Voltammetric E-Tongue for Honey Adulteration Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Physicochemical Parameters
pH and Free Acidity
Electrical Conductivity (EC)
Hydroxymethylfurfural (HMF) Content
2.2.2. Electrochemical Measurement
2.3. Statistical Analysis
3. Results and Discussion
3.1. Influence of Honey Adulteration on Physicochemical Parameters
3.2. Voltammetric Tongue
3.3. Honey Classification Using Statistical Analysis
3.3.1. Linear Discriminant Analysis
3.3.2. Support Vector Machines Model
3.4. Partial Least Squares Regression Correlation of e-Tongue Data with Physicochemical Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Juan-Borrás, M.; Soto, J.; Gil-Sánchez, L.; Pascual-Maté, A.; Escriche, I. Antioxidant activity and physico-chemical parameters for the differentiation of honey using a potentiometric electronic tongue. J. Sci. Food Agric. 2017, 97, 2215–2222. [Google Scholar] [CrossRef] [Green Version]
- Gan, Z.; Yang, Y.; Li, J.; Wen, X.; Zhu, M.; Jiang, Y.; Ni, Y. Using sensor and spectral analysis to classify botanical origin and determine adulteration of raw honey. J. Food Eng. 2016, 178, 151–158. [Google Scholar] [CrossRef]
- Fakhlaei, R.; Selamat, J.; Khatib, A.; Razis, A.F.A.; Sukor, R.; Ahmad, S.; Babadi, A.A. The Toxic Impact of Honey Adulteration: A Review. Foods 2020, 9, 1538. [Google Scholar] [CrossRef]
- Sobrino-Gregorio, L.; Bataller, R.; Soto, J.; Escriche, I. Monitoring honey adulteration with sugar syrups using an automatic pulse voltammetric electronic tongue. Food Control 2018, 91, 254–260. [Google Scholar] [CrossRef]
- Sobrino-Gregorio, L.; Tanleque-Alberto, F.; Bataller, R.; Soto, J.; Escriche, I. Using an automatic pulse voltammetric electronic tongue to verify the origin of honey from Spain, Honduras, and Mozambique. J. Sci. Food Agric. 2020, 100, 212–217. [Google Scholar] [CrossRef]
- Peris, M.; Escuder-Gilabert, L. Electronic noses and tongues to assess food authenticity and adulteration. Trends Food Sci. Technol. 2016, 58, 40–54. [Google Scholar] [CrossRef] [Green Version]
- Bougrini, M.; Tahri, K.; Saidi, T.; El Hassani, N.E.A.; Bouchikhi, B.; El Bari, N. Classification of honey according to geographical and botanical origins and detection of its adulteration using voltammetric electronic tongue. Food Anal. Methods 2016, 9, 2161–2173. [Google Scholar] [CrossRef]
- Naila, A.; Flint, S.H.; Sulaiman, A.Z.; Ajit, A.; Weeds, Z. Classical and novel approaches to the analysis of honey and detection of adulterants. Food Control 2018, 90, 152–165. [Google Scholar] [CrossRef]
- Elamine, Y.; Inácio, P.M.; Lyoussi, B.; Anjos, O.; Estevinho, L.M.; da Graça Miguel, M.; Gomes, H.L. Insight into the sensing mechanism of an impedance based electronic tongue for honey botanic origin discrimination. Sens. Actuators B Chem. 2019, 285, 24–33. [Google Scholar] [CrossRef] [Green Version]
- Ghasemi-Varnamkhasti, M.; Mohtasebi, S.S.; Siadat, M. Biomimetic-based odor and taste sensing systems to food quality and safety characterization: An overview on basic principles and recent achievements. J. Food Eng. 2010, 100, 377–387. [Google Scholar] [CrossRef]
- Di Rosa, A.R.; Marino, A.M.; Leone, F.; Corpina, G.G.; Giunta, R.P.; Chiofalo, V. Characterization of sicilian honeys pollen profiles using a commercial e-tongue and melissopalynological analysis for rapid screening: A pilot study. Sensors 2018, 18, 4065. [Google Scholar] [CrossRef] [Green Version]
- Podrażka, M.; Bączyńska, E.; Kundys, M.; Jeleń, P.S.; Witkowska Nery, E. Electronic tongue—A tool for all tastes? Biosensors 2018, 8, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Ràfols, C.; Serrano, N.; Ariño, C.; Esteban, M.; Díaz-Cruz, J.M. Voltammetric electronic tongues in food analysis. Sensors 2019, 19, 4261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escriche, I.; Kadar, M.; Domenech, E.; Gil-Sánchez, L. A potentiometric electronic tongue for the discrimination of honey according to the botanical origin. Comparison with traditional methodologies: Physicochemical parameters and volatile profile. J. Food Eng. 2012, 109, 449–456. [Google Scholar] [CrossRef]
