Identifying Misbehaving Greedy Nodes in IoT Networks
Abstract
:1. Introduction
2. Related Work
3. Selfish Behaviour in IEEE 802.15.4
3.1. IEEE 802.15.4 Characteristics
3.2. Greedy Behaviour Algorithm
- Backoff Exponent (BE): It is a value used in the calculation of the backoff delay.
- Clear Channel Assessment (CCA): The CCA is performed by each node in the network in order to check if the channel is free before transmitting. The CCA duration is equal to 8 symbols.
- Number of Backoff (NB): It is a counter of the number of failed channel access attempts.
- MacMinBE: It is the minimum value of BE. This value varies between 0 and 3. By default, CSMA/CA uses 3.
- MacMaxBE: It is the maximum value of BE. It is equal to 5.
- MacMaxCSMABackoffs: It is the maximum number of attempts to access the channel.
- UnitBackoffPeriod: It is equal to 20 symbols by default.
4. Detection of Selfish Nodes
5. Simulation and Results
5.1. Greedy Behaviour Analysis Results
5.2. Thresholds Setting
5.3. Greedy Node Identification Results
- Effective Detection Rate (EDR): It is the ratio between the number of nodes detected greedy by the proposed method and the total number of greedy nodes.
- False Positive Alarm Rate (FPAR): It is the ratio between the total number of legitimate nodes in the 16 simulations and the number of legitimate nodes detected greedy by the proposed method.
- False Negative Alarm Rate (FNAR): It is the ratio between the total number of greedynodes in the eight simulations and the number of greedy nodes identified as legitimate nodes.
- Efficiency (Eff) represents the efficiency of the detection algorithm and which is calculated as follows:Eff = EDR − (FPAR + FNAR)
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rayes, A.; Salam, S. (Eds.) What Is the Internet of Things (IoT)? In Internet of Things—From Hype to Reality; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Mao, B.; Kawamoto, Y.; Liu, J.; Kato, N. Harvesting and Threat Aware Security Configuration Strategy for IEEE 802.15.4 Based IoT Networks. IEEE Commun. Lett. 2019, 23, 2130–2134. [Google Scholar] [CrossRef]
- LANMAN Standards Committee; The IEEE Computer Society. IEEE Standard for Local and Metropolitan Area Networks Part 15.4: Low Rate Wireless Personal Area Networks (LRWPANs); IEEE: New York, NY, USA, 2015. [Google Scholar]
- Vicas, H.; Vinay, C.; Vikas, S.; Divyansh, J.; Pranav, G.; Biplab, S. A survey on IoT security: Application Area, Security threats, and Solution Architectures. IEEE Access 2019, 7, 82721–82726. [Google Scholar] [CrossRef]
- Farshad, F.; Krishnendu, C.; Sani, N. (Eds.) IoT cyber security. In IntelligentInternet of Things; Springer: Cham, Switzerland, 2020; pp. 473–512. [Google Scholar] [CrossRef]
- Farshad, F.; Krishnendu, C.; Sani, N. (Eds.) Healthcare IoT. In IntelligentInternet of Things; Springer: Cham, Switzerland, 2020; pp. 515–545. [Google Scholar] [CrossRef]
- Alam, M.; Shakil, K.A.; Khan, S. (Eds.) Tackling Jamming Attacks in IoT. In Internet of Things (IoT)—Concepts and Applications; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Abdelli, A.; Mokdad, L.; Othman, J.B.; Hammal, Y. Dealing with a non green behaviour in wsn. Simul. Model. Pract. Theory 2018, 84, 124–142. [Google Scholar] [CrossRef]
- Fadele, A.A.; Othman, M.; Hashem, I.A.T.; Yacoob, I.; Imran, M.; Shoaib, M. A novel countermeasure technique for reactive jamming attack in internet of things. Multimed. Tools Appl. 2018, 78, 29900. [Google Scholar] [CrossRef]
