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Abstract: The paper proposes a new method for deep learning and knowledge discovery in a brain-
inspired Spiking Neural Networks (SNN) architecture that enhances the model’s explainability while
learning from streaming spatiotemporal brain data (STBD) in an incremental and on-line mode of
operation. This led to the extraction of spatiotemporal rules from SNN models that explain why a
certain decision (output prediction) was made by the model. During the learning process, the SNN
created dynamic neural clusters, captured as polygons, which evolved in time and continuously
changed their size and shape. The dynamic patterns of the clusters were quantitatively analyzed to
identify the important STBD features that correspond to the most activated brain regions. We studied
the trend of dynamically created clusters and their spike-driven events that occur together in specific
space and time. The research contributes to: (1) enhanced interpretability of SNN learning behavior
through dynamic neural clustering; (2) feature selection and enhanced accuracy of classification;
(3) spatiotemporal rules to support model explainability; and (4) a better understanding of the
dynamics in STBD in terms of feature interaction. The clustering method was applied to a case study
of Electroencephalogram (EEG) data, recorded from a healthy control group (n = 21) and opiate use
(n = 18) subjects while they were performing a cognitive task. The SNN models of EEG demonstrated
different trends of dynamic clusters across the groups. This suggested to select a group of marker
EEG features and resulted in an improved accuracy of EEG classification to 92%, when compared
with all-feature classification. During learning of EEG data, the areas of neurons in the SNN model
that form adjacent clusters (corresponding to neighboring EEG channels) were detected as fuzzy
boundaries that explain overlapping activity of brain regions for each group of subjects.

Keywords: interpretable; explainable; dynamic clustering; feature selection; spiking neural networks;
spatiotemporal data; EEG data

1. Introduction

Spiking Neural Networks (SNNs) are computational models of biological neurons that
resemble the brain information proceeding mechanism through simulated neurons’ input
and output synapses and synaptic plasticity structures [1]. SNNs are the third generation
of artificial neural networks (ANN) and compared to perceptron-type neuron, they encom-
pass the time component while accumulating the neuron’s inputs and generating temporal
outputs. The literature suggests that SNNs are energy efficient and hardware friendly [2–5]
compared to other artificial neural networks in machine learning (ML) systems. They have
been successfully applied to various domains for classification and prediction (prognosis
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and diagnosis) of outcomes in temporal or spatiotemporal datasets such as classifica-
tion of cognitive states using Electroencephalogram (EEG) [6–9], event-related potential
(ERP) [10–12], and functional Magnetic Resonance Imaging (MRI) [13–16]. Several ap-
plications of SNNs are proposed in the medical domain for prognosis and diagnosis of
diseases through modelling of bio-signals and biomedical images. For instance, SNN
was used for modelling Alzheimer’s disease with a high accuracy of detection [17]. In
clinical applications of ML, along with the accuracy of classification/prediction of health
states, the ML explainability is also of crucial importance. This refers to the degree to
which an end-user (clinical practitioner) comprehends the reason of a certain decision
(classifier outcome). Although SNNs have shown reasonable performance in the modelling
of spatiotemporal brain data (STBD), they remain as black boxes where the interpretation
of the trained SNN models is yet limited. Therefore, new methods are required for ex-
tracting the knowledge stored in a spiking neuron and their internal time-varying weights
that allow to explain the model output decisions. The proposed brain-inspired SNN (BI-
SNN) architecture NeuCube [18] allowed now to “open the black box” and even to extract
spatiotemporal rules [19,20].

In our previous study [21], a method for dynamic clustering in SNN was proposed as
a procedure of grouping neurons with respect to their spatiotemporal activities produced
while learning from streaming input data. This initiated the concept of explainability and
interpretability in SNN models’ learning behavior. In the current study, we applied the
dynamic clustering technique to differentiate SNN models while learning from multiple
classes of streaming STBD. Then, we extracted the information stored in the SNN models
(dynamics of spiking activity and connection weights) and proposed new methods to
improve the model accuracy as well as explainability. The main two outcomes of the
current research are as follows:

• Detecting informative spatiotemporal variables with respect to the dynamic evolving
spike-driven patterns during the learning process in SNN models. This resulted in
improving the output prediction/classification accuracy.

• Extracting spatiotemporal rules of spike occurrence during the dynamic clustering,
which enhanced the interpretability and explainability of SNN learning behavior.

The current paper is organized as follows: Section 2 presents a methodology that
includes methods for dynamic spatiotemporal clustering, feature selection, validity mea-
surement, and spatiotemporal Fuzzy clusters and rule extraction in SNN models; Section 3
applies the proposed methods to a case study of EEG and demonstrates the results
of the clustering approach; and finally, Section 4 presents the research conclusion and
future direction.

2. Materials and Methods
2.1. Method for Dynamic Spatiotemporal Clustering of Streaming Data in Spiking
Neural Networks

This section proposes a methodology for extraction of knowledge from a BI-SNN that
combines different computational methods in a pipeline as follows:

1. Spatiotemporal data encoding.
2. SNN mapping and initializing.
3. Unsupervised learning in SNN and simultaneously clustering the neurons.
4. Quantitative analysis of the dynamic clustering patterns.
5. Spatiotemporal fuzzy clustering.
6. Spatiotemporal rule extraction from SNN clustering patterns.
7. Supervised learning and pattern classification.