- Bratov, A.; Abramova, N.; Ipatov, A. Recent trends in potentiometric sensor arrays—A review. Anal. Chim. Acta 2010, 678, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Del Valle, M. Sensor arrays and electronic tongue systems. Int. J. Electrochem. 2012. [Google Scholar] [CrossRef] [Green Version]
- Veloso, A.C.; Sousa, M.E.; Estevinho, L.; Dias, L.G.; Peres, A.M. Honey evaluation using electronic tongues: An overview. Chemosensors 2018, 6, 28. [Google Scholar] [CrossRef] [Green Version]
- El Hassani, N.E.A.; Tahri, K.; Llobet, E.; Bouchikhi, B.; Errachid, A.; Zine, N.; El Bari, N. Emerging approach for analytical characterization and geographical classification of Moroccan and French honeys by means of a voltammetric electronic tongue. Food Chem. 2018, 243, 36–42. [Google Scholar] [CrossRef]
- Yin, T.; Yang, Z.; Miao, N.; Zhang, X.; Li, Q.; Wang, Z.; Lan, Y. Development of a remote electronic tongue system combined with the VMD-HT feature extraction method for honey botanical origin authentication. Measurement 2021, 171, 108555. [Google Scholar] [CrossRef]
- Men, H.; Gao, H.; Li, J.; Liu, J.; Zhang, Y. Fuzzy ARTMAP for the Adulterated Honey Discrimination with Voltammetric Electronic Tongue. Sens. Transducers 2014, 178, 40. [Google Scholar]
- Oroian, M.; Paduret, S.; Ropciuc, S. Honey adulteration detection: Voltammetric e-tongue versus official methods for physicochemical parameter determination. J. Sci. Food Agric. 2018, 98, 4304–4311. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, K.; Tudu, B.; Bandyopadhyay, R.; Chatterjee, A. Identification of monofloral honey using voltammetric electronic tongue. J. Food Eng. 2013, 117, 205–210. [Google Scholar] [CrossRef]
- Gallardo, J.; Alegret, S.; Del Valle, M. Application of a potentiometric electronic tongue as a classification tool in food analysis. Talanta 2005, 66, 1303–1309. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, A.; Shakaff, A.Y.M.; Masnan, M.J.; Ahmad, M.N.; Adom, A.H.; Jaafar, M.N.; Subari, N. A biomimetic sensor for the classification of honeys of different floral origin and the detection of adulteration. Sensors 2011, 11, 7799–7822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Major, N.; Marković, K.; Krpan, M.; Šarić, G.; Hruškar, M.; Vahčić, N. Rapid honey characterization and botanical classification by an electronic tongue. Talanta 2011, 85, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Maamor, H.N.; Rashid, F.N.A.; Zakaria, N.Z.I.; Zakaria, A.; Kamarudin, L.M.; Jaafar, M.N.; Adnan, K.N.A.K. Bio-inspired taste assessment of pure and adulterated honey using multi-sensing technique. In Proceedings of the 2014 2nd International Conference on Electronic Design (ICED), Penang, Malaysia, 19–21 August 2014; pp. 270–274. [Google Scholar] [CrossRef]
- Wei, Z.; Wang, J. Tracing floral and geographical origins of honeys by potentiometric and voltammetric electronic tongue. Comput. Electron. Agric. 2014, 108, 112–122. [Google Scholar] [CrossRef]
- Lvova, L. Electronic tongue principles and applications in the food industry. In Electronic Noses and Tongues in Food Science; Academic Press: Cambridge, MA, USA, 2016; pp. 151–160. [Google Scholar] [CrossRef]
- White, J.W. Spectrophotometric method for hydroxymethylfurfural in honey. J. Assoc. Off. Anal. Chem. 1979, 62, 509–514. [Google Scholar] [CrossRef] [PubMed]
- Reshma, M.V.; Shyma, S.; George, T.M.; Rishin, A.V.; Ravi, K.C.; Shilu, L. Study on the physicochemical parameters, phenolic profile and antioxidant properties of Indian honey samples from extrafloral sources and multi floral sources. Int. Food Res. J. 2016, 23. Available online: http://www.ifrj.upm.edu.my/23%20(05)%202016/(25).pdf (accessed on 25 May 2021).