- Djahel, S.; Naït-Abdesselam, F.; Turgut, D. Characterizing the greedy behaviour in wireless ad hoc networks. Secur. Commun. Netw. 2011, 4, 284–298. [Google Scholar] [CrossRef] [Green Version]
- Mokdad, L.; Hammal, Y.; Ben-Othman, J.; Abdelli, A. Formal modeling and analysis of greedy behaviors in IEEE 802.11 protocols. In Proceedings of the IEEE International Conference on Communications (ICC), London, UK, 8–12 June 2015; pp. 3579–3584. [Google Scholar]
- Boufenneche, Y.; Gharbi, N.; Zitouni, R.; George, L. Formal Modelling of Greedy Behaviour in Secure Internet of Things Networks. In Proceedings of the Eleventh International Conference on Ubiquitous and Future Networks (ICUFN), Zagreb, Croatia, 2–5 July 2019. [Google Scholar] [CrossRef]
- Hammal, Y.; Ben-Othman, J.; Mokdad, L.; Abdelli, A. Formal modeling of greedy nodes in 802.15.4 wsn. ICT Express 2015, 1, 10–13. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Kim, K.S. Detecting selfish backoff attack in ieee 802.15.4 csma/ca using logistic classification. In Proceedings of the International Conference on Ubiquitous and Future Networks (ICUFN), Prague, Czech Republic, 3–6 July 2018; pp. 26–27. [Google Scholar]
- Antonopoulos, A.; Verikoukis, C. Misbehavior detection in the internet of things: A network-coding-aware statistical approach. In Proceedings of the IEEE 14th International Conference on Industrial Informatics (INDIN), Poitiers, France, 19–21 July 2016; pp. 1024–1027. [Google Scholar]
- Mejri, M.N.; Ben-Othman, J. Gdvan: A new greedy behavior attack detection algorithm for vanets. IEEE Trans. Mob. Comput. 2017, 16, 759–771. [Google Scholar] [CrossRef]
- Mejri, M.N.; Ben-Othman, J. Detecting greedy behavior by linear regression and watchdog in vehicular ad hoc networks. In Proceedings of the IEEE Global Communications Conference, Austin, TX, USA, 8–12 December 2014; pp. 5032–5037. [Google Scholar]
- Abegunde, J.; Xiao, H.; Spring, J. A dynamic game with adaptive strategies for IEEE 802.15.4 and IoT. In Proceedings of the IEEE Trustcom/BigDataSE/ISPA, Tianjin, China, 23–26 August 2016; pp. 473–480. [Google Scholar]
- Al-Terri, D.; Otrok, H.; Barada, H.; Al-Qutayri, M.; Hammadi, Y.A. Cooperative based tit-for-tat strategies to retaliate against greedy behavior in vanets. Comput. Commun. 2017, 104, 108–118. [Google Scholar] [CrossRef]
- Mokdad, L.; Abdelli, A.; Ben-Othman, J. Detection of greedy behavior in wsn using IEEE 802.15 protocol. In Proceedings of the IEEE 22nd International Symposium on Modelling, Analysis Simulation of Computer and Telecommunication Systems, Paris, France, 9–11 September 2014; pp. 106–111. [Google Scholar]
- Zainaldin, A.; Lambadaris, I.; Nandy, B. Video over Wireless Zigbee Networks: Multi-channel Multi-radio Approach. In Proceedings of the 2008 International Wireless Communications and Mobile Computing Conference, Crete, Greece, 6–8 August 2008; p. 882. [Google Scholar] [CrossRef]
- Dunkels, A.; Grönvall, B.; Voigt, T. Contiki-a Light weight and Flexible Operating System for Tiny Networked Sensors. In Proceedings of the 29th Annual IEEE Conference on Local Computer Networks, Tampa, FL, USA, 16–18 November 2004. [Google Scholar] [CrossRef]
- Pinola, C. Evaluating the Performance of Synchronous and Asynchronous Media Access Control Protocols in the Contiki Operating System. 2013. Available online: https://digitalcommons.wpi.edu/mqp-all/466 (accessed on 12 June 2021).
