), the anti-noise performance is not significantly improved.
However, with more reference information, the better hyperparameter vector γ can be
obtained. Therefore, when multiple OFDM blocks are utilized simultaneously, higher
channel estimation accuracy can be achieved.

5. Noise-Corrected Clustered-Sparse Channel Estimation

In this section, the parametric form of noise-resistant Bayesian channel estimation
is given first. Then, the data detection and noise measurement are derived. Then, the
noise-corrected clustered-sparse channel estimation algorithm is presented. At last, the
complexity and performance analysis of this algorithm is given.

5.1. Noise-Resistant Bayesian Channel Estimation

As the number of pilots Kp decreases, the precision of channel estimation using the
PB-CSBL algorithm will rapidly deteriorate. This is primarily because the algorithm does
not utilize all the information available. Specifically, although both pilot and data symbols
are transmitted, only the Kp ×M matrix YP corresponding to the pilot subcarriers in (8) is
used for estimating the CIRs. For the matrix Y in (7), the remaining Kd ×M observations
are typically not used as they contain the unknown data symbols. If the unknown data
symbols are perfectly obtained, using the Bayes rule, the posterior mean of CIRs based on
the prior probability in (17) and the channel measurement equation in (10) can be written by

µh = Σ0UH
(

Λ + UΣ0UH
)−1

y, (32)

with the posterior covariance matrix:

Σh = Σ0 − Σ0UH
(

Λ + UΣ0UH
)−1

UΣ0. (33)

Moreover, AWGN is assumed to simplify implementation complexity in the PB-CSBL
algorithm, as the noise power distribution λ = [λ−K/2, λ−K/2+1, · · · , λK/2−1] depends on
the observation of all subcarriers. However, in a complex UWA environment, the noise
power may vary significantly over the signal bandwidth. Using decided data symbols and
corrected colored noise, the high estimation accuracy can be achieved by the MAP estimate
in (32).

5.2. Data Detection and Noise Measurement

To obtain the MAP estimate in (32), the hyperparameters related to the cluster dis-
tribution, θ , [γ1, γ2, · · · , γC, β1, β2, · · · , βC], can be iteratively updated, as shown in the
proposed PB-CSBL algorithm, however, the detection of data signal x(m)

d and the noise dis-

tribution λ are still unresolved. Using the notations xd ,
[
(x(1)d )T , (x(2)d )T , · · · , (x(M)

d )T
]
,

ϕ , [λ, xd], and ζ , [θ,ϕ], the unknown hyperparameters set ζ can be estimated by
maximizing the marginal likelihood function p(y; ζ). This is equivalent to minimizing
−log p(y; ζ), giving the effective cost function:

L(ζ) = yHΣ−1
y (ζ)y + log|Σy(ζ)|, (34)

where Σy(ζ) = Λ(λ) + U(xd)Σ0(θ)UH(xd). Similar to the cluster distribution learning,
the expectation maximization (EM) method [41] can be employed to solve (34) iteratively.
While h is considered as the nuisance variable, ζ can be estimated by maximizing:

Q(ζ|ζ(old)) = Eh|y;ζ(old) [log p(y, h; ζ)] = Eh|y;ζ(old) [log p(y|h;ϕ)] + Eh|y;ζ(old) [log p(h; θ)], (35)
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where ζ(old) denotes the estimated hyperparameters in the previous iteration. As shown in
(35), the joint maximization simplifies into two independent maximizations over θ and ϕ.
On optimizing the latter function in (35) with respect to θ, one obtains the learning rules
about θ as (26) and (28). Maximizing the former over x(m)

d yields the minimum mean
squared error (MMSE) equalizer:

x̂(m)
d =

[
diag(λd)C−1

X + Prdiag
(

FDΞ
(m)
h FH

D

)]−1
diag

[(
µ
(m)
h

)H
FH

D

]
y(m)

d , (36)

where y(m)
d and λd are the subvectors of y(m) and λ at the location of data subcarriers,

respectively. CX is the covariance matrix of x(m)
d , FD is the Kd× L DFT matrix at the location

of data subcarriers. Ξ
(m)
h is defined as Ξ

(m)
h , µ

(m)
h

(
µ
(m)
h

)H
+ Σ

(m)
h , where µ

(m)
h ∈ CL×1

and Σ
(m)
h ∈ CL×L denote the posterior mean and covariance matrix of the mth OFDM block,

respectively. The decisions on the data symbols, x(m)
d , are obtained by mapping the soft

decisions, x̂(m)
d , to the closest point on the constellation, meaning that:

x(m)
d = Quantization

(
x̂(m)

d

)
. (37)