The above steps are further elaborated in the following sections.
First, a dynamic clustering is applied to the BI-SNN model for clustering the neurons

with respect to the similarity in their spiking activities, evoked during an incremental
learning procedure with streaming STBD. Then, the generated spike-driven events in the
BI-SNN model are visualized and analyzed for exacting spatiotemporal rules that allowed
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the SNN outputs (classification) to be better explained and the brain data to be interpreted.
The applied clustering method builds upon our previous research in [21]. Our proposed
methodology includes the following procedures:

Data encoding: spatiotemporal data streams are encoded into spikes, which are binary
values of 1 and −1 referring, respectively, to upward and downward changes in the
temporal brain data over time. Here, a threshold-dependent encoding method is employed
to generate positive (excitatory) and negative (inhibitory) spikes in certain time t; hence,
the dynamics of the data are preserved. Thus far, a variety of encoding algorithms were
developed, among which some popular methods are: temporal encoding [13,22,23], Ben’s
Spikes Algorithm (BSA) [24] and Population Rank Coding [25].

Data mapping: a 3-dimensional BI-SNN model is mapped that topologically preserves
the spatial information of brain data variables. Here, a brain atlas, called Talairach [26,27],
is used for mapping the brain EEG data into the BI-SNN models [18].

SNN model initialization: the SNN connection weights are initially established with
the use of small-world connectivity rule [18] which is inspired by biological systems [28,29].
The computational model of the spiking neurons is Leaky Integrated-and-Fire (LIF) [30].
In this model, the membrane potential v(t) of a neuron increases with every input spike
at a time t, multiplied by the synaptic efficacy (strength), until it reaches a certain firing
threshold θ. The potential, however, decreases between the sequential spikes by the leak
parameter. When the firing threshold is reached, an output spike is emitted, and the
membrane potential is reset to an initial state. The LIF model is mathematically defined
as follow:

τm
dv
dt

= vrest − v(t) + RI(t) (1)

where τm is the membrane time constant, vrest is the resting potential, I and R are the input
current and the resistance, respectively.

Unsupervised learning and dynamic clustering: SNN models learn from the spa-
tiotemporal interactions between the brain data variables and the model connectivity and
spiking activity are incrementally clustered. Here, the biologically plausible Spike-Timing-
Dependent Plasticity (STDP) learning rule [31] is employed to learn the spatiotemporal
patterns of input data streams. Throughout the learning procedure, the SNN connections
weights are adapted, and the neurons are clustered in a continuous and incremental mode
with respect to their spiking activity evoked by different input neurons (cluster centers).
STDP is an example of Hebbian learning rule which depends on the relative timing of pre-
and postsynaptic action potentials, defined using the following relation:

F(∆t) =

{
A+ exp(∆t/τ+) i f ∆t < 0
−A− exp(−∆t/τ−) i f ∆t ≥ 0

(2)

where F(∆t) defines the synaptic modification elicited from a single pair of pre- and
postsynaptic spikes separated by a time interval ∆t = tpre − tpost. The parameters A+
and A− define the maximum quantities of synaptic modification, which transpire when
∆t ≈ 0. The parameters τ+ and τ− determine the ranges of pre-to-post-synaptic inter spike
intervals over which the synaptic strengthening and weakening occurs.

The main objective of the dynamic clustering approach is knowledge discovery in
the BI-SNN models by detecting the associated spatiotemporal patterns of changes (while
streaming input data), which are dynamically adapted through learning with respect to
the interactions between input neurons (brain data variables). This clustering is based on
unsupervised STDP learning that results in an improved interpretation and explainability
of the interactions between the data variables. The procedure of dynamic spatiotemporal
clustering in BI-SNN models is graphically shown in Figure 1.
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pattern classification.

For this dynamic clustering, the cluster centers are defined in advance according to
the spatial positions of the brain data variables (e.g., EEG electrodes) which are mapped
as input neurons into the BI-SNN model. Then, during the STDP learning process, the
input brain data are streaming via the input neurons (clusters centers) and trigger the
transmission of spikes between the neurons. The greater number of spikes exchanged
between a pair of neurons i and j, the greater the connection weight (wij) becomes between
them, where wij denotes the weight specifying the connection strength. Throughout the
clustering process, every neuron in the SNN model can be assigned to different clusters
with different membership values. This membership is defined according to the number
of spikes that a neuron receives from each of the clusters’ centers (input neurons which
map the brain data variables, such as EEG electrodes). A neuron is assigned to a cluster if
it receives the greatest number of spikes from this cluster center compared to other centers.

In the BI-SNN model with N neurons, the input neurons are assigned to the cluster
centres and taken by the input data variables, while the rest of the neurons are unlabeled.
The objective is to assign the cluster labels to the unlabeled neurons in the BI-SNN model.
To this end, we used the concept of spreading activation in network theory from [32] and
performed as follows:

The neurons in the SNN model are indexed from 1 to N ascendingly with respect
to the order of their spatial (x, y, z) coordinates. The input neurons are marked as the
information source and defined using an N × v matrix Fsrc in which F_src (i, j) = 1
if neuron i is the input neuron for variable j; otherwise Fsrc(i, j) = 0, where N is the
number of neurons in the BI-SNN model and v is the number of input data variables (e.g.,
EEG variables). While streaming spatiotemporal data, each neuron in the BI-SNN model
receives a different ratio of information from different input variables. The ratio of the
received information can be computed through the following procedure:

An affinity N × N matrix A is defined on the SNN model that displays the sum of
the spikes that are exchanged between neurons i and j (i = 1, . . . , N and j = 1, . . . , N)
via connection wij. The amount of information that is exchanged between the neurons is
computed as follows:

A′ ij = Aij + Aji i 6= j
A′ ij = 0 i = j

(3)

where the element Aij displays the number of spikes transmitted from neuron i to j, while
Aji indicates the number of spikes transmitted from neuron j to i. Since a neuron does not
send a spike to itself, the entry for A ij is 0 when i = j.

Ti =
N

∑
j = 1

A′ij i = 1 to N (4)
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Thus, Ti is the sum of the elements in the ith row of matrix A′. Then, the affinity
matrix A is normalized using S = D A D, where D is an N × N diagonal matrix, where
its (i, i)-element is defined by Dii =

(
1√
Ti

)
and S is an N × N normalized matrix that

encodes the spike propagation in the SNN model.
Iterate the below equation until it converges, where α parameter is in the (0, 1) range.

F(t + 1) = αSF(t) + (1− α)Fsrc (5)

The limit of F(t) is denoted by F∗ and defined as follow, where I is an identity matrix
and the output F∗ has N rows (representing all neurons in the SNN model) and v columns
(representing the input variables).

F∗ = lim
t→∞

F(t) = (I − αS)−1 Fsrc (6)

The element F∗ ij represents the relative information amount that a neuron i in the
BI-SNN model receives from an input neuron j. By computing the arg maxj = 1,...v F∗ ij,
the neurons in the SNN model are classified into different input variables. This results in
clustering the neurons into v inputs. This procedure can be better understood as follows:

In an SNN model, the input information is propagated from input neurons (sources of
information) to other neurons. At the beginning of the STDP learning in the SNN model,
only the input neurons (centroids of the clusters) have received the information (F∗ = Fsrc).
When the learning procedure increments with sets of spatiotemporal streams over time,
the other neurons will also receive a ratio of information from one or more input neurons.
Therefore, neurons are being clustered with respect to the amount of information that they
receive from each of the inputs. In such a way, neural clusters are created and evolved over
time in an incremental way during STDP learning.

The dynamic visualization of the clusters illustrates the time points in which the
clusters are generated, and it shows how the clusters are altered over time. Such clusters
are formed in a 3-dimensional view and have different size and shapes. The size and the
creation-time of a cluster signifies the importance of the cluster center in the trained SNN
model, and consequently, the importance of the corresponding input variable in the data.
The proposed clustering algorithm is given in Algorithm 1.

Algorithm 1. The dynamic spatiotemporal clustering algorithm at time point t of the
unsupervised learning process.

Input: Input spike data sp, number of neurons in the SNN model N, number of input variables v,
connection weights w[N, N], and parameter α, PSP, STDP, time t
Output: A vector of labelled neurons k, vector of spik events for each cluster
1: Procedure
2: [L V] = size(sp)
3: Fsrc ∈ RN×v, A ∈ RN×N

4: For each time point t from the input stream data Do
5: Update w with STDP
6: S = D A D
7: F∗ = (I− αS)−1 Fsrc
8: k = arg maxj=1,...v F∗ij
9: Visualization of the clusters
10: Spatiotemporal rules within each cluster Do
11: If PSP(t) ≥ event− threshold
12: Cluster fires as active event in time t.
13: End if
14: End for
15: Algorithms to generate a set of spatiotemporal rules
16: End of procedure
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2.2. SNN Model Explainability through Dynamic Clustering Method

The dynamics of the cluster creation can be scrutinized to explore the “hidden” spa-
tiotemporal learning patterns in SNN to enhance the explainability of the model while
learning from streaming data. In this study, we illustrate the proposed method on EEG data
recorded from 26 scalp electrodes whilst two groups of participants (healthy control group,
and opiate addiction group (OP)) performed an inhibition-related cognitive task (called
GO-NOGO). This EEG data was previously analyzed in [33]. Figure 2 shows an exemplar
visualization of the dynamic clustering in the BI-SNN model while learning from input
EEG data streams. This illustrates that a BI-SNN model was initially mapped using a brain
template (e.g., Talairach [26,27]) and the 26 EEG electrodes were assigned as input neurons
(cluster centers). Then the BI-SNN was incrementally clustered by different centers during
the STDP learning with EEG samples. Based on the LIF computational model [30] of the
spiking neurons in BI-SNN, the neuron’s postsynaptic potential (PSP) enhances when a
new input spike arrives in the neuron. When the PSP(t) surpasses a firing threshold at
time t, the neuron releases an output spike and sends it to the rest of the neurons connected
to it. This process controls the spiking activity of the neurons, while the STDP learning
adapts their internal connection weights.
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While dynamic clusters are created in SNN during the STDP learning process (an
example is shown in Figure 2), significant dynamic patterns were associated with each
cluster as follows:

• Input spike train (st) to an SNN model.
• The mean of the cluster’s postsynaptic potentials PSP, indicated by µPSP(t).
• The mean of the cluster’s spiking rates, indicated by srt.
• The size of the cluster (number of neurons).
• The mean of the neuron’s memberships (the number of spikes received by neurons

from the cluster center).

These patterns can be used to detect informative spatiotemporal EEG variables that
demonstrate significant discrimination between samples from different classes (e.g., control
and OP). In Figure 3, examples of these five dynamic patterns (from one randomly selected
EEG variable in Figure 2) are shown.