- Lekidis, A.; Katsaros, P. Model based design of energy efficient applications for IoT systems. In Proceedings of the MeTRiD, Thessaloniki, Greece, 15 April 2018; pp. 24–38. [Google Scholar] [CrossRef]
Parameters | Evaluation |
---|---|
Packets sent | Very high |
Packets received | Low |
Collision | High |
Transmit power | Very high |
Transmit duty cycle | Very high |
Power | Very high |
Radio on (%) | Very high |
Radio Tx (%) | Very high |
Node | Packets Sent | Collision | Packets Received | Transmit Power | Transmit Duty Cycle | Power | Radio on (%) | Radio Tx (%) |
---|---|---|---|---|---|---|---|---|
S 1 | 16,426 | 8439 | 4933 | 0.2 | 0.376 | 1.601 | 1.66 | 0.37 |
S 2 | 2557 | 1803 | 505 | 0.142 | 0.267 | 1.227 | 1.23 | 0.28 |
S 3 | 6106 | 3044 | 907 | 0.261 | 0.491 | 1.48 | 1.54 | 0.47 |
S 4 | 4961 | 2810 | 731 | 0.264 | 0.497 | 1.444 | 1.44 | 0.41 |
S 5 | 4706 | 1914 | 260 | 0.138 | 0.261 | 1.146 | 1.15 | 0.29 |
S 6 | 3961 | 2059 | 831 | 0.141 | 0.266 | 1.291 | 1.28 | 0.29 |
S 7 | 2635 | 1608 | 1199 | 0.369 | 0.695 | 1.651 | 1.41 | 0.32 |
S 8 | 5735 | 2259 | 790 | 0.248 | 0.467 | 1.429 | 1.55 | 0.5 |
S9 | 6019 | 2728 | 1276 | 0.25 | 0.471 | 1.473 | 1.68 | 0.53 |
S 10 | 3417 | 2013 | 1349 | 0.168 | 0.316 | 1.428 | 1.52 | 0.36 |
Greedy | 20,832 | 3805 | 617 | 0.803 | 1.512 | 2.03 | 3.9 | 2.61 |
S 11 | 5960 | 2946 | 1235 | 0.213 | 0.401 | 1.48 | 1.69 | 0.48 |
S 12 | 4787 | 1970 | 219 | 0.323 | 0.609 | 1.426 | 1.22 | 0.35 |
S 13 | 4985 | 2873 | 685 | 0.25 | 0.47 | 1.436 | 1.43 | 0.41 |
S 14 | 2636 | 1448 | 339 | 0.109 | 0.206 | 1.124 | 1.05 | 0.2 |
S 15 | 3801 | 2048 | 1130 | 0.26 | 0.489 | 1.47 | 1.5 | 0.4 |
S 16 | 2799 | 1938 | 646 | 0.172 | 0.325 | 1.28 | 1.28 | 0.3 |
S 17 | 4456 | 2483 | 634 | 0.209 | 0.394 | 1.344 | 1.37 | 0.38 |
S 18 | 4288 | 1823 | 1186 | 0.277 | 0.522 | 1.49 | 1.56 | 0.45 |
S 19 | 3979 | 2359 | 591 | 0.181 | 0.341 | 1.302 | 1.35 | 0.36 |
S 20 | 4049 | 1999 | 1466 | 0.226 | 0.425 | 1.528 | 1.64 | 0.45 |
Mean | 5671.190476 | 2589 | 1025.190476 | 0.247809524 | 0.466714286 | 1.432 | 1.5452381 | 0.48619048 |
S.D 1 | 4502.051461 | 1455.031 | 966.4952984 | 0.142480391 | 0.268207968 | 0.192 | 0.56867934 | 0.49363424 |
Network (N) | Interval |
---|---|
α ≥ 0.91 | |
Compromised | 0.48 < α ≤ 1.81 |
α ≥ 1.5 | |
Compromised | 0.093< α ≤ 1.93 |
α ≥ 2 | |
Compromised | 0.28 <α ≤ 2.87 |
α ≥ 1.93 | |
Compromised | 0.3 < α ≤ 2.93 |
α ≥ 2.17 | |
Compromised | 0.94 < α ≤ 3.53 |
α ≥ 1.89 | |
Compromised | 0.84 < α ≤ 3.26 |
α ≥ 2.96 | |
Compromised | 2.38 ≤ α ≤ 3.37 |
α ≥ 2.56 | |
Compromised | 0.52 < α ≤ 1.75 |
Parameter | α Interval | α Value | Threshold |
---|---|---|---|
Packets sent (P1) | 1.5 ≤ α ≤ 1.75 | 1.75 | (P1) = + 1.75 × |
Packets received (P2) | 0.31 ≤ α ≤ 0.54 | 0.5 | (P3) = − 0.5 × |
Collision (P3) | 0.37 ≤ α ≤ 0.42 | 0.4 | (P3) = + 0.4 × |