Although the noise distribution is non-uniform, the noise powers of adjacent subcarri-
ers are usually close (especially when the number of subcarriers is large). Then, we divide
all subcarriers into non-overlapping Q groups, so that K/Q subcarriers can be grouped
into the same one. Thus, the average noise power of the qth group can be calculated as

λ
(q)
g =

Q
KM

Tr
[
y(q)(y(q))H −U(q)Ξh(U(q))H

]
, (38)

where Ξh is defined as Ξh , µh(µh)
H + Σh. U ∈ CKM×LM can be calculated accord-

ing to (11), as unknown data symbols are estimated by (36) and (37). U(q) ∈ C
KM
Q ×LM

is the submatrix of U and denotes the qth group. y(q) denotes the qth group of y. Af-
ter λ

(1)
g , λ

(2)
g , . . . , λ

(Q)
g are calculated according to (38), the non-uniform noise power dis-

tribution across all subcarriers, λ = [λ−K/2, λ−K/2+1, · · · , λK/2−1], can be obtained by
upsampling the Q average noise powers.

5.3. Noise-Corrected Clustered-Sparse Channel Estimation Algorithm

Based on the noise-resistant Bayesian channel estimation, noise measurement and
data detection, we can develop the PB-CSBL algorithm into the NC-CSCE Algorithm.
As shown in Algorithm 2, the sub-parts of Cluster Partition and Cluster Evolution have
the similar process to the PB-CSBL algorithm. With the aid of Data Detection and Noise
Measurement, the estimation accuracy in Channel Estimation is improved. Conversely, the
improvement of channel estimation also ensures the high accuracy of data detection and
noise measurement results. To achieve the global maximum instead of a local maximum,
the NC-CSCE algorithm requires a good initial estimate with respect to the unknown
cluster distribution, data signal and noise distribution. However, it is obviously difficult to
initialize so many hyperparameters at the same time. Therefore, the PB-CSBL algorithm is
utilized to initialize µh and Σh instead of initializing these hyperparameters. Once µh and
Σh are initialized, these hyperparameters can be calculated as shown in Algorithm 2.

5.4. Complexity and Performance Analysis

The NC-CSCE algorithm utilizes all available subcarriers to achieve better channel
estimation performance. Therefore, compared with the proposed PB-CSBL algorithm
with O(LK2

p M3) per iteration, the NC-CSCE algorithm has higher time complexity, i.e.,
O((Kd + Kp)3M3) per iteration. Similar to the PB-CSBL algorithm, the complexity of the
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NC-CSCE algorithm can be further simplified by using the techniques in [34,41], however,
these simplifications may lead to the performance degradation of channel estimation
because of the errors introduced by the approximations. The details of the simplifications
are omitted here.

Algorithm 2: Noise-Corrected Clustered-Sparse Channel Estimation Algorithm
Input: the received signal y; the noise variance λ; the length of discreted paths L;

the maximum number of iterations rmax; the maximun number of discreted
paths in one cluster LCmax; the threshold for prunning small
hyperparameters γth; the threshold to stop the whole algorithm ε.

Initialize: The PB-CSBL algorithm is utilized to obtain the posterior mean µh ← µh
and covariance matrix Σh ← Σh; the noise vector λ = λIK; the list of path
power γlist = 1L; the iteration counter r = 0.

Cluster Evolution:
1: for d = 1, 2, . . . , C do
2: for i = 1, 2, . . . , Ld do

3: γd,i ← 1
M Tr

[
B−1

d

(
Σ

d,i
h + µd,i

h

(
µd,i

h

)H
)]

, and update γlist with γd,i.

4: end for
5: L′d ← min(Ld, LCmax).

6: Bd ← 1
L′d

L′d
∑

i=1

Σ
d,i
h +µd,i

h

(
µd,i

h

)H

γd,i
using the L′d most significant continuous paths.

7: βd ← α1
α0

, where α1 and α0 can be obtained through Bd.
8: end for

Cluster Partition:
9: p(0) ← FindIndex(0 < γlist < γth).

