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Abstract: The Internet of Things (IoT) consists of small devices or a network of sensors, which
permanently generate huge amounts of data. Usually, they have limited resources, either computing
power or memory, which means that raw data are transferred to central systems or the cloud for
analysis. Lately, the idea of moving intelligence to the IoT is becoming feasible, with machine
learning (ML) moved to edge devices. The aim of this study is to provide an experimental analysis of
processing a large imbalanced dataset (DS2OS), split into a training dataset (80%) and a test dataset
(20%). The training dataset was reduced by randomly selecting a smaller number of samples to
create new datasets Di (i = 1, 2, 5, 10, 15, 20, 40, 60, 80%). Afterwards, they were used with several
machine learning algorithms to identify the size at which the performance metrics show saturation
and classification results stop improving with an F1 score equal to 0.95 or higher, which happened at
20% of the training dataset. Further on, two solutions for the reduction of the number of samples
to provide a balanced dataset are given. In the first, datasets DRi consist of all anomalous samples
in seven classes and a reduced majority class (‘NL’) with i = 0.1, 0.2, 0.5, 1, 2, 5, 10, 15, 20 percent
of randomly selected samples. In the second, datasets DCi are generated from the representative
samples determined with clustering from the training dataset. All three dataset reduction methods
showed comparable performance results. Further evaluation of training times and memory usage on
Raspberry Pi 4 shows a possibility to run ML algorithms with limited sized datasets on edge devices.

Keywords: machine learning; classification; edge computing; imbalanced dataset; training dataset;
anomaly detection; clustering

1. Introduction

Cloud, fog, edge, and mist computing are, more or less, well known paradigms
introduced in the Internet of Things (IoT) [1]. Lately, by keeping processing closer to the
edge of the network, many issues such as low latency, privacy, and location awareness
requirements can be mitigated, with the added benefit of increased privacy as raw data are
not sent to the cloud. To that end, the authors provide an overview of fog computing and
other related paradigms, such as edge computing, mist computing, and mobile computing.
Sometimes, the distinctions between these computing paradigms are not yet clear, which
gives additional opportunities for further research into the current landscape where sensor
and other IoT devices are located.

In recent years, the Internet of Things (IoT) has been a rapidly growing network of
devices, which generate a massive amount of data [2]. Cloud computing is suitable in
some IoT sectors but is unsuitable and impractical in connected sensor systems in homes,
cities, and industries. Often, sending data to remote systems leads to privacy problems,
network bandwidth decrease, and even loss of data. In fact, for many reasons, the need
arises to perform the computing close to the data source. It is also important to incorporate
intelligence and enable adaptations to rapid changes and unexpected events.

Classifying and surveying current edge computing architectures and platforms pro-
vides a review, which reveals that the edge of the network is not always clearly defined [3].
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Three categories could be used to define functionalities: (i) resource-rich servers deployed
at the edge; (ii) heterogeneous edge nodes; and (iii) edge-cloud federation. To show some
advantages of edge computing for IoT applications, the second part of the article focuses
on mobile gaming as a use case. Placing limited computing resources closer to the net-
work edge improved the quality of service by reducing latency and improving the overall
responsiveness of the game.

Deep learning is widely used and has been very successful across various application
domains [4]. Based on the extended review, it is recognized as a solution to the need for
processing data on edge devices, mainly to reduce latency, but with the added benefits of
privacy, bandwidth efficiency, and scalability. The main areas of deep learning applications
are computer vision, natural language processing (NLP), and network functions, including
intrusion detection. The complexity and high resource requirements of deep neural net-
works (DNNs) are forcing the development of solutions with different optimizations in
terms of model design, model compression, and dedicated hardware solutions.

With the development of IoT applications in cyber-security, traffic inspection and
classification tasks are moved to edge devices in order to implement processing intelligence
near the data source [5]. The pre-build classification models are effectively run on devices,
while some heavy computational tasks of training data are performed in cloud-based
architectures. In the implementation of an automatic attack detection system, an idea of a
cloud-assisted extreme learning machine (ELM) classifier showed the efficient computation
and analysis of collected data.

Anomaly detection is one of the challenges in securing wireless sensor networks
(WSN) [6]. It is important to reduce false alarms. For this purpose, machine learning
algorithms have become very useful and widely used. Very often, they require the dataset
in the node to perform training and evaluation. The authors propose an online locally
weighted projection regression (OLWPR) model for anomaly detection in WSN, where
predictions are only performed by local functions on a subset of data to provide low
computation complexity. The comparison of the OLWPR with existing methods (logistic
regression (LR), random forest (RF), AdaBoost, decision tree (DT), support vector machine
(SVM), artificial neural network (ANN)) showed better results in terms of accuracy, F1
score, average RMSE, and average percentage error.

Another anomaly detection problem was analyzed using machine learning to predict
anomalies and attacks on IoT systems [7]. The supervised learning algorithms LR, SVM,
DT, RF, and ANN detect anomalies in the DS2OS dataset. The evaluation metrics used in
the performance comparison were accuracy, precision, recall, F1 score, confusion matrix,
and area under the receiver operating characteristic (ROC) curve.

To detect anomalies, i.e., features with abnormal behavior in the imbalanced data, an
approach based on a long short-term memory (LSTM) auto-encoder and one-class support
vector machine (OC-SVM) is proposed [8]. The LSTM auto-encoder is trained to learn
the normal traffic pattern and compressed representation of the input data. The OC-SVM
then detects anomaly-based attacks. The experiments on the latest dataset (InSDN) of
intrusion detection systems (IDSs) for software-defined networks show that the proposed
model provides a high detection rate of malicious traffic and significantly reduces the
processing time.

Anomaly detection has been an active area of research for several years. Recently,
the deep learning approach has gained wide acceptance. Many studies in journals and
conferences provide an overview of the progress in various solutions based on machine
learning and data mining [9]. The authors give a comprehensive overview of problem
complexity, representative open source algorithms, pre-training models, and architectures.

Many devices in the IoT can be problematic due to the lack of resources and over-
looked integrated security [10]. An increased number of intrusion attacks can cause many
faults and existing intrusion detection systems cannot provide sufficient protection. The
article highlights the comparison of state-of-the-art machine learning algorithms (k-nearest
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neighbor (KNN), SVM, DT, RF, ANN) for binary and multiclass classification on Bot-
IoT datasets.

Most of the edge devices, on which ML algorithms are expected to run, have limited
memory size and computing power, which requires a deeper understanding of the data. A
detailed review of models, architectures, and requirements provides an insight into the
execution of ML algorithms on large imbalanced datasets.

The main contributions of the presented research paper are:

• Detailed analysis of five ML algorithms (logistic regression, support vector machine,
decision tree, random forest, and artificial neural network) for determination of
anomaly detection performance on traffic traces between different IoT nodes commu-
nicating over DS2OS common middle-ware.

• Proposal of two general and intuitive approaches for keeping comparable classification
results and reducing the size of an imbalanced training dataset by randomly under-
sampling the majority class (‘NL’), and by under-sampling each class with clustering
and selecting the most representative observation samples.

• Evaluation of ML algorithms training times on Raspberry Pi 4 comparing small
randomly specified imbalanced datasets and new reduced balanced datasets, as well
as examining the results of memory usage for suitable implementation on resource-
constrained edge devices.

The paper is organized as follows. In Section 2, we present the edge computing, the
machine learning algorithms, and most relevant evaluation metrics. Section 3 shows the
details of an imbalanced dataset with various anomalies, an explanation of two proposed
determinations of balanced training datasets, experimental results, and detailed perfor-
mance analysis of determined datasets. As an edge device, Raspberry Pi 4 was selected to
train and run local machine learning algorithms for the evaluation of the computation time
and the memory usage. Section 4 draws a conclusion.

2. Related Work
2.1. Edge Computing

An edge device is any device with limited computation, memory, and energy resources,
which is constrained and not easy to upgrade. Usually, it is not possible to add more
memory or battery power without replacing the old device with a new one, which leads to
additional costs. This leads to new solutions where the use of machine learning algorithms
or suitable preprocessing of raw data could be implemented.

Sensor technologies enable numerous challenges in data acquisition, storage, and
processing. Environmental data are subject to an incompleteness that must be acquired and
processed in real-time [11]. The presented solution to this problem was an environmental
gas detection monitoring system implemented on edge devices where sensor data enter
the anomaly detection module (ADM) to determine if the given data are an anomaly based
on the trained model. By using the system on the edge device, a hazardous gas condition
can be quickly detected and action taken. It also provides more robust prediction results
with verified data.

Another example of anomaly detection is rare-event detection system, which uses
unsupervised learning on the IoT edge [12]. This system runs an AGILE gateway frame-
work on Raspberry Pi and uses a connected USB microphone to detect rare events, such
as gunshot, glass break, scream, and siren with 90% precision and recall. By leveraging
two-staged unsupervised machine learning strategy, rare events were detected without
any prior knowledge. Authors argue that results such as these prove that edge and fog
paradigms could be viable solutions, especially for the cases where time is critical and data
processing near the source is highly required.

The use of machine learning (ML) algorithms provides various solutions on edge
devices, but they are restricted by computational capabilities [2]. It is important to measure
the accuracy on a dataset large enough to confirm the obtained results as valid and to
select an optimal choice of hardware. Microcontrollers can be used in IoT applications



Sensors 2021, 21, 4946 4 of 22

to run neural networks with a pre-trained model using libraries optimized for the small
size of memory. The proposed hardware used for IoT edge devices to run a deep neural
network (DNN) model, like support vector machine (SVM), convolutional neural network
(CNN), and logistic regression (LR), include Raspberry Pi model 3 (ARM v8) [13,14],
STM32F401RE (ARM Cortex—M4) [2], and ESP 32 [15]. Based on the detailed review, the
latest development of edge computing provides deployment of ML algorithms to satisfy
the requirements of privacy, energy consumption, and computational complexity.

The performance of clusters of low-resource devices for ML tasks has been studied in
a distributed architecture in tourism applications based on big data [16]. The Raspberry Pi
micro-cluster was configured with industry-standard platforms to evaluate local training
of ML algorithms and execution of ML-based predictions. The distributed architecture
demonstrates the ability to run a small cluster as an edge computing application to deter-
mine the data loading, the model training, and prediction tasks. Analysis of the size of the
dataset and the speed of model training shows the expected performance tradeoff.

Many studies raise the question of whether IoT data should be sent directly to the
cloud or whether pre-processing should be implemented at the network edge and only
the necessary data should be sent [17]. Anomaly detection is presented as an edge mining
technique to reduce the transmission overhead when the frequently monitored activities
contain sparse set of anomalies. The authors present benchmark results for four ML
classifiers (random forest, multilayer perceptron, K-nearest neighbor, and discriminant
analysis) on a Raspberry Pi 3 edge device for different anomaly scenarios. K-nearest
neighbors showed reliable prediction accuracy but requires excessive overhead with time
and energy loss on the edge device, while the others can save time and energy on the edge
device during data transmission.

Edge and cloud computing are presented as smart manufacturing in industrial and
other implementations of sensing and control monitoring [18]. On both, the benchmark-
ing of latencies uses performance metrics of times to analyze an IoT-based machinery
monitoring-based study. A Raspberry Pi 3 runs a Python program to acquire data, compute
the time domain features, and fast-Fourier transform (FFT). The evaluation results show
that the choice between edge and cloud implementation depends on the computation time
of the algorithm and overheads related to data acquisition.

The prototype of a bracelet with sensors helps detect anomalies in users’ daily life or
situations at risk [19]. The complete system consists of sensors and electronic components
for monitoring vital signs and detecting anomalies. Combining multiple modules for
different measurements, a Raspberry Pi, model 3B, serves as a concentrator node on the
Ubuntu Mate operating system. It collects data and provides a system with a Mosquito
server. The data were sent to an NVIDIA Jetson Nano device, which enables in-hardware
processing and edge computing.

Edge anomaly detection for sensor networks appears in many research areas of the
IoT in industrial solutions [20]. Many traditional clustering methods, such as K-means
and C-means have been proposed for data analysis and prediction, but they are not
directly useful for IoT applications in underground mining systems. An edge computing
model with anomaly detection algorithms was proposed for sensor nodes to collect and
pre-process data and then detect anomalies on sink nodes. Performance analysis on the
experimental platform showed acceptable accuracy, delay, and energy consumption in the
required environment.

2.2. Machine Learning

Machine learning (ML) is a subset of artificial intelligence (AI) where the collected
dataset is used to build a model, which can make predictions on completely new data.
By using AI on the IoT, the new field of Artificial Intelligence of Things (AIoT) emerged
with the solutions of running ML algorithms remotely on physical devices [21]. It delivers
intelligent and connected systems, like wearable devices, digital assistants, smart sensors,
vehicle industry, healthcare, manufacturing, supply chain, and others. Currently, IoT
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devices collect and process data to react to an event by presenting the facts. In the future,
the aim of AIoT systems will be to detect events and failures and automatically take an
action and become a brain of the connected systems.

Lately, IoT devices in connection with machine learning (ML) have provided solutions
for smart transportation [22]. The authors reviewed the possibilities of systems that locally
analyze data streams from their sensors in real time. Many proposed infrastructures consist
of three groups of nodes with applied ML algorithms: (i) the IoT nodes at the edge of the
network to support collection and exchange of data; (ii) the fog nodes to offer computing
and storage of data; and (iii) cloud nodes to handle advanced tasks with intensive data
analysis, and run application software. Such systems lead to the enhanced capabilities
of applications, such as route optimization, accident prevention, and detection of road
anomalies in use cases of smart cities where the IoT has been implemented. Additionally,
the review showed a lack of techniques to further enhance the intelligence in applications
on city traffic data, which would help to explore the best solutions.

Intrusion detection systems are one of the key elements of the increasing security
threats. Managing a large amount of unnecessary features using machine learning proved
to be one of the best ways to design an intrusion detection system [23]. A hybrid solution
using decision tree (DT) for feature selection and support vector machine (SVM) for
prediction improved the true positive and false positive criteria and accuracy compared to
the best previously published works.

The problem of anomaly detection in a distributed network of nodes was successfully
studied using a novel support vector machine (SVM)-based approach [24]. The conven-
tional SVM algorithm was reformulated to achieve reduced communication load and
computational complexity through distributed and efficient gradient-based training to
obtain an estimate for the separating hyperplane parameters.

2.2.1. ML Algorithms

Five machine learning (ML) algorithms were considered in the study: logistic regres-
sion (LR), support vector machine (SVM), decision tree (DT), random forest (RF), and
artificial neural network (ANN). They are forms of supervised learning where from the
available input-output pairs a model is built by using an algorithm to learn the mapping
function from the input to the output. The main goal is that the mapping function ap-
proximates well on new input data to predict the output values. ML algorithms were
implemented in Python using scikit-learn and Keras libraries [25]. For dataset storing and
manipulation, a Pandas framework was used. The ML algorithms are:

• Logistic regression (LR) is a linear model for classification [26]. In the scikit-learn
implementation used, regularization is applied by default in Python as a function
call LogisticRegression(class_weight = ’balanced’, max_iter = 10,000, n_jobs = −1). The
solver for the optimization problem is lbfgs [27]. By default, it uses the cross-entropy
loss in a multiclass case. The parameter class_weight was set to balanced mode, which
uses values of output y to automatically adjust weights inversely proportional to
class frequencies in the input data. The parameter max sets the maximum number
of iterations for the solvers to converge and was raised from the default value of
100 to 10,000 to prevent solvers from not converging. The parameter n_jobs sets the
number of CPU cores that can be used in case of a multiclass problem with a one-
vs.-rest (OvR) scheme and was set to −1 for all runs (−1 means using all available
processors), although it had no effect in this case as cross-entropy loss was used for
the multiclass problem.

• Support vector machine (SVM) is a supervised learning model used for classification
and regression [28]. Scikit-learn’s C-Support Vector Classification implementation is
based on libsvm defined as function call SVC(class_weight = ‘balanced’). By default, it
uses a Radial-Basis-Function kernel and l2 regularization with the strength of 1.0 [29].
The multiclass support is handled according to a one-vs.-one scheme. The parameter
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class_weight was set to balanced mode, which uses values of y to automatically adjust
weights inversely proportional to class frequencies in the input data.

• Decision tree (DT) is a non-parametric supervised learning method for classifica-
tion [30]. In the scikit-learn implementation used, it is defined as DecisionTreeClassi-
fier() [31], with default criterion for measuring the quality of a split using Gini impurity.
This is a measure of how often a randomly chosen element from the set would be
incorrectly labeled. No parameters were set outside of their default values.

• Random forest (RF) is one of the ensemble methods which combines the predictions of
several base estimators to improve the robustness of the estimator [32]. Each tree in the
ensemble is built from a sample drawn with a replacement from the training set. By
default, in the function call RandomForestClassifier(n_estmators = 100, n_jobs =−1), there
are 100 trees in the scikit-learn implementation of the algorithm, with Gini impurity
as a default measure of split’s quality. The whole dataset is used to build each tree.
The parameter n_jobs was set to −1 to use all available CPU cores for parallelizing fit
and predicted methods over the trees.

• Artificial neural network (ANN) is a circuit of connected neurons that each deliver
outputs based on their inputs and used predefined activation functions [33]. A Keras
library with Tensorflow backend was used for the ANN training model with 11 input
nodes on the input layer, 32 nodes on a hidden layer with relu (rectified linear) ac-
tivation function, and 8 output nodes with softmax activation function to normalize
the outputs. The selected optimization function was the Adam optimizer. The loss
function was sparse categorical cross entropy and the number of epochs was set to ten.

2.2.2. Evaluation Metrics

The comparison of learning algorithms for the presented approaches of generated
subsets from the original dataset was based on standard performance metrics for evaluating
classification models. They were calculated from results of true positive (TP), false positive
(FP), false negative (FN), and true negative (TN) for multiple classes. For example, the
definitions of TP, FP, FN, and TN for Ci are: (i) TP(Ci)—all the instances of Ci that are
classified as Ci; (ii) FP(Ci)—all the non-Ci instances that are classified as Ci; (ii) FN(Ci)—all
the Ci instances that are not classified as Ci; (vi) TN(Ci) = all the non-Ci instances that are
not classified as Ci. The classification metrics from sklearn.metrics in Python are [34]:

• Accuracy determines how many predictions the classifier got right from all the predic-
tions (Equation (1)). It is defined as a sum of number of true positives (TP) and true
negatives (TN) divided with the sum of number of true positives (TP), true negatives
(TN), false positives (FP), and false negatives (FN):

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

While the higher the number the better in case of an approximately equal number of
samples in all classes, accuracy alone often leads to an error in the classification of the
minor class in imbalanced datasets;

• Precision is the fraction of relevant instances among the retrieved instances (Equa-
tion (2)). It is defined as a number of true positive (TP) results divided by the number
of true positive (TP) results and false positive (FP) results;

Precision =
TP

TP + FP
(2)

• Recall is the fraction of the total amount of relevant instances that were actually
retrieved (Equation (3)). It is defined as a number of true positive (TP) results divided
by true positive (TP) results and false negative (FN) results;

Recall =
TP

TP + FN
(3)
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• F1 score is the harmonic mean of precision and recall (Equation (4)). The highest
possible value of F1 is 1, indicating perfect precision and recall, and the lowest possible
value is 0, if either the precision or the recall is zero;

F1 score =
2 ∗ (Precision ∗ Recall)
(Precision + Recall)

(4)

• Confusion Matrix is a specific table layout meant to visualize the performance of an
algorithm, typically one from a group of supervised learning algorithms. In Python
implementation, each row of the matrix represents the instances in an actual class
while each column represents the instances in a predicted class (Figure 1). It is easy
to see all falsely classified samples. The more samples found on the diagonal of the
matrix, the better the model is.
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3. Results

At the beginning, the dataset description and determination of training datasets is
presented in tables in detail for:

• Imbalanced training datasets (Di)—randomly selected samples from the training set;
• Balanced datasets (DRi)—all anomalous classes and randomly selected samples from

class ‘NL’;
• Balanced datasets (DCi)—selected clusters of representative samples from all classes.