Transmit power (P4) | 1.34 ≤ α ≤ 1.66 | 1.6 | (P4) = + 1.6 × |
Transmit duty cycle (P5) | 1.63 ≤ α ≤ 1.66 | 1.6 | (P5) = + 1.6 × |
Power (P6) | 1.46 ≤ α ≤ 1.72 | 1.7 | (P6) = + 1.7 × |
Radio on (%) (P7) | 1.77 ≤ α ≤ 1.86 | 1.85 | (P7) = + 1.85 × |
Radio Tx (%) (P8) | 1.83 ≤ α ≤ 1.84 | 1.8 | (P8) = + 1.8 × |
Node | Packets Sent | Collision | Packets Received | Transmit Power | Transmit Duty Cycle | Power | Radio on (%) | Radio Tx (%) |
---|---|---|---|---|---|---|---|---|
S 1 | 39,761 | 29,578 | 8229 | 0.279 | 0.526 | 1.711 | 2.68 | 0.86 |
S 2 | 13,825 | 10,203 | 2582 | 0.057 | 0.107 | 1.058 | 1.37 | 0.37 |
S 3 | 4697 | 2816 | 384 | 0.184 | 0.347 | 1.228 | 2.14 | 0.81 |
S 4 | 7299 | 3952 | 627 | 0.099 | 0.186 | 1.298 | 3.08 | 1.33 |
S 5 | 2203 | 1911 | 371 | 0.1 | 0.189 | 1.274 | 1.65 | 0.46 |
S 6 | 4895 | 2707 | 853 | 0.192 | 0.362 | 1.464 | 2.64 | 1.01 |
S 7 | 1599 | 2251 | 748 | 0.124 | 0.234 | 1.494 | 2 | 0.43 |
S 8 | 3280 | 2507 | 926 | 0.347 | 0.653 | 1.881 | 2.75 | 0.96 |
S 9 | 1463 | 2366 | 1215 | 0.113 | 0.213 | 1.578 | 2.31 | 0.43 |
S 10 | 6631 | 3547 | 999 | 0.265 | 0.498 | 1.673 | 288 | 1.07 |
Greedy | 27,136 | 9775 | 359 | 1.759 | 3.312 | 3.666 | 8 | 5.63 |
S 11 | 2501 | 2275 | 396 | 0.055 | 0.103 | 1.189 | 165 | 0.41 |
S 12 | 3600 | 2141 | 643 | 0.176 | 0.331 | 1.444 | 2.44 | 0.93 |
S 13 | 3788 | 2341 | 621 | 0.075 | 0.141 | 1.347 | 1.88 | 0.51 |
S 14 | 2879 | 2241 | 364 | 0.045 | 0.085 | 1.166 | 1.67 | 0.46 |
S 15 | 5403 | 3139 | 1012 | 0.287 | 0.541 | 1.989 | 2.87 | 0.96 |
S 16 | 10,352 | 4968 | 825 | 0.596 | 1.123 | 2.149 | 3.83 | 1.87 |
S 17 | 4570 | 3268 | 878 | 0.402 | 0.756 | 1.812 | 2.94 | 1.1 |
S 18 | 2506 | 2408 | 929 | 0.203 | 0.383 | 1.63 | 2.32 | 0.61 |
S 19 | 5252 | 2574 | 418 | 0.169 | 0.318 | 1.327 | 2.51 | 1.13 |
S 20 | 745 | 2065 | 1028 | 0.094 | 0.177 | 1.523 | 2.03 | 0.3 |
S 21 | 7448 | 4251 | 569 | 0.122 | 0.229 | 1.313 | 3.17 | 1.45 |
S 22 | 1651 | 1777 | 525 | 0.055 | 0.104 | 1.231 | 1.61 | 0.35 |
S 23 | 2065 | 2508 | 811 | 0.188 | 0.354 | 1.572 | 2.24 | 0.56 |
S 24 | 4896 | 3458 | 724 | 0.097 | 0.182 | 1.377 | 2.82 | 1.07 |
S 25 | 7550 | 3012 | 214 | 1.063 | 2.002 | 2.516 | 2.71 | 1.42 |
S 26 | 1610 | 2392 | 1030 | 0.1 | 0.188 | 1.469 | 2.17 | 0.42 |
S 27 | 3146 | 2592 | 1019 | 0.254 | 0.479 | 1.738 | 2.83 | 0.9 |
S 28 | 8412 | 4711 | 931 | 0.242 | 0.456 | 1.679 | 3.64 | 1.6 |
S 29 | 2227 | 2458 | 1051 | 0.277 | 0.521 | 1.791 | 2.66 | 0.74 |
S 30 | 1166 | 1582 | 402 | 0.058 | 0.109 | 1.202 | 1.37 | 0.23 |
Threshold | 20,266.8555 | 6680.72717 | 460.387298 | 0.46564168 | 0.87681834 | 2.45005359 | 3.6034103 | 1.74751373 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadek, F.S.; Belkadi, K.; Abouaissa, A.; Lorenz, P. Identifying Misbehaving Greedy Nodes in IoT Networks. Sensors 2021, 21, 5127. https://doi.org/10.3390/s21155127
Sadek FS, Belkadi K, