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Abstract: The main goal of an Earthquake Early Warning System (EEWS) is to alert before the arrival
of damaging waves using the first seismic arrival as a proxy, thus becoming an important operational
tool for real-time seismic risk management on a short timescale. EEWSs are based on the use of
scaling relations between parameters measured on the initial portion of the seismic signal after the
arrival of the first wave. To explore the plausibility of EEWSs around the Eastern Gulf of Corinth
and Western Attica, amplitude and frequency-based parameters, such as peak displacement (Pd), the
integral of squared velocity (I2

V ) and the characteristic period (τc), were analyzed. All parameters
were estimated directly from the initial 3 s, 4 s, and 5 s signal windows (tw) after the P arrival.
While further study is required on the behavior of the proxy quantities, we propose that the I2

V
parameter and the peak amplitudes of the first seconds of the P waves present significant stability
and introduce the possibility of a future on-site EEWS for areas affected by earthquakes located in
the Eastern Gulf of Corinth and Western Attica. Parameters related to regional-based EEWS need to
be further evaluated.

Keywords: earthquake; early warning system; seismic risk mitigation; Gulf of Corinth

1. Introduction

The increasing urbanization worldwide has led to the establishment of large metropoli-
tan areas near major active faults (whether on land or offshore), which pose a serious threat
to the human population and infrastructures. Currently, an accurate earthquake forecast
method appears to be far from operational. Consequently, attention has shifted to Earth-
quake Early Warning Systems (EEWS) for reducing earthquake risk [1–6], offering, in
real-time, information for the incoming destructive seismic waves. EEWS leverage the
nature of the different seismic waves; since “P waves carry information while S waves carry
energy” [7], the fast, yet low amplitude P waves are analyzed to determine the earthquake
damage potential, mostly caused by the slower, high-amplitude S-waves.

Over the last two decades, due to rapid technological advances in the fields of signal
processing and data transmission, effective techniques have been developed to analyze
seismological data in almost real-time [7–10]. In this direction, real-time seismology inte-
grates fast and instantaneous data broadcast systems with automatic signal processing,
providing reliable estimates of earthquake parameters (location and magnitude) in the first
few seconds during its occurrence [10]. Modern EEWSs can offer a few to tens of seconds
of warning time for impending ground motions, allowing for mitigation measures in the
short term [11,12]—such an approach is in use in Japan [2], Taiwan [13,14], Mexico [11],
and the United States of America [15]. The information produced by the aforementioned
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systems can be used by civil protection authorities to minimize the damages and losses
(human and economic) [16,17].

In most EEWSs, the peak amplitudes of displacement (Pd), along with the integral
of squared velocity (I2

V ) parameter estimated from the initial Pwave, scales with the
earthquake magnitude and peak ground acceleration (PGA) [17–19]. This suggests that
we can predict the earthquake magnitude and the intensity of the ground motion using
the initial P waves. It is still under scientific debate whether determining the attenuation
relationship of Pd naturally leads to practical applications for early warning. We note that
recently the time evolution of Pd was investigated, suggesting a universal pattern of initial
growth that is inconsistent with deterministic models of earthquake rupture [19]. Therefore,
when a large earthquake occurs, its location can be quickly obtained from a few P wave
arrival times at nearby stations, and Pd can then be used to determine its magnitude via the
attenuation relationship, which can then be used in the EEWS for emergency operations.

Earthquake early warning systems can mainly be divided into two categories: (a) on-
site and (b) regional. The on-site EEWS use one seismic station, while the regional approach
requires a seismic network [20]. This poses fundamental differences in the design, operation,
and maintenance of the EEWS. In (b), the time between the event origin and the alert
emission is reduced, as it requires P wave triggers in multiple stations. By contrast, in (a),
a single arrival is adequate. The above has obvious implications on the robustness of the
emitted alert and whether it is false or not. On the other hand, on-site approaches avoid
pitfalls in the earthquake and magnitude estimation (which, in turn, do not affect the quality
of the alert). The development and implementation of regional EEWSs were summarized
in a number of previous studies [6,20], along with some very recent approaches that predict
seismic intensity at a target site based on the seismic intensities observed at seismic stations
around the target site [21]. This type of EEWS requires the arduous task of designing and
deploying a network of sensors with specific geometry and specifications (as opposed to
on-site systems that require either a single or a few instruments). In general, the discussion
about EEWSs’ limitations is ongoing, with questions, such as the physical boundaries of
warning times in relation to the level of ground motion, exist and are still open [22,23].