10: if p(0) is not empty then
11: γ

(old)
list ← γlist and γlist[p

(0)]← 0.
12: CLS← Split(CLS, p(0)), where CLS is splitted into C clusters according

to p(0).
13: end if
14: for d = 1, 2, . . . , C do
15: Update Rd, Γd and Bd in CLS according to p(0), γlist and βd, respectively.
16: end for
Data Detection:
17: Refer to (36) and (37).
Noise Measurement:
18: Update the noise vector λ according to (38).
Channel Estimation:
19: Σ0 ← diag(Γ1 ⊗ B1, Γ2 ⊗ B2, . . . , ΓC ⊗ BC).
20: Obtain U according to (11).
21: p(1) ← FindIndex(γlist ≥ γth) and U← U[:, p(1) ⊗ (1 : M)].
22: Refer to (32) and (33).
Check stopping conditions:
23: r ← r + 1.
24: return the sub-part of Cluster Evolution until r ≥ rmax or ‖γlist − γ

(old)
list ‖

2
2 < ε.

Output: the pruned channel µh with the covariance matrix Σh, the cluster list CLS,

the noise vector λ, and the transmitted data symbols x(m)
d for m = 1, 2, . . . , M.

Based on the noise-resistant Bayesian channel estimation in the NC-CSCE algorithm,
the MSE bound of the sparse vector h can be expressed as

E
[
‖h− ĥ‖2

2

]
≥ Tr(Σh) = Tr

[
Σ0 − Σ0UH

(
Λ + UΣ0UH

)−1
UΣ0

]
, (39)
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where ĥ is the estimate of h. The MSE bound is related to the hyperparameters of the cluster
distribution, data symbols and noise distribution. Only when the perfect hyperparameters
are obtained is the lower bound of MSE reached. Similarly to analyzing the PB-CSBL
algorithm, we assume that all L paths are in one cluster (i.e., C = 1) and consider the
two special cases, namely the temporal correlation coefficient β = 0 and β = 1. For ease
of analysis, the noise power keeps constant λ over all subcarriers. Furthermore, each
transmitted symbol is normalized to unit power. Then, the MSE bounds of h(m) can be
evaluated by

E
[
‖h(m) − ĥ

(m)
‖2

2

]
≥

L

∑
l=1

(
Kp + Kd

λ
+

1
γl

)−1
, (40)

E
[
‖h(m) − ĥ

(m)
‖2

2

]
≥

L

∑
l=1

(
M(Kp + Kd)

λ
+

1
γl

)−1

, (41)

respectively. In addition to what has been discussed when analyzing the PB-CSBL al-
gorithm, Equations (40) and (41) also prove that the NC-CSCE algorithm utilizing pi-
lot symbols and unknown data symbols can achieve a smaller MSE compared with the
PB-CSBL algorithm.

6. Evaluation and Result Analysis

In this section, to evaluate the performance of the proposed algorithms, numerical
simulations and a lake trial were conducted. The parameter settings of CP-OFDM in the
simulations and lake trial are shown in Table 2. The bandwidth, carrier frequency and
sampling frequency of the lake trial are closely related to the transducers used in the trial,
and these values are set smaller in the simulation system to increase the simulation speed.
Because of the high cost of the lake trial, the CP length, the number of pilot subcarriers
and the number of null subcarriers are designed to be larger than the simulation system
to ensure the availability of trial data. In the simulation system (the specifications of our
computer are as follows: Intel(R) Core(TM) i5-6400 CPU 2.7 GHz (4 cores), 16 GB RAM, 1
TB memory with Windows and MATLAB installed), it is assumed that the UWA channel
has 12 randomly generated paths, and that these paths remain fixed within one OFDM
frame. The maximum path delay is less than CP length, and the amplitudes of paths are
Rayleigh distributed with the average power decreasing exponentially with delay. The
Doppler scale factor a ∈ (0, 10−3) is randomly chosen. Moreover, there is no channel code
module in the simulation system.

Table 2. UWA CP-OFDM settings.