- Almeida-Muradian, L.B.D.; Matsuda, A.H.; Bastos, D.H.M. Physicochemical parameters of Amazon Melipona honey. Quim. Nova 2007, 30, 707–708. [Google Scholar] [CrossRef] [Green Version]
- Özcan, M.; Arslan, D.; Ceylan, D.A. Effect of inverted saccharose on some properties of honey. Food Chem. 2006, 99, 24–29. [Google Scholar] [CrossRef]
- Khalil, M.; Moniruzzaman, M.; Boukraâ, L.; Benhanifia, M.; Islam, M.; Sulaiman, S.A.; Gan, S.H. Physicochemical and antioxidant properties of Algerian honey. Molecules 2012, 17, 11199–11215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodor, Z.; Kovacs, Z.; Rashed, M.S.; Kókai, Z.; Dalmadi, I.; Benedek, C. Sensory and Physicochemical Evaluation of Acacia and Linden Honey Adulterated with Sugar Syrup. Sensors 2020, 20, 4845. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, E.E.; Mostafa, S.R.; Sorour, M.A. Physical properties of different adulterated Egyptian honey. Int. J. Tech. Res. Sci. 2018. [Google Scholar] [CrossRef]
- Stihi, C.; Chelarescu, E.D.; Duliu, O.G.; Toma, L.G. Characterization of Romanian honey using physico-chemical parameters and the elemental content determined by analytical techniques. Rom. Rep. Phys. 2016, 68, 362–369. [Google Scholar]
- Moloudian, H.; Abbasian, S.; Nassiri-Koopaei, N.; Tahmasbi, M.R.; Alsadat Afzal, G.; Ahosseini, M.S.; Khoshayand, M.R. Characterization and classification of Iranian honey based on physicochemical properties and antioxidant activities, with chemometrics approach. Iran. J. Pharm. Sci. IJPR 2018, 17, 708. [Google Scholar]
- Baloš, M.Ž.; Popov, N.; Vidaković, S.; Pelić, D.L.; Pelić, M.; Mihaljev, Ž.; & Jakšić, S. Electrical conductivity and acidity of honey. Arch. Vet. Med. 2018, 11, 91–101. [Google Scholar] [CrossRef]
- Czipa, N.; Phillips, C.J.; Kovács, B. Composition of acacia honeys following processing, storage and adulteration. J. Food Sci. Technol. 2019, 56, 1245–1255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dan, P.N.S.M.; Omar, S.; Ismail, W.I.W. Physicochemical Analysis of Several Natural Malaysian Honeys and Adulterated Honey. IOP Conf. Ser. Mater. Sci. Eng. 2018, 440, 012049. [Google Scholar] [CrossRef]
- Ismail, N.I. Effects of Sugar Adulterants on the Physicochemical Properties of Natural Honey: Norjihada Izzah Ismail, Mohammed Rafiq Abdul Kadir, Mahaneem Mohamed, Razauden Mohamed Zulkifli. J. Tomogr. Syst. Sens. Appl. 2020, 2. Available online: http://tssa.my/index.php/jtssa/article/view/101 (accessed on 24 May 2021).
- Guellis, C.; Valério, D.C.; Bessegato, G.G.; Boroski, M.; Dragunski, J.C.; Lindino, C.A. Non-targeted method to detect honey adulteration: Combination of electrochemical and spectrophotometric responses with principal component analysis. J. Food Compos. Anal. 2020, 89, 103466. [Google Scholar] [CrossRef]
- Barbosa, R.M.; de Paula, E.S.; Paulelli, A.C.; Moore, A.F.; Souza, J.M.O.; Batista, B.L.; Barbosa, F. Recognition of organic rice samples based on trace elements and support vector machines. J. Food Compos. Anal. 2016, 45, 95–100. [Google Scholar] [CrossRef]
- Tan, P.N.; Steinbach, M.; Kumar, V. Data Mining Introduction; Pearson Addison-Wesley: Boston, MA, USA, 2006. [Google Scholar]
Parameter | Honey | F-Value | |
---|---|---|---|
Adulterated | Authentic | ||
Free acidity (meq/kg) | 11.69 (1.28) a | 28.14(1.57) b | 66.05 *** |
pH | 4.29(0.04) a | 4.31(0.05) a | 0.07 ns |
EC (μS·cm−1) | 328.91(18.39) a | 373.08(22.52) a | 2.31 ns |
5-HMF (mg/kg) | 64.62(7.18) b | 8.94(8.79) a | 24.06 *** |
Accuracy (%) | Sensitivity (%) | Specificity (%) | ||
---|---|---|---|---|
e-Tongue | ||||
LDA | Calibration | 92.31 | 82.61 | 98.59 |
Validation | 96.55 | 91.67 | 100.00 | |
SVM | Calibration | 100.00 | 100.00 | 100.00 |
Validation | 100.00 | 100.00 | 100.00 | |
Physicochemical parameters | ||||
LDA | Calibration | 84.61 | 61.70 | 100 |
Validation | 89.65 | 73.91 | 100 | |
SVM | Calibration | 100.00 | 100.00 | 100.00 |
Validation | 100.00 | 100.00 | 100.00 | |
Physicochemical parameters + e-tongue | ||||
LDA | Calibration | 94.87 | 85.71 | 100 |
Validation | 89.65 | 78.57 | 100 | |
SVM | Calibration | 100.00 | 100.00 | 100.00 |
Validation | 100.00 | 100.00 | 100.00 |
Parameter | Data | Calibration | Validation | ||||||
---|---|---|---|---|---|---|---|---|---|
Slope | Offset | RMSE | R2 | Slope | Offset | RMSE | R2 | ||
Free acidity | E-tongue (mimum + maxim) | 0.344 | 11.056 | 11.271 | 0.344 | 0.241 | 15.530 | 15.652 | 0.245 |
E-tongue—minimum | 0.335 | 11.211 | 11.349 | 0.335 | 0.237 | 15.764 | 15.690 | 0.241 | |
E-tongue—maximum | 0.288 | 12.009 | 11.746 | 0.288 | 0.242 | 14.740 | 15.624 | 0.247 | |
pH | E-tongue (mimum + maxim) | 0.703 | 1.281 | 0.243 | 0.704 | 0.570 | 1.916 | 0.303 | 0.516 |
E-tongue—minimum | 0.506 | 2.138 | 0.314 | 0.506 | 0.496 | 2.207 | 0.331 | 0.424 | |
E-tongue—maximum | 0.518 | 2.084 | 0.310 | 0.518 | 0.370 | 2.779 | 0.335 | 0.411 | |
EC | E-tongue (mimum + maxim) | 0.940 | 21.043 | 48.527 | 0.840 | 0.874 | 41.407 | 66.515 | 0.842 |
E-tongue—minimum | 0.842 | 55.467 | 78.784 | 0.842 | 0.825 | 52.313 | 77.083 | 0.788 | |
E-tongue—maximum | 0.922 | 27.378 | 55.351 | 0.922 | 0.844 | 52.770 | 74.571 | 0.801 | |
HMF | E-tongue (mimum + maxim) | 0.201 | 33.271 | 72.82 | 0.201 | 0.259 | 16.107 | 59.400 | 0.292 |
E-tongue—minimum | 0.085 | 38.089 | 77.919 | 0.085 | 0.173 | 24.166 | 64.362 | 0.169 | |
E-tongue—maximum | 0.193 | 33.604 | 73.188 | 0.193 | 0.275 | 15.900 | 57.671 | 0.333 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciursa, P.; Oroian, M. Voltammetric E-Tongue for Honey Adulteration Detection. Sensors 2021, 21, 5059. https://doi.org/10.3390/s21155059
Ciursa P, Oroian M. Voltammetric E-Tongue for Honey Adulteration Detection. Sensors. 2021; 21(15):5059. https://doi.org/10.3390/s21155059
Chicago/Turabian StyleCiursa, Paula, and Mircea Oroian. 2021. "Voltammetric E-Tongue for Honey Adulteration Detection" Sensors 21, no. 15: 5059. https://doi.org/10.3390/s21155059
APA StyleCiursa, P., & Oroian, M. (2021). Voltammetric E-Tongue for Honey Adulteration Detection. Sensors, 21(15), 5059. https://doi.org/10.3390/s21155059