Further, a detailed performance evaluation of ML algorithms for these groups of
training datasets and test dataset is given. The detailed analysis is based on the previously
described performance metrics, shown as a comparison of results to identify which ap-
proach is viable for implementation as edge computing on Raspberry Pi 4. The training
model was performed with 5-fold cross validation. Graphs show only the most repre-
sentative measurement of accuracy, F1 score, and confusion matrixes to give valuable
comparison.

Finally, the training time and memory usage on Raspberry Pi 4 are presented for small
datasets Di, DRi, and DCi to evaluate the performance of the proposed solutions of ML
algorithms for edge computing.

3.1. Dataset

The open source dataset DS2OS contains IoT traffic traces from the application layer
captured in an IoT environment [35]. It includes data from different types of devices, to
be more specific: the source device, destination device, when and what operation was
performed, as well as the normality level information regarding whether an event is
considered an anomaly or not. To use the dataset, the first step was the preprocessing of
raw data. The following steps were applied:

• Removal of corrupted data, unreadable field values;
• Change of NaN values from column ‘NodeType’ to Malicious;
• Replacement of all non-numeric values in column ‘value’ with numeric representa-

tions, all missing values in the same column filled with 0;
• Removal of ‘timestamp’ column from the dataset, as it is irrelevant;
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• Use of label encoding on all columns except on column ‘values’.

There are 357,941 samples available in the dataset, with 13 features: ‘sourceID’,
‘sourceAddress’, ‘sourceType’, ‘sourceLocation’, ‘destinationServiceAddress’, ‘destina-
tionServiceType’, ‘destinationLocation’, ‘accessedNodeAddress’, ‘accessedNodeType’, ‘op-
eration’, ‘value’, ‘timestamp’, and ‘normality’. Each sample represents access from one
node (source) to another node (destination) inside the IoT network. Normality represents
the type of access, defined as normal (‘NL’), and as seven anomalous types: Denial of
Service (‘DoS’), Scan (‘SC’), Malicious Control (‘MC’), Malicious Operation (‘MO’), Spying
(‘SP’), Data Type Probing (‘DP’), Wrong Setup (‘WS’).

The determination of subsets starts with a random split of the original dataset into
initial training and test datasets (80–20%). From the initial training dataset, nine training
subsets were determined and together with the training dataset were used as imbalanced
datasets in the first approach. These subsets consist of samples from all classes with
a fixed random generator to provide comparable results. In the next two approaches,
smaller subsets are determined for the purpose of performing edge computing where an
imbalanced training dataset is transformed into balanced subsets of data. The first presents
the reduction of the largest class ‘NL’ with 97.5% of samples. The second shows the use of
the clustering method to include in training representative samples from all classes.

3.1.1. Imbalanced Subsets

In our first approach, training datasets consist of randomly selected samples from all
classes in previously determined training dataset (Figure 2). Each dataset from D1 to D80
was generated identical between runs, making the results reproducible during many tests.
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Figure 2. Determination of randomly selected training dataset (80%) and test dataset (20%) from the
original dataset (DS2OS), and imbalanced datasets D1, D2, . . . , D80 from the training dataset (D100).

Table 1 shows class distribution in the training dataset, test dataset, and training
subsets. Each subset Di, where i specifies the percentage of samples, includes randomly
selected samples from the original training set.

3.1.2. Random Selection of Class ‘NL’

Our first proposed approach of balanced datasets presents the solution of the under-
sampling method. The idea is to keep only a part of samples from the majority class.
Figure 3 shows datasets that consist of all samples from anomalous classes (‘DoS’, ‘DP’,
’MC’, ’MO’, ’SC’, ’SP’, ‘WS’) and randomly selected samples from the normal class (‘NL’).
Additionally, Table 2 shows class distribution in training subsets DRi, where i specifies the
percentage of samples from class ‘NL’.
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Table 1. Random distribution of DS2OS dataset to training/test dataset and subsets of training
dataset (D1, D2, D5, D10, D15, D20, D40, D60, D100).

Dataset Anomalous Data Normal Data Total

Original dataset (DS2OS) 10,017 278,264 357,941
Training dataset (80%) 8088 278,264 286,352

Test dataset (20%) 1929 69,660 71,589
D1 (1%) 102 2761 2863
D2 (2%) 179 5548 5727
D5 (5%) 410 13,908 14,318

D10 (10%) 842 27,793 28,635
D15 (15%) 1220 41,732 42,952
D20 (20%) 1612 55,658 57,270
D40 (40%) 3224 111,316 114,540
D60 (60%) 4831 166,980 171,811
D80 (80%) 6456 222,625 229,081

D100 (Training dataset) 8088 278,264 286,352
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Table 2. Subsets of classes with anomalous data and percentage of samples from class ‘NL’ with
normal data.

Dataset Anomalous Data Normal Data Total

DR01 (0.1%) 8088 278 8366
DR02 (0.2%) 8088 557 8645
DR05 (0.5%) 8088 1391 9479

DR1 (1%) 8088 2783 10,871
DR2 (2%) 8088 5565 13,653
DR5 (5%) 8088 13,913 22,001

DR10 (10%) 8088 27,826 35,914
DR15 (15%) 8088 41,740 49,828
DR20 (20%) 8088 55,653 63,741

3.1.3. Subsets of Clusters Data

The main goal of the second approach is to reduce the dataset size by selecting a few of
most representative observations while discarding others. We achieve this by clustering the
observation of each class separately and then taking the most representative observations.
The input to our algorithm is the entire dataset (Dold), the threshold that determines the
minimum cluster size (t), and the number of representative observations we want to extract
(n). First, the number of classes presented in the dataset is determined and used for iterating
over each class (c). Second, observations for class c are extracted (Xc) from the entire dataset
and input into the DBSCAN clustering algorithm [36].