Parameters Notations Values of the Simulations Values of the Lake Trial

Bandwidth B 1.6 kHz 5 kHz
Carrier frequency fc 2.5 kHz 20 kHz

Sampling frequency fs 12.5 kHz 100 kHz
Number of subcarriers K 256 256

Number of data subcarriers Kd 218 193
Number of pilot subcarriers Kp 14 32
Number of null subcarriers Kn 24 31

Symbol duration without CP T 160 ms 51.2 ms
CP length Tcp 10 ms 25.6 ms

Blocks in one frame M 4 5

6.1. Simulation Results

Firstly, the proposed PB-CSBL and NC-CSCE algorithms were compared with the LS,
OMP, SOMP and TMSBL for channel estimation. All paths are distributed in three non-
overlapping clusters, and these clusters are set with three different temporal correlation
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coefficients ranges over multiple OFDM blocks, which are [0.1, 0.3], [0.5, 0.7], [0.8, 1.0]. The
additive noise is assumed to be white Gaussian noise, and thus all subcarriers are divided
into the same group (i.e., Q = 1) for the proposed NC-CSCE algorithm. The transmitted
data bits are mapped to QPSK or 16-QAM constellation symbols. The performance metrics
used in the numerical simulations are the MSE of CIRs and BER of data bits, which are
verified in 500 simulations for each value of SNR.

Figure 3a,b show the MSE and BER performance of different channel estimation
methods, respectively. LS performs worst, because the channel sparsity is not considered
for this underdetermined system. Based on the joint estimation of multiple OFDM blocks,
the SOMP makes full use of the strong temporal correlation of path delays and achieves
better performance than the OMP. The delay and correlation of path gains are analyzed
in the TMSBL, which makes it better than the SOMP. However, the proposed PB-CSBL
performs even better, as it can learn different temporal correlation coefficients and reduce
the interference among clusters. The proposed NC-CSCE algorithm utilizes all received
pilot and data symbols for the channel estimation, which achieves the lowest BER close to
the perfect CSI. When 16-QAM mapping is adopted, Figure 4 proves that the proposed
algorithms still maintain good estimation performance. However, in the low SNR region
from 0 to 10 dB, the NC-CSCE algorithm does not perform well. This is mainly because
high-order modulation at low SNR is prone to symbol decision errors, which may be
exacerbated in the iterative process of the NC-CSCE algorithm.
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Figure 3. The comparison of MSE and BER performance based on QPSK constellation mapping: (a) the comparison of MSE
performance; and (b) the comparison of BER performance.
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Figure 4. The comparison of MSE and BER performance based on 16-QAM constellation mapping: (a) the comparison of
MSE performance; and (b) the comparison of BER performance.
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Then, to verify the estimation performance of the proposed algorithms under extreme
temporal correlation coefficients (i.e., β = 0 and β = 1), the proposed algorithms are
compared with their theoretical lower bounds. Multipaths are assumed to be sparse and
share the same correlation coefficient. Then, under QPSK mapping and white Gaussian
noise, the mean square error performance is presented in Figure 5. When β = 0, the MSE
of the proposed algorithms is close to the theoretical lower bound in a high SNR region. A
significant gap exists in the low SNR region, especially for the NC-CSCE algorithm. This is
caused by imperfect hyperparameter estimation, as the lower bound is only reached when
the perfect hyperparameters are obtained. When β = 1, the gap is more obvious in the
whole SNR region because of the hyperparameter estimation error. However, the MSE
performance with β = 1 is better than the MSE performance with β = 0 in a low SNR region.
In short, a larger temporal correlation coefficient means stronger resistance to additive noise,
however, the hyperparameter estimation error, such as the error of γ, is often larger than
that of small temporal correlation coefficients in the high SNR region. Figure 6a,b show the
MSE of the γ estimated by the proposed PB-CSBL and NC-CSCE algorithms, respectively.
The MSE is evaluated under different SNRs and temporal correlation coefficients. As can
be seen, a larger temporal correlation coefficient achieves a smaller MSE in the low SNR
region, while a smaller temporal correlation coefficient reduces the MSE value in the high
SNR region.
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Figure 5. The MSE performance of the proposed algorithms and their theoretical lower bounds: (a) the temporal correlation
coefficient β = 0; and (b) the temporal correlation coefficient β = 1.

(a) (b)

Figure 6. The MSE of the estimated hyperparameter γ by the proposed PB-CSBL and NC-CSCE algorithms under different
SNRs and temporal correlation coefficients: (a) the PB-CSBL algorithm; and (b) the NC-CSCE algorithm.