• Among these five patterns of the cluster evolution, we further investigated the PSP(t)
patterns using the following techniques:

• Local maximum Pmax(t) : the maximum value of the PSP(t) was measured for each
data sample.

• The area under a curve: this is computed from the PSP(t) of each data sample defined

by
∫ l

1 P(t)dt, where l is the length of each sample (time points).
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• Mid of potential: this is an average of the min value and max value in the PSP(t),
measured through (max + min) /2.
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2.3. Spatiotemporal Fuzzy Clusters in SNN Models

Hitherto, the paper presented that every cluster in the BI-SNN evolves dynamically
during the STDP learning. At each time point t of the STDP, every cluster is demonstrated
as a crisp cluster which means its members (neurons) belong only to one cluster center at
each time t and no neuron is shared between the clusters. However, in the next time point
of the STDP learning, a cluster may lose some of its members (neurons) and scale down or
it may involve more neurons and scale up in size. Therefore, some neurons that belonged
to a certain cluster at the previous state of the network may move to a new cluster at the
current state and keep exchanging between the clusters in the following timepoints. When
the STDP learning is completed, those neurons that were exchanged between the adjacent
clusters during the learning process were identified as the shared spatial areas of neurons
(boundaries) between the clusters (brain regions). Any pair of clusters that have wider
boundary of the shared neurons suggest a stronger spatiotemporal interaction over time.
This is experimentally illustrated in Section 3.3.

2.4. Enhancing the SNN Explainability through Spatiotemporal Spike Rule Extraction

During the dynamic spatiotemporal clustering in SNN, the clusters are evolving in
time. Here, a spatiotemporal rule extraction method is proposed to detect specific patterns
of spatiotemporal spike events occurred inside the clusters at a specific space and time. This
led to define different spatiotemporal rules Rj = {1,2,...,k} for the SNN models trained with
different classes of data, where k is the number of classes (in this case, 2 classes: control and
OP). The spatiotemporal rules are described with respect to the spike events that occurred
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in spatial locations (cluster c = {1, . . . , l) ) at certain times. Each spatial location is defined
as a cluster of spiking neurons and acts as a binary unit depending on its activation level.
The level of activation for each cluster is identified by a spike-emitting-threshold `, applied
to the PSP patterns (demonstrated in Section 3.4). If the PSP pattern of cluster c at time t
exceeds the ` threshold, then this cluster is recognized as an active cluster that produces
a spike at t. The spike-event sequence of each cluster c at time t is denoted by ci(t) and
described as follows:

ci(t) =

{
1 PSP(t) ≥ `
0 otherwise

, t = 1 : T, i = 1 : l (7)

where T is the temporal length of PSP pattern of each cluster c, while l refers the number
of clusters (in this case, the number of EEG variables).

A spatiotemporal rule Ri shows a trajectory of set of actions (denoted by A) from the
ci(t) that occurred at different spatial positions and times. An action A happens in cluster
c when there is a series of spike events (ci(L) > 0) that occurred sequentially during a
specific time-interval L and is associated with an order of time ord. This means multiple
actions can occur in the same spatial location, but with different time orders. An action A
and a symbolic representation of the rule Ri are described as follows:

A = < ci(L) >0 , ord > (8)

Ri = IF A1 AND A2 AND . . . AND An THEN Output = outputj (9)

The procedure for detecting the temporal orders in which spike actions occurred in
each cluster is demonstrated in Algorithm 2.

Algorithm 2. Defining the order of the time interval when spike actions A are detected.

Inputs: Cluster c, Number of clusters l, PSP timeseries, PSP temporal length T, Spike-events in
clusters ci(t) and spike time-interval L
Outputs: Rules R = (A, ord) as set of Action A and time orders
Procedure:
For c = 1 to l //for all the clusters
Baseline ← 1
While (Baseline < T −L)
If (Length of {ci(Baseline : Baseline + L) > 0} equal to L) //sequential L number of spikes
Action (c, Baseline) ← A
End If
Baseline← Baseline + 1
End while
End For
Print sets of Actions as Rules
For c = 1 to l
Ord← 1
For t = 1 to T
If Actions(c, t) = A
R(ord) ← Actions(c, t)
Ord← ord + 1
End For
End For
End of Procedure

2.5. Validity Measurement of the SNN Clustering

This section evaluates the dynamic spatiotemporal clustering through measuring how
a cluster’s member (neuron) fits into its own cluster compared to other clusters. Since
there was no class label information at the STDP unsupervised learning phase in the SNN
model, here we employed an internal measurement technique, called silhouette coefficient
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validity method. This validity measurement is based on the “cohesion and separation”
concept [34,35] graphically shown in Figure 4 for two adjacent clusters extracted from the
SNN models from Figure 3.
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Figure 4. Two clusters of neurons in an SNN model were generated, each of which was associated
with one EEG variable acting as a cluster center (input feature allocated to an input neuron). Cohesion
measures how related the neurons are in a cluster through averaging the connection weights in the
cluster, while separation measures how distinct a cluster is from other clusters through averaging the
connection weights between the clusters.