In this work, we analyze parameters that are used to determine earthquake magnitude
in real-time for the areas of the Eastern Gulf of Corinth (EGoC) and Western Attica (WA).
We focused on the correlation of (a) Pd (as both a regional and an on-site proxy) with
the magnitude Mw and the hypocentral distance H, (b) the characteristic period τc with
magnitude, averaged over the area, (c) the integral of squared velocity (I2

V ) with PGA
on-site and inter-site. The latter aims to investigate whether it is possible to use P waves
near the source as a proxy for S-wave shaking at a far target. In that context, we also design
relations between Pd,v,a and PGA, for inter-site use. Evaluating the practicability of an EEWS
in this area is justified by its high level of seismic hazard. The area spans two zones of the
New Greek Seismic Code (NEAK) with expected PGA values at a minimum of~157 cm/s2

and a maximum of~353 cm/s2 for a return period of 475 years (see Figure 1 in [24]).
It is noted that the NEAK features four broadly defined zones with wide PGA ranges.
Ref. [24] using a more refined model and various empirical Ground Motion Prediction
Equations found expected PGA between 100 cm/s2 and 300 cm/s2. The European Seismic
Hazard Map (ESHM13) by [25] confirms this by categorizing the area as high-hazard
with an expected PGA of ~300 cm/s2. Moreover, large oil refineries and power plants
are located in the EGoC and the coast of WA. For them, suitable safety measures, such
as automatic blocking of pipelines or gas lines to prevent fire hazards or the automatic
shutdown of manufacturing operations to avoid valuable equipment exposure, could be
adopted for damage reduction. Therefore, the introduction of an EEWS is a worthwhile
objective because it can be effectively used to reduce the damage caused by the strongest
earthquakes. It is noted that the effectiveness of an EEWS is multifaceted, with issues such
as civil protection response [26] and network limitations factored in. In a recent feasibility
study by [27], it was shown that events in the Eastern Gulf of Corinth could have a warning
time of 10 s in Athens. We note that the Virtual Seismologist (VS) EEW software and
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PRESTo have been installed in the area of the Western Gulf of Corinth and Central Greece,
and their initial performance has been presented [28,29].

2. Seismotectonic Setting, Data Acquisition, and Processing

The Gulf of Corinth (GoC) is an important E–W oriented neotectonic half-graben,
bounded by normal faults, gradually evolving during the Pleistocene, as it is evidenced by
the intense seismic activity [30]. Normal faults continue from the Eastern end of the GoC
(EGoC) towards the Saronic Gulf [31].

Sensors 2021, 21, x FOR PEER REVIEW 4 of 22 
 

 

 
Figure 1. Geotectonic map of the broader area of the Eastern Corinth Gulf and Western Attica. Earthquakes marked by 
circles (for Mw < 5.0) and stars (Mw ≥ 5.0) (colored according to the included depth color bar) belong to the catalog used in 
the current study, obtained by the International Seisomological Centre (ISC), between 2008 and February 2021. Yellow 
stars indicate events between 1900 and 2008 along with historical earthquake locations (white diamonds) and faults (red 
lines) after [31] are presented. Focal mechanism solutions were acquired from the Seismological Laboratory of the Na-
tional and Kapodistrian University of Athens (NKUA-SL). Sensor locations (triangles) and sites of high interest (squares) 
are also shown. Inset: Greece with the study area marked (rectangle). 
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catalog for the Eastern Gulf of Corinth and Western Attica from the International Seis-
mological Center (ISC), consisting of 278 earthquakes between January 2008 and Febru-
ary 2021, with a minimum magnitude of 3.0 and a maximum depth of 30.0 km. The cat-
alog was obtained through ISC’s European Integrated Data Archive (EIDA) node, using 
the respective international Federation of Digital Seismograph Networks (FDSN) service. 
To homogenize the magnitudes, we used the relations proposed by [43,44] for converting 
to Mw. Then, we searched for waveform data in the archive of the Geodynamic Institute 
of the National Observatory of Athens (GI-NOA) through their EIDA node.Their data-
base includes recordings provided by several Greek institutes, recorded by stations of the 
Hellenic Unified Seismological Network (HUSN) [45], and initially selected 33suitable 
stations, including 24 velocimeters and 9 accelerometers.The GI-NOA node also includes 
detailed station metadata, such as the response functions of both velocimeters and ac-
celerometers [46]. We set a maximum event search radius of 100.0 km around each sta-
tion of interest. This set included two sites in Loutraki (LOUT and LTK) and two in 
Athens (ATH and ATHU). These sites feature long-term installations (ensuring a wealth 
of available data) and are located close to the two most important seismic sources around 
the local industrial infrastructure (e.g., oil refineries) and the metropolitan city of Athens, 
i.e., Alkyonides [41,42] and Parnitha [32–37]. All four stations have broadband sensors. 

Data acquisition and signal processing (including instrument response removal and 
transformations between different ground motion outputs) was carried out using rou-
tines by ObsPy (see https://docs.obspy.org, accessed on 26 July 2021) [47]. To process the 
data, we first ensured that no clipped recordings were included by visually inspecting 

Figure 1. Geotectonic map of the broader area of the Eastern Corinth Gulf and Western Attica.
Earthquakes marked by circles (for Mw < 5.0) and stars (Mw ≥ 5.0) (colored according to the included
depth color bar) belong to the catalog used in the current study, obtained by the International
Seisomological Centre (ISC), between 2008 and February 2021. Yellow stars indicate events between
1900 and 2008 along with historical earthquake locations (white diamonds) and faults (red lines)
after [31] are presented. Focal mechanism solutions were acquired from the Seismological Laboratory
of the National and Kapodistrian University of Athens (NKUA-SL). Sensor locations (triangles) and
sites of high interest (squares) are also shown. Inset: Greece with the study area marked (rectangle).

There are two main sources of strong earthquakes in the area: (a) the Parnitha range
in WA and (b) the Alkyonides Islands in the EGoC. Parnitha acts as a NW boundary to
the Athens basin. Its, generally, E–W and NE–SW trending faults are extended southward
and have been the cause of earthquakes that have had a detrimental impact to Athens and
the surrounding area. On 7 September 1999, a Mw = 6.0 event occurred at the southern
part of Parnitha, about 20 km NW of Athens. The ferocity of the shaking led to billions
of dollars in damage, decimated infrastructure, as well as hundreds of casualties [32]. Its
shallow focus and proximity to the capital [33,34], as well as issues with constructions on
unsuitable sites [35], were the culprits for the high intensities observed. More recently, in
2019, a Mw = 5.2 earthquake occurred in the same structure [36], acting as a reminder of
the danger posed by active faults in the vicinity of Athens (Figure 1); other than a partial
collapse of an abandoned building, the city was left unscathed, even though its western
outskirts sustained some damage [37]. The region NW of Parnithta also hosts faults that
cause shallow seismicity (with potential moderate to strong events) and, consequently,
could have an impact on Athens [38]. Another source lies closer, NE of Athens, but has, so
far, witnessed some felt events, such as the Mw = 4.2 earthquake of 2018 [39], without any
noticeable impact on hazard, due to the weak magnitudes.
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In Figure 1, a geotectonic map of the broader area of the Eastern Corinth Gulf and
Western Attica is presented where all the events between 1900 and 2008 [40] along with the
historical earthquake locations [41] and the faults are presented.

The islands of Alkyonides were the sole focus of seismic hazards associated with
Athens and the Eastern Gulf of Corinth until 1999. A series of strong events between
February and March of 1981, with magnitudes of Mw > 6.0 for three of them, caused
unprecedented damages in the area [42]. Further study of the 1981 area implied the
occurrence of several other similar events (in terms of deformation) in historical times,
indicating the region as a prime contributor to regional seismic hazard [41,43]. Since
then, the absence of strong events or significant seismicity led to a sparse seismological
network, despite the region’s importance. Either Parnitha or Alkyonides could produce an
earthquake that affects an area that includes a major city (Athens), a significant tourist hub
(Loutraki), and industrial infrastructure, such as the oil refineries of the Motor Oil Hellas
(MOH) group (Figure 1).

To estimate the scaling parameters for an EEWS in the area, we retrieved an event cata-
log for the Eastern Gulf of Corinth and Western Attica from the International Seismological
Center (ISC), consisting of 278 earthquakes between January 2008 and February 2021, with
a minimum magnitude of 3.0 and a maximum depth of 30.0 km. The catalog was obtained
through ISC’s European Integrated Data Archive (EIDA) node, using the respective inter-
national Federation of Digital Seismograph Networks (FDSN) service. To homogenize the
magnitudes, we used the relations proposed by [43,44] for converting to Mw. Then, we
searched for waveform data in the archive of the Geodynamic Institute of the National
Observatory of Athens (GI-NOA) through their EIDA node.Their database includes record-
ings provided by several Greek institutes, recorded by stations of the Hellenic Unified
Seismological Network (HUSN) [45], and initially selected 33 suitable stations, including
24 velocimeters and 9 accelerometers. The GI-NOA node also includes detailed station
metadata, such as the response functions of both velocimeters and accelerometers [46].
We set a maximum event search radius of 100.0 km around each station of interest. This
set included two sites in Loutraki (LOUT and LTK) and two in Athens (ATH and ATHU).
These sites feature long-term installations (ensuring a wealth of available data) and are
located close to the two most important seismic sources around the local industrial infras-
tructure (e.g., oil refineries) and the metropolitan city of Athens, i.e., Alkyonides [41,42]
and Parnitha [32–37]. All four stations have broadband sensors.

Data acquisition and signal processing (including instrument response removal and
transformations between different ground motion outputs) was carried out using routines
by ObsPy (see https://docs.obspy.org, accessed on 26 July 2021) [47]. To process the
data, we first ensured that no clipped recordings were included by visually inspecting
suspicious event-station pairs (i.e., seismographs located within 30.0 km of earthquakes
with a magnitude of at least 4.5). Then, we automatically picked the arrival of the P-phase
with the algorithm proposed by [48]. To estimate any EEWS parameter, we used three
time-windows starting from the P arrival and extending to 3 s, 4 s, or 5 s (tw). Since, in
most cases, the used tw is significantly larger than the expected automatic phase picking
uncertainty, the results are expected to be largely unaffected by it. To remove noise that
could lead to issues with the picker, we first applied a bandpass filter between 1.0 and
20.0 Hz. This filter was used exclusively in the picking process. Moreover, we estimated
the S-P time with TauP [49] using a local velocity model [50]. The raw, unfiltered data were
then deconvoluted with the instrument’s response to obtain the actual ground motions
(i.e., displacement, velocity, and acceleration) at each site. After applying a high pass filter
with a corner frequency of 0.075 Hz [51], we determined the peak value for each motion
type (hereafter noted as Pd,u,a for displacement, velocity, and acceleration, respectively) in
the three tw, as well as the peak ground acceleration of the shear-waves (hereafter, called
PGA) in a window ending 20 s after the theoretically estimated S arrival. However, if the
signal window tw exceeded the estimated S-P time, the measurement was rejected. We
set the S-P time exceedance criterion to a priori avoid cases of overlapping windows for
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measurements of P peak and S peak amplitudes, as in the case of the tw = 5 s window
in Figure 2. The process was repeated for all available recordings and all three channels
(Figure 2).
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magnitude (M) are also noted. 

In the final dataset, we removed observations with a PGA to Pa ratio less than 2.0. 
This criterion was important to avoid cases of erroneous picking, inherent instrumenta-
tion issues (e.g., clock drifts), and problems with the instrument correction (e.g., errors or 

Figure 2. Vertical recording of the Mw = 5.2 July 2019 event at station ATHU (located in Athens,
approximately 29 km from the epicenter). The raw (upper left), displacement (upper right), velocity
(bottom left), and acceleration (bottom right) recordings are shown. The horizontal magenta line
indicates the Pd,υ,a measurement for a signal window of 3 s length, while the horizontal brown
line showcases the determined peak ground motion (e.g., PGA for acceleration). The automatic
pick is denoted by the vertical red dashed line and the S arrival by the vertical blue dashed line.
The following signal windows are highlighted by the gradually less shaded areas (from darkest to
brightest): 3 s, 4 s, 5 s, and peak ground measurements window. The hypocentral distance (H) and
magnitude (M) are also noted.

In the final dataset, we removed observations with a PGA to Pa ratio less than 2.0.
This criterion was important to avoid cases of erroneous picking, inherent instrumenta-
tion issues (e.g., clock drifts), and problems with the instrument correction (e.g., errors
or omissions in the provided instrument response for each epoch). The final dataset con-
tains 2308 measurements among the three time-windows, for 240 events and 23 stations
(947 event-station pairs).

Our observations span a magnitude range between 3.0 and 5.2 (Figure 3). There is a
good distribution for lesser magnitudes; however, magnitudes above 4.5 present sporadic
measurements, with large gaps, as in the case of the sole Mw = 5.2 event. Acceptable
observations span a distance between ~20 km and ~50 km (Figure 3a). The signal-to-
noise ratio (SNR, in dB), indicated an increase with magnitude (Figure 3b). However, we
noted that the considered earthquakes were recorded in a variety of stations with different
conditions. For example, two of the closest seismological stations to the Mw = 5.2 event
were located in the city of Athens, largely affected by urban noise, which, as logic dictates,
is a detriment to SNR.
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3. Empirical Correlation Laws for Eastern Gulf of Corinth and Western Attica Region

Determinations of magnitude and the ground shaking intensity from the initial P
wave are two important elements for earthquake early warning. The strength of shaking
can practically be represented by PGA. Here we present the first results from an effort
to establish the correlation laws required for regional EEWS (in Sections 3.1 and 3.2) and
that for on-site (in Section 3.3). We also explore the possibility of inter-site relations (in
Section 3.4).

3.1. Peak Ground Displacement, Magnitude, and Distance

In [2,52], based on the Pd measured on the 3 s window starting from the P wave arrival,
estimated the magnitude of a seismic event. Furthermore in [53,54] showed that Pd scales
with the earthquake magnitude and could be used for its real-time estimation in EEWS
applications. Using the Pd values estimated (in cm), we assume a simple linear regression
model among the logarithm of Pd, the magnitude M and the logarithm of the hypocentral
distance H (in km) as:

log(Pd) = a + b ∗M + c ∗ log(H) (1)

where a, b, and c are constants to be determined from the linear least-squares regression
analysis. The resulting best fitting relationship for the two stations in Athens is presented
in Figure 4 for the three signal windows.

For stations located in Athens (i.e., ATH and ATHU) and for the different tw used, the
mean relationships are:

log(Pd) = −3.846 + 0.605∗M− 1.474 ∗ log(H), for tw = 3s
log(Pd) = −3.465 + 0.606∗M− 1.659 ∗ log(H), for tw = 4s
log(Pd) = −2.972 + 0.627∗M− 1.927 ∗ log(H), for tw = 5s

(2)

Standard deviations of intercepts for Pd relations in Athens ranged between 0.438 and
0.701. The magnitude’s factor deviation was between 0.067 and 0.096, while hypocentral-
related constants were bounded by deviations within 0.205 and 0.364 (Figure 4). It is
apparent that wider P wave windows yielded larger deviations. However, this cannot be
considered as the sole metric of regression quality; thus, we also included the relevant
correlation coefficients (Figure 4).
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Figure 4. Regression analysis for Pd measured in two stations located in Athens stations. (a) for ATHU and (b) for ATH
and for 3 s (top), 4 s (middle), and 5 s (bottom) from the P arrival. The dashed lines show the model for M = 3.0, M = 4.0,
and M = 5.0. σa: s.d. for the intercept, σb: standard deviation for the magnitude variable’s constant (M), σc: s.d. for the
hypocentral distance (H) variable’s factor, and R2 the squared correlation coefficient for the regression.
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The regression constants are very close to the ones presented in [49] for Southern
California. Regression results for the rest of the combinations between station and time
windows are provided in the Supplementary Materials. We include 42 station-time window
pairs with the corresponding regressions. The individual correlation coefficient and the
number of observations used in the regression are also included.

Performing a regression over the whole dataset yields the relations shown in Figure 5.
Lower magnitudes seem to correspond to more scattered values of Pd. Correcting the
displacement by a factor determined by the hypocentral distance, as in [55,56], the relation
log(Pd)− c ∗ log(H) = a + b ∗M, exarcebates this issue (Figure 4b). Regressing for the two
independent values (i.e., magnitude and distance) yielded a relatively higher correlation
than the normalized ground amplitude approach (see Figure 4).

An alternative approach to correct the displacement by a factor determined by the
hypocentral distance and a reference distance (in our case, Href = 100 km) is presented

in [55], where log
(

Pd
H

Hre f

)
= αM− b, with α ≈ 0.84 and b ≈ 7.5, close to that presented

in [56] for a regional EEWS application in Israel (Figure 5c), yielding a relatively higher
correlation than the normalized ground amplitude approach (see Figures 4 and 5).

To evaluate the predicted magnitude Mpred using Equation (2), we plotted it along
with that observed Mobs (Figure 6). In this plot, the dichotomous line is presented. We
observe that for all used three time-windows starting from the P arrival (i.e., tw 3 s, 4 s, and
5 s), the majority of Mpred values were within ±0.5 units from that observed. Furthermore,
the distribution of the ratio Mpred/Mobs and the deviation Mpred-Mobs are presented in the
Appendix A. Table 1 summarizes the average values indicate that the ration Mpred/Mobs is
close to one while the deviation Mpred-Mobs close to zero for the tw used.

Table 1. The average values of ration Mpred/Mobs and the deviation Mpred-Mobs for the tw used.

tw Mpred/Mobs Mpred-Mobs

3 s 1.017 ± 0.18 0.05 ± 0.61
4 s 1.012 ± 0.17 0.034 ± 0.59
5 s 1.022 ± 0.19 0.07 ± 0.65

3.2. The Characteristic Period τc

In Ref. [7] developed a different parameter called characteristic period (τc), which is
an expression of the ratio between velocity and displacement records. This parameter is

determined as follows: first, we compute r =
∫ tp+tw

tp
.
u2
(t)dt∫ tp+tw

tp u2(t)dt
where u(t) is the ground motion

displacement and
.
u(t) the velocity. The integration is taken in the time window tw after

the arrival time tp of P waves, then τc =
2π√

r in s. Data from both velocity and acceleration
recorders have been used to estimate τc in several seismic regions, demonstrating that the
characteristic period scales with seismic event magnitude [6,57–60]. Up to a few hundred
kilometers from the seismic source, it is independent from the epicentral distance [6].
We note that theoretical models document the characteristic period scaling with source
properties under the assumption of a constant stress drop [61].
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We plotted the τc, averaged for all available measurements per event in hypocentral
distances within 60 km and 100 km (Figure 7). We rejected average tc values obtained
from less than four observations (e.g., [51]). This led to the exclusion of some events, such
as the Mw = 5.2 earthquake of our dataset. Our results suggest an absence of correlation
between τc and the earthquake magnitude Mw (Figure 7). A possible reason could be the
variance of stress drop in the earthquakes used in the data set as indicated in Figure 7,
where the theoretical expressions for stress drop at 1, 5, and 10 MPa have been added [58].
One more reason for the τc scatter could be the SNR. In case of very weak displacement
(e.g., in weaker earthquakes), the increased noise content can have an adverse effect on
τc, causing the observed scattering. However, the use of broadband velocity recorders can
reduce the SNR of strong motions, as weak signals of a wider spectrum contribute to the
final waveform (as opposed to recordings of accelerographs, which commonly feature a
narrower flat response).

3.3. By-Passing the Earthquake Magnitude Estimation: The Integral of the Squared Velocity (I2
V)

In Ref. [62] first introduced the use of the integral of the squared velocity (I2
V ) es-

timated from P wave time windows in EEWSs for real-time magnitude estimation. I2
V

is defined as: I2
V =

∫ tp+tw
tp

υ2(t)dt. The presented parameter is in cm2/s. I2
V has been

adequately correlated with earthquake magnitude [62], as well as Peak Ground Velocity
(PGV) and macroseismic intensity [17]. We identified a stable correlation between I2

V and
PGA as reported at the same station [17]. Consequently, the quantity could be used as a
proxy for rapid damage assessment. The relationship between I2

V and PGA could therefore
be used to identify in real-time and before the arrival of S waves whether a site is going to
be adversely affected or not, and, thus, has the potential to become key in the design of
on-site EEWSs, assisting civil protection in acting immediately, according to the severity of
the situation.
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Figures 8 and 9 present PGA as a function of I2
V in the case of stations LOUT and

LTK, located in Loutraki, close to the epicenters of the Alkyonides (1981) earthquakes,
and ATH and ATHU stations located in Athens, close to the Parnitha fault, which recently
activated (2019). For all the cases, a correlation of the form: log PGA = a + b ∗ log

(
I2
V
)

exists for all time windows tw used, with values in the range 1.8–2.5, while b is quite stableat
~0.5 (the values range between 0.48 to 0.52). It is noted that while I2

V is computed from
measurements in the vertical channel, PGA refers to the maximum observed acceleration
between the two horizontal components of the sensor. Regression coefficients for this
relation in 69 station-time window pairs are provided in the Supplementary Materials,
along with the respective correlation coefficients and number of observations used in
the analysis.
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3.4. PGA in Target Site versus Pd,v,a and I2
V Estimated Close to Epicenter

While previous works [54,57] have discussed the integration of an on-site approach
to a larger regional-based model, by using a first-trigger site near the source to issue an
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area-wide alert, we investigated the possibility of establishing scaling laws between specific
sites. If this proves successful, inter-station relations could be used to estimate the shaking
(e.g., PGA) at a target site from a proxy recorded at a near-source receiver (e.g., Pd or I2

V).
This would remove some of the obstacles raised by regional EEWSs, while, at the same
time, removing the main drawback of on-site methods (i.e., being able to predict the ground
motion at the site that also evaluates the proxy parameter). In Figure 10, the PGA values,
recorded in the stations of Athens, are plotted as a function of Pd, Pv, and Pa measured
from records three tw as estimated in the stations of Loutraki located in the vicinity of
Alkyonides (1981) strong events. Figure 10 shows that, overall, the PGA values increase
logarithmically with Pd in the investigated range of magnitudes. Moreover, Pv and Pa
follow a similar pattern. However, correlations are not satisfactory; at all combinations, but
one, R2 stands below 0.60.
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acceleration Pa (c) measured in Loutraki (LT), for the three tw. Notable scatter is observed, compared to the individual
station analysis. The rest of the notation as in Figure 3.

Similarly, we explored the relation between PGA in Athens and I2
V in Loutraki

(Figure 11). A clear logarithmic dependence exists with a slope in the range 0.40–0.45.
We note that slopes are in agreement with the on-site cases in Section 3.3. Correlation is
similar to relations shown in Figure 10, ranging around 0.50.
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4. Conclusions

Today, the development of EEWSs represents one of the most useful strategies to
mitigate seismic risk in short timescales, and several countries worldwide are promoting
and developing such systems [2,11,13–16,60]. In the context of seismic risk management,
they are considered a reasonably cost-effective solution for loss reduction.

In this study, we estimated empirical scaling relationships between the EEW pa-
rameters Pd with magnitude and hypocentral distance and τc with magnitude, using
measurements from stations all over the region of EGoC and WA. Moreover, we established
on-site relations between I2

V and PGA. Finally, we explored the laws between stations lo-
cated near the EGoC sources and stations in Athens to estimate inter-site relations for Pd,v,a
or I2

V (recorded at the former) and PGA (recorded at the latter).The data have been acquired
by stations of the active seismological network in the area (HUSN),whose distribution
ensured a good distance and azimuthal coverage.

Using an amplitude-based parameter (Pd), an appropriate attenuation relationship
was derived (see Supplementary Materials, where the goodness-of-fit parameters are given,
too). The relationship of Pd with the magnitude seems to be less scattered than that of
τc (Figures 5 and 6). However, to compute the magnitude from Pd, a quick and reliable
estimate of the distance is also required. In other words, the suitability of Pd as an EEWS
parameter is directly related to the quality of the rapidly estimated earthquake location.
The estimated Pd versus M and H relationship is of the same form as those obtained from
data of various regions where EEWS operate but with different scaling coefficients, possibly
suggesting that, despite the scatter of the data around the mean, the correlation of Pd
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with M and H depends on the geological conditions [59,63,64]. This linear relationship
persists throughout the entire magnitude range in our study. We note that these relations
were constructed for a small magnitude range and further work is needed to adapt it to
large earthquakes.

A statistically significant relation between log(τc) and the magnitude could not be
identified, since a low correlation appears (Figure 6). This could be attributed to small P
amplitudes or high noise content in broadband stations or the variance in stress drop by
the earthquakes of different sources [61].

Our results uncovered high correlation between I2
V and PGA at individual sites, with

seemingly identical slope parameters of the linear models in four different sites (stations
ATH, ATHU, LOUT and LTK). This similarity bears hope for establishing an on-site hazard
estimator. In addition, for a source located 70 km away from Athens, close to Loutraki
(LOUT and LTK stations), we investigated a scaling relation to estimating PGA in Athens
(stations ATH and ATHU). In this case, correlation is moderate (around 0.50) and further
work is required to establish both the observational and physical components that govern
a potential inter-site system.

Summarizing, we can state that the high level of seismic hazard and endangered
infrastructure in the area mandates the thorough assessment of any developed EEWS and
its capabilities. Local industrial activity will benefit greatly from a system that broadcasts
alerts, even short-term, to sensitive infrastructure (e.g., oil refineries and power plants).
In this aspect, a system that avoids the conundrum of a rapid and accurate epicenter
and magnitude estimation could be proven invaluable for automating damage mitigation
protocols. Thus, the on-site and inter-site EEWS approaches can issue an alert rapidly and
estimate a potential damage level within very few seconds from the origin of the seismic
event, increasing the lead time and reducing the blind zone. In any case, further work
is required to establish the spatial (and possibly temporal, connected to the evolution of
the estimation as seen by different tw) behavior of I2

V and explore its stability both in
practical (by estimations in other areas) and theoretical terms. A model documenting its
spatial variation is necessary for operational use. Further investigation should focus on
integrating observations from events in a wider range of magnitudes, including areas
where magnitudes greater than 6.0 are present.

Finally, we note that further work is required in order to define the limitations [65]
and uncertainties of a future EEWS as that of statistical independence of the displacement
measurements at each station [23], the physical bounds of how accurately the strength of
shaking can be estimated [22] along with appropriate metrics to validate the performance
of an EEWS [23] contributing to the final goal of near real-time damage estimation [66].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/s21155084/s1, The file SUPL_1_Pd includes regression results for the relation: Pd = a + blogH + cM,
while the file SUPL_2_PGA_REVISED includes regression results for the relation: log(PGA) =a + b log(I2

V ).

Author Contributions: Conceptualization, F.V.; methodology, F.V.; software, A.K. and N.S.; valida-
tion, F.V., A.K. and N.S.; data curation, F.V., A.K. and N.S.; writing—original draft preparation, F.V.;
writing—review and editing, F.V., A.K., and N.S.; visualization, F.V., A.K., and N.S.; supervision, F.V.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was financially supported by the project “Integrated Earthquake Early
Warning System for Industrial Site Applications: the ARIS Project” co-funded by the EU and national
funds through the Operational Program “Competitiveness, Entrepreneurship, and Innovation”,
under the call “RESEARCH–CREATE–INNOVATE” (project code:5030439).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Waveform data and station metadata used are publicly available at the
EIDA node at GI-NOA (https://eida.gein.noa.gr/, accessed on 15 March 2021). The event catalog
used in this study was retrieved from the EIDA node of ISC hosted by the Incorporated Research
Institutions for Seismology (IRIS; http://isc-mirror.iris.washington.edu).

https://www.mdpi.com/article/10.3390/s21155084/s1
https://www.mdpi.com/article/10.3390/s21155084/s1
https://eida.gein.noa.gr/
http://isc-mirror.iris.washington.edu


Sensors 2021, 21, 5084 18 of 21

Acknowledgments: We are grateful to the ISC for readily providing their compiled event catalogs.
We extend our gratitude to the personnel of the contributing institutions to the Hellenic Unified
Seismological Network, for installing, operating, and maintaining stations all over Greece. Regression
and other numerical operations were facilitated by NumPy [67]. Figures 2–10 were plotted with
Matplotlib [68]. The authors would like to thank the three anonymous reviewers for their valuable
feedback and insight into this work.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A Relation between Predicted and Observed Magnitudes

Plots of the distribution of the ratio Mpred/Mobs around one (Figure A1) and the devi-
ation Mpred-Mobs around zero (Figure A2 are presented for the used three time-windows
starting from the P arrival (i.e., tw 3 s, 4 s, and 5 s).
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