It first finds the points in the neighborhood of every point and those points that have
more than a minimum threshold of neighborhood points are determined as core points.
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Then, clusters are determined by the core points that are in each other’s neighborhoods.
All non-core points are then assigned to clusters if they are in the neighborhoods of cluster
core points or to noise otherwise (Figure 4). On average, the time complexity of DBSCAN
is O(nlogn) and optimized implementation use O(n) of memory. Its main advantages are
that it does not require knowing the number of clusters in the dataset in advance, can find
clusters of arbitrary shapes, is robust to noise, is determined by only two parameters (i.e.,
neighborhood size and a minimum threshold of neighboring points), and is able to handle
large datasets.
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Third, we iterate through the clusters determined by the DBSCAN for class c, check
their sizes, and ignore those that are smaller than t to increase robustness and reduce noise.
If the cluster is large enough, then we extract the points of this cluster (Xp) and calculate
their centroid with Equation (5):

q =
∑k

i=1 Xpi

k
(5)

Fourth, we calculate the Euclidean distance between the centroid q and each point in
Xp (x) with Equation (6):

dist(q, x) =
√
(q1 − x1)

2 + (q2 − x2)
2 + . . . + (qr − xr)

2 (6)

Finally, we determine the number of closest points to q, which we add to the reduced
dataset (Dnew), with the parameter n and the size of the cluster. If, for example, the current
cluster presents 70% of all points from class c, we extract 0.7n of observations from it. So,
large clusters provide proportionally more points than small clusters. We repeat these
steps first for the remaining clusters and then for the remaining classes. If there are fewer
points in the cluster than the number allowed, then we just add all points to the Dnew. This
property is especially useful when we are dealing with unbalanced datasets, where this
approach reduces the number of the majority class observations by selecting only the most
representable ones, while keeping all observations of minor classes. The time complexity
of this approach is O(mnlogn), where m presents the number of classes and nlogn presents
the DBSCAN clustering. This could be improved with the use of more efficient incremental
density-based clustering approaches with time complexity O(nm) like DBSCAN++ [37].
On the other hand, the direct clustering of all classes at once and then determining the most
representative observations could also prove beneficial; however, handling of a multi-class
cluster could be challenging.

Figure 5 shows two steps in which smaller datasets DCi are determined from previ-
ously defined clusters as described in the Algorithm 1.
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Algorithm 1: Dataset reduction using clustering.

Input: Dold, t, n
Output: Dnew
Function DatasetReduction(Dold, t, n):
Dnew ← [ ]

for c in findClasses(Dold) do
Xc ← extractClassPoints(Dold,c)
db← DBSCAN.fit(Xc)
for l in db.clusters() do

m← size(l)/size(Xc)
if m > t do

Xp ← db.extractClusterPoints(p)
q← createCentroid(Xp)

dist← distances(q, Xp)
Dnew ← addClosestNPoints(Dnew, dist, Xp, n)

end
end

end
end
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Figure 5. Determination of balanced datasets DCi with selection of representative samples using
clustering method.

Table 3 shows class distribution in training subsets DCi, where i specifies the percent-
age of samples from clusters.

Table 3. Subsets of clustered samples from each class.

Dataset Anomalous Data Normal Data Total

DC01 1770 256 2026
DC02 3061 535 3596
DC05 4834 1395 6229
DC1 6266 2815 9081
DC2 8088 5656 13,744
DC5 8088 14,177 22,265

DC10 8088 28,379 36,467
DC15 8088 42,580 50,668
DC20 8088 56,784 64,872

3.2. Evaluation of Imbalanced Training Datasets

Imbalanced training datasets Di provide general results for selected evaluation metrics
to recognize the smallest randomly selected dataset that gives results, which are slightly, or
not at all improved with a larger number of samples.
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3.2.1. Classification Results

Figures 6–8 show the evaluation results for training datasets Di (D1, D2, D5, D15,
D20, D40, D60, D80, D100) obtained on the test dataset. The LR, DT, and RF algorithms
perform similarly and already reach almost the best performance with small datasets D2,
D5, and D10. The SVM and ANN algorithms perform slightly worse and reach the best
performance gradually with larger training datasets.
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Figure 9 shows accuracy results obtained on training datasets Di and the test dataset.
DT and RF outperform others regarding the achieved accuracy and size of training datasets.
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3.2.2. Confusion Matrix (D20)

Figure 10 presents classification results for training dataset D20 to be used as orien-
tation points in the identification of the best ML algorithm on balanced datasets. LR and
ANN provide good classification of the largest class ‘NL’, but misclassify many anomalies.
DT and RF provide good classification for all other classes, except for class DoS with
375 misclassified samples. Only SVM algorithm correctly classifies all anomalous samples,
but it performs the worst at classifying the normal class ‘NL’.
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3.3. Evaluation of Balanced Training Datasets with Reduced Class ‘NL’

Balanced training datasets DRi were tested to analyze and define the smallest possible
number of randomly selected samples in class ‘NL’ that gives comparable results, which
are close to or even better than those from imbalanced dataset D20.

3.3.1. Classification Results

Figure 11 shows the accuracy results of training balanced datasets DRi and the test
dataset for all ML algorithms. LR has the lowest accuracy for training datasets; it starts
very low, but it increases rapidly and starts catching up to the accuracy of others on
test dataset for DR5 and higher. A similar conclusion stands for ANN, only with higher
accuracy results. Other algorithms perform well and provide comparable results on all
training datasets.
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3.3.2. Confusion Matrix (DR5)

Figure 12 presents classification results for training dataset DR5 with the best accuracy
on the test dataset. LR provides good classification of samples in the largest class ‘NL’, but
misclassifies a large number of samples in anomalous classes (five out of seven classes).
SVM, DT, and RF provide correct classifications for all anomalous classes, except for class
DoS. ANN misclassifies a small number of samples in two anomalous classes and gives
similar results in case of class ‘NL’.

3.4. Evaluation of Balanced Datasets Determined with Clustering

Balanced training datasets DCi were tested to analyze the approach of also minimizing
anomalous classes and to define the smallest training dataset that gives comparable results,
which are close to or even better than those from imbalanced dataset D20.