Finally, to evaluate the estimation performance of the proposed NC-CSCE algorithm
under colored noise, we compared the NC-CSCE algorithm with the TMSBL and PB-
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CSBL algorithms. The group number of subcarriers in NC-CSCE is adjusted to evaluate
the channel estimation performance. In the simulation, all paths are distributed in three
non-overlapping clusters. The clusters are set with three different temporal correlation
coefficients ranges over multiple OFDM blocks, which are [0.1, 0.3], [0.5, 0.7], [0.8, 1.0]. All
subcarriers are divided into eight groups and each group is set with a different SNR. As
shown in Figure 7b, the reference SNR ranges are from 5 to 20 dB. With QPSK mapping,
the MSE and BER performance curves are shown in Figure 7a, and the results prove that
the proposed NC-CSCE algorithm is superior to the TMSBL and PB-CSBL algorithms. The
NC-CSCE-8 denotes the NC-CSCE algorithm with eight groups, and it performs better
than the NC-CSCE algorithm with other groups. Therefore, the setting of group number
is critical for the NC-CSCE algorithm. In one instance, the actual distribution of colored
noise can hardly be reflected with a limited group number; yet in another, a small symbol
number will result in low measurement accuracy in one group. Figure 7b also shows the
statistical results of the estimated SNRs based on 500 simulations. Similarly, NC-CSCE-8
matches the reference best among all compared methods.
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Figure 7. The performance comparison of different algorithms under colored noise: (a) the MSE and BER performance; and
(b) the estimated SNRs over all subcarriers.

6.2. Lake Experimental Results

To further verify the proposed algorithms, a real lake experiment was performed at
Huating Lake, Anhui Province, China, in May 2018. Huating Lake covers an area of about
70 square kilometers, with an average water depth of about 17 m. We hung the transmitter
and receiver on the side of a passenger ship and a speedboat, respectively. The passenger
ship has a semi-open roof and is about 10 m long, while the speedboat is about half the size
of the ship. During the experiment, the transmitter depth was about 10 m and the receiver
depth was about 13 m. Affected by wind and current, their relative speed was about
0.5 m/s, and the distance between them was more than 4.5 km. The parameter settings
of the experiment are in Table 2. In addition, the linear frequency modulation (LFM)
signal was added at the beginning and end of each frame for time synchronization and
Doppler estimation. The transmitted data bits were encoded by a 1/2 rate convolutional
code, and the encoded bits were mapped by QPSK constellation. As showed in Figure 1,
using the proposed NC-CSCE algorithm, we obtained the estimated CIRs for a 14 frame
history with five consecutive OFDM blocks in one frame. The CIRs are estimated after
Doppler compensation, and the total delay spread is around 15 ms. From the estimated
CIRs, we notice that the paths are distributed in multiple clusters, and the channel shows a
clustered-sparse structure.

Figure 8 shows the BER performance after convolutional decoding. The BERs of the
proposed two algorithms are still the lowest for most frames, followed by the TMSBL and
the SOMP, while the OMP has the worst BER performance. Obviously, the performance gap
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between proposed algorithms and other methods further verify the superior performance
of the proposed algorithms.
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Figure 8. The comparison of BER performance in the lake experiment.

7. Conclusions

In this paper, we propose a novel Bayesian learning-based channel estimation archi-
tecture to estimate the time-varying multipath channel with colored noise for UWA-OFDM
systems. Specifically, a clustered-sparse channel distribution model was constructed to
characterize the multipath distribution, and a noise-resistant channel measurement model
is constructed to reduce the noise disturbance. To obtain the clustered-sparse distribution,
we propose the partition-based clustered-sparse Bayesian learning algorithm. To lessen
the effect of colored noise, we proposed a noise-corrected clustered-sparse channel estima-
tion algorithm to improve the estimation performance. Taking advantage of the iterative
clustered-sparse distribution learning, symbol decision and noise correction, the accuracy
of Bayesian channel estimation can be improved. Experiments proved the effectiveness of
the proposed algorithms for channel estimation.

In future work, channel decoding can be incorporated into the Bayesian learning-based
channel estimation architecture to explore the possibility of reducing symbol decision errors.
In the noise-resistant channel measurement model, the channel gains are approximately
constant within one OFDM block, which may be too optimistic in some rapidly time-
varying UWA channels. Therefore, some channel estimation models that deal with doubly
selective fading channels, such as the popular basis expansion model, can be combined
with the clustered-sparse Bayesian learning to improve the estimation performance. At
the same time, channel feedback and reconstruction will be analyzed to realize adaptive
modulation and coding in UWA-OFDM communication.
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