Cohesion measures how similar the members (neurons in this case) are within a
cluster, whereas separation defines how distinctive and well-separated a cluster is from
other clusters. For clustering validation, the objective is to maximize the cohesion metric
while minimizing the separation metric. Here, the cluster cohesion is defined with respect
to the average of the connection weights between the internal neurons of a cluster in the
SNN model. On the other hand, the average of the connection weights between neurons of
a cluster and neurons of a neighboring cluster describes the cluster separation. A neuronal
cluster in an SNN model is valid if its cohesion metric is higher than the total of all the
separation metric within its neighborhood.

The silhouette validates the homogeneity within clusters through including both
cohesion and separation to assess how close a neuron is to its own cluster center (cohesion)
compared to other clusters (separation). For each neuron i within a cluster, value x(i) is
the average cohesion of i to all other neurons in the same cluster. It shows how well i is
assigned to its own cluster, so that a larger value refers to a more appropriate assignment.
On the other hand, value y(i) is the average separation between a neuron i and other
neurons in a neighboring cluster.

s(i) =
x(i)− y(i)

max{y(i), x(i)} (10)

The silhouette value is agreed to be in an interval of −1 ≤ s(i) ≤ 1, and a value closer
to 1 implies that the neuron is well-matched to its own cluster. If most of the neurons
have a high silhouette value, then the clustering configuration is valid. Figure 5 shows
the silhouette method exemplified using two adjacent clusters. In an SNN model with
N number of spiking neurons and a set of input neurons γ = {1, . . . , c}, the clustering
method is performed on a normalized affinity matrix which encoded the N×N information
of the SNN connection weights. Through the clustering, every neuron i is clustered into an
input neuron γ (cluster centre) with respect to the propagation number of spikes which
is relative to the connection weight between neuron i and the center γ. The Fiγ reveals
the relative number of spikes that a neuron i receives from each input neuron γ and it
defines the membership value of i to each cluster centre. Within a cluster, when neuron i is
connected to m neurons, the average of the connection weights between i and all m neurons
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define the cohesion of i to its cluster. This cohesion is multiplied by the membership value
of neuron i to its cluster center as follows:

x(i) =
∑m

j = 1 wij

m
× Fiγ (11)

In contrast, value y(i) is the average separation between neuron i and k numbers of
connected neurons from the f numbers of neighboring clusters as follows:

y(i) =
∑

f
n = 1

∑k
j = 1 wij

k × Fiγ

f
, γ = f (12)

Sensors 2021, 21, x FOR PEER REVIEW 10 of 21 
 

 

relative number of spikes that a neuron ݅ receives from each input neuron γ and it de-
fines the membership value of ݅ to each cluster centre. Within a cluster, when neuron ݅ 
is connected to ݉ neurons, the average of the connection weights between ݅ and all ݉ 
neurons define the cohesion of ݅ to its cluster. This cohesion is multiplied by the mem-
bership value of neuron ݅ to its cluster center as follows: ݔ(݅) =  ∑ ୀଵ݉ݓ × ఊ  (11)ܨ

In contrast, value ݕ(݅) is the average separation between neuron i and ݇ numbers of 
connected neurons from the ݂ numbers of neighboring clusters as follows: 

(݅)ݕ =  ∑ ∑ ୀଵ݇ݓ × ఊୀଵܨ ݂ , ߛ = ݂ (12)

 
Figure 5. Silhouette method exemplified on two clusters. 

3. Results: Dynamic SNN Clustering of EEG Data, Spatiotemporal Rule Extraction 
and Feature Selection 

The spatiotemporal clustering was applied to an EEG dataset that was recorded us-
ing a QuickCap (Neuroscan 4.3). The 26 electrodes include Fp1, Fp2, Fz, F3, F4, F7, F8, Cz, 
C3, C4, CP3, CPz, CP4, FC3, FCz, FC4, T3, T4, T5, T6, Pz, P3, P4, O1, O2, and Oz (10–20 
International System). EEG data were recorded at the University of Auckland, New Zea-
land and the ethical approval was granted by the “Northern X Regional Ethics Committee 
of New Zealand”. The informed consent was given by all participants. Horizontal eye 
movements were recorded with electrodes placed 1.5 cm laterally to the outer canthus of 
each eye. Vertical eye movements were recorded with electrodes placed 3 mm above the 
middle of the left eyebrow and 1.5 cm below the middle of the left bottom eyelid. EEG 
data were screened visually for artifacts (Artifacts are signals recorded by EEG but not 
generated by the brain), normal variants and changes in alertness (the technician screen-
ing these data was blinded to group status). To reduce muscle artefacts in the EEG signal, 
the participants were instructed to assume a comfortable position and avoid movement 
during recording. Electrical impedance was always <5 KΩ. During the recording process, 
participants were asked to complete a cognitive task called GO-NOGO [33]. The EEG data 
recorded from 21 healthy control subjects and 18 opiate users (OP) were used in the pre-
sent experiment. 

3.1. Dynamic Spatiotemporal Clustering in SNN while Streaming EEG Data 
Figure 6 illustrates the creation of dynamic clusters over time while two separate 

SNN models are learning from the input EEG data streams of control and OP groups, 
respectively. The clustering procedure is started from initial SNN models (Figure 6 left 
cubes), where the input neurons are assigned to the EEG electrodes (cluster centers) for 

Figure 5. Silhouette method exemplified on two clusters.

3. Results: Dynamic SNN Clustering of EEG Data, Spatiotemporal Rule Extraction
and Feature Selection

The spatiotemporal clustering was applied to an EEG dataset that was recorded using a
QuickCap (Neuroscan 4.3). The 26 electrodes include Fp1, Fp2, Fz, F3, F4, F7, F8, Cz, C3, C4,
CP3, CPz, CP4, FC3, FCz, FC4, T3, T4, T5, T6, Pz, P3, P4, O1, O2, and Oz (10–20 International
System). EEG data were recorded at the University of Auckland, New Zealand and the
ethical approval was granted by the “Northern X Regional Ethics Committee of New
Zealand”. The informed consent was given by all participants. Horizontal eye movements
were recorded with electrodes placed 1.5 cm laterally to the outer canthus of each eye.
Vertical eye movements were recorded with electrodes placed 3 mm above the middle of
the left eyebrow and 1.5 cm below the middle of the left bottom eyelid. EEG data were
screened visually for artifacts (Artifacts are signals recorded by EEG but not generated by
the brain), normal variants and changes in alertness (the technician screening these data
was blinded to group status). To reduce muscle artefacts in the EEG signal, the participants
were instructed to assume a comfortable position and avoid movement during recording.
Electrical impedance was always <5 KΩ. During the recording process, participants were
asked to complete a cognitive task called GO-NOGO [33]. The EEG data recorded from
21 healthy control subjects and 18 opiate users (OP) were used in the present experiment.

3.1. Dynamic Spatiotemporal Clustering in SNN while Streaming EEG Data

Figure 6 illustrates the creation of dynamic clusters over time while two separate SNN
models are learning from the input EEG data streams of control and OP groups, respectively.
The clustering procedure is started from initial SNN models (Figure 6 left cubes), where the
input neurons are assigned to the EEG electrodes (cluster centers) for transmitting the input
spikes into the models. Then, the SNN models were evolved dynamically, every time a new
EEG data time point was entered to the SNN models for learning. In Figure 6, an example
of only three timeframes of the cluster’s evolution is visualized; however, the cluster
procedure was continued for the whole EEG time intervals. Here, the spatiotemporal
clusters were formed and updated with every new input EEG time point entered, frame
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by frame. The reason that different time frames are visualized in Figure 6 is due to the
time differences in cluster creation across the subject groups with respect to their EEG
data. Once new clusters appeared during unsupervised STDP learning, a new frame of
the clustered SNN was captured to display the stepwise changes in the cluster evolution.
Figure 7 reports how the size of the clusters in SNN models of control and OP groups
changed during the STDP learning with the whole-time interval of EEG data.
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Figure 7. Examples of four clusters’ size changing during the STDP learning in SNN model of 21 control subjects (shown in
red, in total 1575 time points were entered and trained in the model) and 18 OP subjects (shown in blue, in total 1350 time
points were entered and trained in the model).

3.2. Feature Selection through Modelling Dynamic Clustering Patterns in SNN

This section illustrates the explainability of the SNN models and investigates the
knowledge stored in the SNN models through analyzing the trends of clusters creation.
The PSP(t) time series were analyzed to reveal how the SNN-based dynamic clustering
could be useful to discriminate the EEG data samples across different classes. Here, the
dynamic PSP(t) patterns were captured for all the 26 clusters during the STDP learning
process in SNN models with EEG data of two classes of participants (control subjects and
opiate addicts). Figure 8 depicts an example of dynamic PSP(t) visualization for only
10 clusters (related to 10 EEG electrode) in control and OP groups. These PST patterns
were investigated through computing the peak of potential ( Pmax(t)) (shown in Figure
9), area under curve (Figure 10), and midrange of potential (Figure 11). Figure 9 shows
that for each EEG sample, the peak of potential ( Pmax(t)) is plotted as a dot at time t. This
potentially separates the samples across the classes with different degree of discrimination
in the EEG features with t− value > 0.05.
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(measured by a t-test). The EEG variables with high p-value are not statistically significant.
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To identify how the dynamic clusters reveal significant differences between the classes
(control and OP), a statistical t-test measure was applied to the plots in Figures 9–11. The
t-test results are reported in Table 1, where the mutual top 8 EEG variables refer to the
potential discriminative variables to precise EEG samples to the control class and the OP
class. These variables are 17, 14, 21, 22, 6, 12, 5 and 23 which, respectively, correspond
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to EEG electrodes CPz, C4, P4, Pz, F4, C3, T6, and Fz. Then, a SNN-based classification
experiment was designed to classify the EEG samples to control and OP groups when
using these top 8 variables.

Table 1. A t-test measure was applied to the Pmax (left), the area under the curve of PSP (middle) and the midrange of the
PSP (right) to identify how two classes control and OP are statistically significant. Among these eight top EEG channels,
channel 17 has the lowest p-value, representing the highest discriminative power between the samples from different classes.

Pmax Area under Curve Midrange of the PSP

p-Value EEG
Channel

Channel
Index p-Value EEG

Channel
Channel

Index p-Value EEG
Channel

Channel
Index

2.4 × 10−11 CPz 17 1.2 × 10−11 CPz 17 −1 × 10−11 CPz 17

2.2 × 10−9 C4 14 1.3 × 10−8 C4 14 8.4 × 10−9 C4 14

4.7 × 10−9 Pz 21 2.4 × 10−8 P4 22 1.7 × 10−8 Pz 21

9.9 × 10−9 P4 22 1.8 × 10−7 Pz 21 4.9 × 10−8 P4 22

0.00001 F4 6 7.3 × 10−6 F4 6 2.2 × 10−6 F4 6

0.00008 C3 12 3.9 × 10−5 C3 12 8.2 × 10−5 C3 12

0.00008 Fz 5 0.0007 T6 23 0.0001 Fz 5

0.0002 T6 23 0.002 Fz 5 0.0003 T6 23

The classification task is based on dynamic evolving SNN [36] classifier (deSNN) and
leave-one-out cross validation method. To this end, after the unsupervised STDP learning
was completed, a supervised learning was conducted to learn the relationships between the
class labels and the training EEG samples. For every EEG sample that was used previously
for unsupervised learning in the BI-SNN, one neuron is created on the output layer and
connected to the neurons in the trained model. The connections between the SNN neurons
and output layer neurons are initialized using the rank-order rule [37]. After establishing
the initial connection weights, the same EEG data that were used at unsupervised learning
phase are used to train the SNN mode at a supervised mode. The neuron post-synaptic
potential PSP of neuron j at time t connected to neuron i in the SNN space, is calculated
as follows:

PSP(j, t) = ∑ modorder(i)Wij (13)

where mod is a modulation factor (a parameter between 0 and 1) and order(i) is the time
order of the following spikes to the connection between neurons i and j. Through this
learning rule, the first spike that arrives at the output neuron j will have the highest value.
Then, the connection weight Wij will be further modified according to the spike-driven
synaptic plasticity learning rule using a drift parameter, which is used to modify Wij to
take into account the occurrence of the following spikes at neuron j at time t, denoted
by spikej(t), i.e., if there is a spike arriving from neuron i at time t after the first one was
emitted, the connection weight increases by a small drift value; otherwise, it decreases
by drift.

Then the trained SNN model is tested with every EEG sample to classify the individu-
als into OP and control groups. We performed a comparative analysis by classifying the
EEG data using conventional ML methods including Support Vector Machine (SVM), Mul-
tilayer Perceptron (MLP), Multilayer Regression (MLR) and Evolving Clustering Method
(ECM). Table 2 reports that the accuracy of classification is higher when using the top eight
EEG features than all the 26 variables, in all the experiments [33].
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Table 2. The classification accuracy between EEG samples in control and OP obtained when using all
EEG variables versus using the eight top-informative variables selected with the use of the proposed
dynamic spatiotemporal clustering method.

Methods SNN SVM MLP MLR ECM

26 variables (reported in [33]) 85.00 68.00 78.00 68.00 70.00
8 selected variables (feature selection) 92.00 70.00 80.00 72.00 78.00

To evaluate the validity of the created clusters, the average of the silhouette coefficients
(Equation (10)) was measured in every cluster, as shown in Figure 12. The graph shows
that all the average silhouette values are positive and very close to 1, which represents a
high goodness value for the clusters.
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Figure 12. Validity measurement of the clusters generated in the SNN models of EEG data with 26 channels from the
healthy control (red bar) and OP group (blue bar). The silhouette value was measured for every neuron in a cluster. Then
the silhouette values were averaged over all the neurons in a cluster and represented as a validity metric for this cluster.

3.3. Spatiotemporal Fuzzy Clusters in SNN Models of EEG from Control and OP Groups

This section illustrates fuzzy clusters in BI-SNN that led to improvement of the
explainability of the trained models with different classes. This is to demonstrate how
different neural clusters in the BI-SNN model were interacting during the STDP learning
with EEG data of control vs. OP groups. Here, we detected those neurons that changed their
membership between clusters at different time points of the STDP learning. These areas are
fuzzy clusters that include neurons which changed their membership from one cluster to
another cluster over time based on their updated membership values. It represents a notion
of functional interactions between EEG electrodes across the groups. Figure 13 visualizes
the areas of shared neurons between five pairs of randomly selected EEG channels. These
boundaries show the intersection areas between every two adjacent crisp clusters (centered
by EEG variables), shown as fuzzy clusters. Detection of these boundaries allows new
knowledge to be discovered from the SNN learning patterns and enhances the model
explainability, so that an end-user can better interpret the spatiotemporal interactions
between EEG variables that resulted in classifying EEG samples to control or OP groups.
Therefore, the decision made by the SNN models can be explained and interpreted. For
example, it can be seen from Figure 13b that for the OP group, the only shared area of
neurons among these five EEG channels is observed between Fp2 and F8 channels and this
boundary is significantly smaller than the captured boundaries in control subjects.
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Figure 13. The fuzzy neural clusters (shared boundaries between clusters) captured after the unsupervised STDP learning
in SNN models of (a) control group and (b) OP group. (c,d) The biggest fuzzy cluster in the control group has a size of
59 neurons, generated between P4 and T6 channels, while the biggest fuzzy cluster in OP group has a size of 70 neurons,
generated between C4 and T4 channels.

3.4. Capturing Spatiotemporal Spike Events during Unsupervised Learning in SNN Models

Thus far, we demonstrated that the BI-SNN models of EEG data created dynamic
clusters as polygons, which evolved in time and continuously changed their size and shape.
In this section, we further analyzed the patterns of dynamic clusters to discover rules for
spatiotemporal spike events that occurred together in both space and time during the
cluster’s creation for different classes (control vs. OP groups).