3.4.1. Classification Results

Figure 13 shows the accuracy results of training balanced datasets DCi and the test
dataset for all ML algorithms. LR has the lowest accuracy for training datasets, it starts
very low but it increases rapidly and starts catching up to the accuracy of others on test
dataset for DC2 and higher. A similar conclusion stands for ANN, only with higher
accuracy results. Other algorithms perform well and provide comparable results on all
training datasets.
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3.4.2. Confusion Matrix (DC5)

Figure 14 presents classification results for training dataset DC5 with the best accuracy
on the test dataset. LR provides good classification of samples in the largest class ‘NL’, but
misclassifies a large number of samples in anomalous classes (five out of seven classes).
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SVM, DT, and RF provide correct classifications for all anomalous classes, except for class
DoS. ANN misclassifies a small number of samples in two anomalous classes and gives
similar results in case of class ‘NL’.
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By analyzing the two confusion matrices of the ML algorithms for datasets DR5
(Figure 12) and DC5 (Figure 14), we see that they are quite comparable. The LR algorithm
is slightly better with DR5, where the main difference is the classification of ‘DoS’ class.
The SVM algorithm results are very similar in both cases, except for ‘NL’ class, which is
slightly worse classified than ‘DP’ and ‘SP’ classes in DR5. DT, RF, and ANN algorithms
give a better classification with dataset DR5 for all classes, except for misclassifications of
class ‘NL’ as class ‘DoS’ class.

3.5. Comparison of ML Algorithms

To perform a comparison of the classification results for imbalanced datasets versus the
two proposed approaches with small balanced datasets, we decided to use the F1 score, which
was very similar to accuracy, but provides a better metric for further analysis. Figure 15 shows
the F1 score obtained on the test dataset for training datasets Di. Figure 16 shows the F1
score obtained on the test dataset for training datasets DRi and DCi. In both cases, the
number of samples is the same, lower than, or equal to 20% of the training dataset.
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To explore the evaluation results on balanced datasets and compare them,
Figures 17–19 show the F1 score for each individual ML algorithm on the test dataset
for training datasets Di, DRi, and DCi. LR, SVM, and ANN perform well on datasets from
DR5 and DC5 on, while DT and RF already give comparable classification results to D1 on
smaller datasets DR01, but they completely fail in the case of datasets DCi.
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Figure 19. F1 score on test dataset for training datasets Di, DRi, DCi for ANN.

Figure 20a shows the F1 score for all datasets Di, DRi, and DCi to identify a suitable
ML algorithm, the selection of training datasets and number of samples. All ML algorithms,
except LR on balanced datasets, perform well on training datasets from D5, DR5, and DC5
forward. For smaller balanced training datasets DRi, only DT and RF perform close to the
expected evaluation results, as shown in Figure 20b. SVM already provides a comparable
F1 score to randomly determined dataset D10 for balanced datasets DR1 and DC2.
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3.6. Edge Computing Results on Raspberry Pi 4

For the experimental study of edge computing, we used Raspberry Pi 4 (RPi4) [38],
which is one of the most popular IoT platforms. This compact single-board computer is
based on a Broadcom BCM2711 chip with Quad core Cortex-A72 (ARM v8) 64-bit system,
has 1 GB SDRAM, and is equipped with a 40-pin GPIO (General Purpose I/O) connector for
interfacing with external sensors. RPi4 runs a full-fledged Linux-based operating system
called Raspberry Pi OS which is stored on a 64 GB micro SD memory card, as there is no
internal storage available. RPi4 also does not include any special hardware for accelerating
ML tasks. However, since it runs a full Linux OS, it is capable of running the same programs
as more powerful computers, as long as they are compiled for an Arm instruction set. This
allowed us to run the same Python scripts and use the same libraries already used on less
resource-constrained devices.

3.6.1. Training Time

For each ML algorithm, the Python program was run five times to measure average
training time and test time for datasets up to 20% of training samples determined from the
training dataset. Larger datasets were very slow, and they are not expected to be used on
edge devices. After the last loop, the trained model was kept to be used for the prediction
of new samples in the test dataset. The implementation of ANN, used in the present Python
code, was not applicable, as the algorithm was frequently killed by the Linux kernel due to
the low amount of available memory.

Figure 21a shows average training times for imbalanced datasets Di and balanced
datasets DRi and DCi. They start increasing for datasets larger than 2% for three algorithms
(SVM, RF, and LR), but they hardly change for the DT algorithm from 1 to 6 s for the largest
dataset. However, Di and DRi datasets require larger training time as DCi. The SVM
algorithm is the most time consuming in all cases (Figure 21b), except for DCi datasets
being faster than the other two. Training times are the same for the LR algorithm. Standard
deviations of the presented averaged results increase from 0.001 to 0.5, depending on the
size of the dataset and training algorithm. Prediction includes only output computation
times, which takes about 1 s for all ML algorithms.
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3.6.2. Memory Usage

The memory usage on Raspberry Pi 4 depends on the size of datasets and ML algo-
rithms. In the case of large datasets, it would be necessary to define the pre-processing
methods and select the suitable algorithm in advance. Based on the evaluation of small
imbalanced datasets Di, and balanced datasets DRi and DCi, we track memory usage with
the standard Python library resource [39]. The function max_usage consists of a program
call resource.getrusage().ru_maxrss, which indicates the maximum amount of memory that is
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currently allocated by the process, as reported by the host operating system. For each run
of ML algorithm and selected dataset, every 10 ms, memory usage is measured and finally
the maximum memory allocation is returned to be evaluated.

Figure 22 shows memory usage when running a Python program for all three datasets
Di, DRi, and DCi. The allocated amount of RAM increases for two ML algorithms (SVM,
RF) for subsets sizes larger than 5% of samples. The SVM algorithm is the most consuming
while it requires more than 500 MB of RAM for datasets DR15 and DR20. Minor differences
in memory usage occur with certain data but do not exceed 30 MB, which does not affect
the performance itself. The other two ML algorithms (LR, DT) require the same amount of
RAM, approximately 360 MB, independently of dataset size.
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algorithms RAM usage of 360 MB and with coincidence of RF algorithm with RAM usage for datasets
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Additionally, the prediction on a test set requires an additional amount of RAM for
all ML algorithms, up to 5%. The exact measurement of memory usage is a complex task
influenced by various factors, e.g., operating system, program run-time environment, data
structures used by algorithms, and others. For the purpose of this study, the presented
results of the memory usage are rather preliminary and will be further explored with the
use of Raspberry Pi 4 in edge computing for extended data analysis, pre-processing, and
machine learning operations.

4. Conclusions

This paper presents an evaluation of the results of machine learning algorithms on a
DS2OS imbalanced dataset to identify anomalies. It is obvious that the smaller balanced
datasets give comparable results to the larger unbalanced datasets for all evaluation metrics.
The proposed approach is first based on all samples from anomalous classes and the
elimination of samples from the largest class ‘NL’. Afterwards, in the second approach, the
clustering method defines datasets with representative samples from all classes in case of
smaller datasets (DC01, DC02, DC05, DC1) and datasets with all samples from anomalous
classes and samples from computed clusters of class ‘NL’ (DC2, DC5, DC10, DC15, DC20).

Not all examined ML algorithms provide satisfactory prediction results, which was
shown in confusion matrixes, as either anomalous classes or normal class ‘NL’ are misclas-
sified. In the evaluation of ML performance on Di datasets, the misclassifications generally
occur for anomalous classes, while on DRi and DCi datasets, the misclassifications almost
exclusively occur for the normal class ‘NL’, due to its most under-sampled cases. The
most promising and acceptable solution for edge computing is the DT algorithm, which
provides similar results for F1 score, while having low resource consumption and fast
runtime performance on the smallest dataset DR01. Thus, we can conclude that edge
computing can be a suitable alternative to cloud solutions. Analysis of a problem domain
is required in order to select the best evaluation methods and ML algorithms, without too
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much of an impact on the desired performance results as shown in evaluation results of
training time and memory usage on Raspberry Pi 4.

For the future, we plan to use more large imbalanced datasets, preprocessing, and
optimization methods, and adopt several ML algorithms to be implemented as incremen-
tal learning in edge computing. The determination of smaller datasets, comparable or
better classification, shorter execution times, and lower memory consumptions will be
investigated and tested, especially for the additional resource constrained IoT devices.

Author Contributions: Conceptualization, M.T.; methodology, A.H., J.Š., and M.T.; software, J.Š. and
A.H.; validation, A.H. and M.T.; formal analysis, A.H.; investigation, A.H., J.Š. and M.T.; resources,
M.T.; data curation, J.Š. and M.T.; writing—original draft preparation, A.H. and M.T.; writing—review
and editing, A.H. and M.T.; visualization, M.T.; supervision, M.T.; project administration, J.Š.; funding
acquisition, M.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Slovenian Research Agency through the ARRS Programme
Pervasive Computing, P2-0359 (B).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The DS2OS dataset used in this study is available online from Kaggle:
https://www.kaggle.com/francoisxa/ds2ostraffictraces (accessed on 20 November 2020).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yousefpour, A.; Fung, C.; Nguyen, T.; Kadiyala, K.; Jalali, F.; Niakanlahiji, A.; Kong, J.; Jue, J.P. All one needs to know about fog

computing and related edge computing paradigms: A complete survey. J. Syst. Archit. 2019, 98, 289–330. [CrossRef]
2. Merenda, M.; Porcaro, C.; Iero, D. Edge Machine Learning for AI-Enabled IoT Devices: A Review. Sensors 2020, 20, 2533.

[CrossRef] [PubMed]
3. Premsankar, G.; Francesco, M.D.; Talb, T. Edge Computing for the Internet of Things. IEEE Internet Things J. 2018, 5, 1275–1284.

[CrossRef]
4. Chen, J.; Ran, X. Deep Learning With Edge Computing: A Review. Proc. IEEE 2019, 107, 1655–1674. [CrossRef]
5. Kozik, R.; Choras, M.; Ficco, M.; Palmieri, F. A scalable distributed machine learning approach for attack detection in edge

computing environments. J. Parallel Distrib. Comput. 2018, 119, 18–26. [CrossRef]
6. Poornima, I.G.A.; Paramasivan, B. Anomaly detection in wireless sensor network using machine learning algorithm. Comput.

Commun. 2020, 151, 331–337. [CrossRef]
7. Hasan, M.; Islam, M.M.; Zarif, M.I.I.; Hashem, M.M.A. Attack and anomaly detection in IoT sensors in IoT sites using machine

learning approaches. Internet Things 2019, 7, 100059. [CrossRef]
8. Elsayed, M.S.; Le-Khac, N.A.; Dev, S.; Jurcut, A.D. Network Anomaly Detection Using LSTM Based Auto-encoder. In Proceedings

of the 16th ACM Symposium on QoS and Security for Wireless and Mobile Networks, Alicante, Spain, 16–20 November 2020.
9. Pang, G.; Shen, C.; Cao, L.; Hengel, A. Deep Learning for Anomaly Detection: A Review. ACM Comput. Surv. 2021, 54, 1–38.

[CrossRef]
10. Churcher, A.; Ullah, R.; Ahmad, J.; Rehman, S.; Masood, F.; Gogate, M.; Alqahtani, F.; Nour, B.; Buchanan, W.J. An Experimental

Analysis of Attack Classification Using Machine Learning in IoT Networks. Sensors 2021, 21, 446. [CrossRef] [PubMed]
11. Kim, J.M.; Cho, W.C.; Kim, D. Anomaly Detection of Environmental Sensor Data. In Proceedings of the 2020 International

Conference on Information and Communication Technology Conference (ICTC), Jeju, Korea, 21–23 October 2020.
12. Janjua, Z.H.; Vecchio, M.; Antonini, M.; Antonelli, F. IRESE: An intelligent rare-event detection system using unsupervised

learning on the IoT edge. Eng. Appl. Artif. Intel. 2019, 84, 41–50. [CrossRef]
13. Sajjad, M.; Nasir, M.; Muhammad, K.; Khan, S.; Jan, Z.; Sangaiah, A.K.; Elhoseny, M.; Baik, S.W. Raspberry Pi assisted face

recognition framework for enhanced law-enforcement services in smart cities. Future Gener. Comput. Syst. 2017, 108, 995–1007.
[CrossRef]

14. Anandhalli, M.; Baligar, V.P. A novel approach in real-time vehicle detection and tracking using Raspberry Pi. Alex. Eng. J. 2017,
57, 1597–1607. [CrossRef]

15. Xu, R.; Nikouei, S.Y.; Chen, Y.; Polunchenko, A.; Song, S.; Deng, C.; Faughan, T.R. Real-Time Human Objects Tracking for Smart
Surveillance at the Edge. In Proceedings of the IEEE International Conference on Communications (ICC), Kansas City, MO, USA,
20–24 May 2018; pp. 20–24.

16. Komninos, A.; Simou, I.; Gkorgkolis, N.; Garofalakis, J. Performance of Raspberry Pi microclusters for Edge Machine Learning
in Tourism. In Proceedings of the Poster and Workshop Sessions of AmI-2019, the 2019 European Conference on Ambient
Intelligence, Rome, Italy, 4 November 2019.

https://www.kaggle.com/francoisxa/ds2ostraffictraces
https://www.kaggle.com/francoisxa/ds2ostraffictraces
http://doi.org/10.1016/j.sysarc.2019.02.009
http://doi.org/10.3390/s20092533
http://www.ncbi.nlm.nih.gov/pubmed/32365645
http://doi.org/10.1109/JIOT.2018.2805263
http://doi.org/10.1109/JPROC.2019.2921977
http://doi.org/10.1016/j.jpdc.2018.03.006
http://doi.org/10.1016/j.comcom.2020.01.005
http://doi.org/10.1016/j.iot.2019.100059
http://doi.org/10.1145/3439950
http://doi.org/10.3390/s21020446
http://www.ncbi.nlm.nih.gov/pubmed/33435202
http://doi.org/10.1016/j.engappai.2019.05.011
http://doi.org/10.1016/j.future.2017.11.013
http://doi.org/10.1016/j.aej.2017.06.008


Sensors 2021, 21, 4946 22 of 22

17. Kamaraj, K.; Dezfouli, B.; Liu, Y. Edge mining on IoT Devices using Anomaly Detection. In Proceedings of the APSIPA Annual
Summit and Conference 2019, Lanzhou, China, 18–21 November 2019.

18. Verma, A.; Goyal, A.; Kumara, S.; Kurfess, T. Edge-cloud computing performance benchmarking for IoT based machinery
vibration monitoring. Manuf. Lett. 2021, 27, 39–41. [CrossRef]

19. Marquez-Sanchez, S.; Campero-Jurado, I.; Robles-Camarillo, D.; Rodriguez, S.; Corchado-Rodriguez, J.M. BeSafe B2.0 Smart
Multisensory Platform for Safety in Workplaces. Sensors 2021, 21, 3371.

20. Liu, C.; Su, X.; Li, C. Edge Computing for Data Anomaly Detection of Multi-Sensors in Underground Mining. Electronics 2021, 10,
302. [CrossRef]

21. Patel, K.K.; Patel, S.M. Internet of things-IOT: Definition, characteristics, architecture, enabling technologies, application & future
challenges. Int. J. Eng. Comput. Sci. 2016, 6, 6122–6131.

22. Zantalis, F.; Koulouras, G.; Karabetsos, S.; Kandris, D. A Review of Machine Learning and IoT in Smart Transportation. Future
Internet 2019, 11, 94. [CrossRef]

23. Serkani, E.; Gharaee, H.; Mohammadzadeh, N. Anomaly Detection Using SVMs as Classifier and Decision Tree for Optimizing
Feature Vectors. Int. J. Inf. Secur. 2019, 11, 159–171.

24. Ergen, T.; Kozat, S.S. A Novel Distributed anomaly detection Algorithm Based on Support Vector Machines. Digit. Signal Process.
2020, 99, 102657. [CrossRef]

25. Keras. Available online: https://keras.io/ (accessed on 20 November 2020).
26. Linear Models (Logistic Regression). Available online: https://scikit-learn.org/stable/modules/linear_model.html#logistic-

regression (accessed on 20 November 2020).
27. Logistic Regression. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.

html#sklearn.linear_model.LogisticRegression (accessed on 20 November 2020).
28. Support Vector Machines. Available online: https://scikit-learn.org/stable/modules/svm.html#svm (accessed on 20 Novem-

ber 2020).
29. SVM-libsvm. Available online: https://www.csie.ntu.edu.tw/~{}cjlin/papers/libsvm.pdf (accessed on 20 November 2020).
30. Decision Trees. Available online: https://scikit-learn.org/stable/modules/tree.html (accessed on 20 November 2020).
31. DT Function. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html

(accessed on 20 November 2020).
32. Forests of Randomized Trees. Available online: https://scikit-learn.org/stable/modules/ensemble.html#forest (accessed on

20 November 2020).
33. Neural Network Models. Available online: https://scikit-learn.org/stable/modules/neural_networks_supervised.html (ac-

cessed on 20 November 2020).
34. Metrics and Scoring: Quantifying the Quality of Predictions. Available online: https://scikit-learn.org/stable/modules/model_

evaluation.html (accessed on 20 November 2020).
35. DS2OS Traffic Traces. Available online: https://www.kaggle.com/francoisxa/ds2ostraffictraces (accessed on 20 November 2020).
36. Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with

noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, Portland, OR, USA,
2–4 August 1996; pp. 226–231.

37. Jang, J.; Jiang, H. DBSCAN++: Towards fast and scalable density clustering. In Proceedings of the International Conference on
Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 3019–3029.

38. Raspberry Pi 4. Available online: https://www.raspberrypi.org/products/raspberry-pi-4-model-b/specifications (accessed on
15 January 2021).

39. Resource. Available online: https://docs.python.org/3/library/resource.html (accessed on 18 June 2021).

http://doi.org/10.1016/j.mfglet.2020.12.004
http://doi.org/10.3390/electronics10030302
http://doi.org/10.3390/fi11040094
http://doi.org/10.1016/j.dsp.2020.102657
https://keras.io/
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_model.LogisticRegression
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_model.LogisticRegression
https://scikit-learn.org/stable/modules/svm.html#svm
https://www.csie.ntu.edu.tw/~{}cjlin/papers/libsvm.pdf
https://scikit-learn.org/stable/modules/tree.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/ensemble.html#forest
https://scikit-learn.org/stable/modules/neural_networks_supervised.html
https://scikit-learn.org/stable/modules/model_evaluation.html
https://scikit-learn.org/stable/modules/model_evaluation.html
https://www.kaggle.com/francoisxa/ds2ostraffictraces
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/specifications
https://docs.python.org/3/library/resource.html

	Introduction 
	Related Work 
	Edge Computing 
	Machine Learning 
	ML Algorithms 
	Evaluation Metrics 


	Results 
	Dataset 
	Imbalanced Subsets 
	Random Selection of Class ‘NL’ 
	Subsets of Clusters Data 

	Evaluation of Imbalanced Training Datasets 
	Classification Results 
	Confusion Matrix (D20) 

	Evaluation of Balanced Training Datasets with Reduced Class ‘NL’ 
	Classification Results 
	Confusion Matrix (DR5) 

	Evaluation of Balanced Datasets Determined with Clustering 
	Classification Results 
	Confusion Matrix (DC5) 

	Comparison of ML Algorithms 
	Edge Computing Results on Raspberry Pi 4 
	Training Time 
	Memory Usage 


	Conclusions 
	References