The spatiotemporal rules lead to improve the explainability of the SNN models of
brain data and the underpinning cognitive functions. To detect the spatiotemporal spike
events in each dynamic cluster, we applied a spike-emitting threshold ` to the PSP patterns
(plotted in Figure 8). If the PSP pattern of cluster i at time t exceeds the ` threshold,
then this cluster is recognized as an activated cluster and produces a spike at t. This is
applied to all the PSP patterns of 26 clusters for both control and OP groups (depicted in
Figure 14). This resulted in forming sequences of spike events that occurred at a certain
spatial position (neural cluster corresponds to specific EEG electrode) at different time
points. The occurrence of spike events in different classes can be defined by spatiotemporal
rules to explain the difference in the interactions between EEG channels.
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Figure 14. The spatiotemporal spike events (shown in blue bars) are extracted from the PSP patterns (shown in Figure 8)
to demonstrate (when) and (where) the neural spike events (denoted as action A) occurred in different groups (control
in (a) and OP in (b)). These spikes are events that occurred at different spatial brain regions (neural clusters around
EEG channels) and at different times during the STDP learning process with EEG data. In each cluster, the spike events
correspond to significant changes in the values of PSP pattern that exceed the spike-emitting-threshold. This allows to
investigate which areas of the brain were activated at what time for control vs. OP groups. The red boxes illustrate the
spike-event actions, described in Section 3.4.
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As seen in Figure 14, the extracted patterns/events from the SNN improve the model
explainability by demonstrating where (space) and when (time) a trajectory of frequent
behaviors (spike-event actions) take place in the models of brain data from the addictive
group versus the control group. Such spatiotemporal patterns may occur in distinct brain
regions at certain times, and they can be represented as a set of spatiotemporal rules. The
knowledge extracted by the OP group can be compared with control group to reveal the
affected brain areas and functions by addiction. For example, it can be seen from Figure 14
that the SNN models produced a greater number of spike-event actions (shown in red
boxes) over time in several spatial positions including FP2, F3, F7, and Oz in OP group
than the control group. Two symbolic representations of the rules for control group (R1)
and OP group (R2) are defined as follows, where ordi (i = 1, 2, . . .) defines the order of
the time interval when maximum events are detected:

R1 : IF {CP4, ord1} AND {T3 , ord2}

AND{Cz, ord3} AND {Fp2 , ord4, ord5}

AND {Fpz , ord6}

THEN Output = 1

R2 : IF {Oz, ord1} AND {Cp4 , ord2}

AND{Oz, ord3} AND {Fp2 F3 F7 Cpz O2, ord4}

AND{Oz, ord5} AND {F3 Cz T4, ord6}

AND{O2, ord7} AND {F7 , ord8}

AND{Fp2, ord9} AND {Fp2 F3 , ord10}

AND{F3, ord11 ord12 ord13} AND {Fp2 , ord14}

THEN Output = 2

4. Conclusions and Future Directions

The paper proposes a methodology for deep learning of dynamic spatiotemporal
pattern and knowledge discovery and improved explainability of spiking neural networks
by modelling the dynamic patterns created during unsupervised learning with streaming
spatiotemporal EEG data. The methodology, applied on a BI-SNN architecture exemplified
by NeuCube [18], includes procedures for: (1) encoding of the spatiotemporal streaming
data into spike sequences; (2) unsupervised learning of the spike sequences in a 3D SNN
architecture by creating connections between the neurons; (3) creating dynamic evolving
clusters of neurons around the input neurons based on the neuronal spiking activities;
(4) continuous validity measurement of the spatiotemporal clusters over the time of their
evolution; (5) dynamic visualization of the evolving clusters over time; (6) dynamic feature
evaluation; (7) quantitative analysis of the SNN learning patterns; (8) improved classifica-
tion accuracy, (9) fuzzy clusters, and (10) spatiotemporal rule extractions in SNN model.

In this research, the methodology was illustrated on EEG data of two classes of human
subjects in relation to their history of substance use. An assessment of the spatiotemporal
clustering patterns of EEG data has led to the detection of important discriminative EEG
features in the SNN models. Hence, using only the selected features (by the proposed
clustering method) for a classification task, an average of 10% increase in accuracy has
been achieved. The clustering approach allowed the learning patterns in the recurrent
SNN models to be scrutinized. The findings demonstrate that SNN models are no longer
acting as black-box information processing systems. The proposed system is a generic
cognitive data analytics framework, applicable to various spatiotemporal data including
brain data, and offers a better understanding of the dynamics of streaming data as well as
explainability of the models.
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For further development of the proposed clustering approach, we aim to enhance it
towards early prediction of patterns during unsupervised learning in SNN models. To
this aim, the dynamics of the SNN clusters need to be mathematically modelled using
differential equations. Consequently, using only a spatiotemporal chunk of streaming data,
the next sequential activated areas in the SNN models can be potentially predicted by the
proposed clustering technique. This method also needs to be generalized for other types
of spatiotemporal data, including environmental data, seismic data, and so forth. The
proposed spatiotemporal rules extracted from the dynamic clustering patterns need to be
further studied to identify the importance of different areas of neurons in SNN [18,20].
This can be used to detect abstractions from SNN models for a further development of
deep learning in SNN architecture. Therefore, the achieved knowledge discovery in SNN
models is a significant contribution to explainable machine learning and open AI systems.

The proposed clustering method is a generic approach, tested in this study on an
EEG dataset as an example, but this can be applied to any kind of spatiotemporal brain
data to extract rules in relation to different cognitive states, such as depression, dementia,
and stroke.
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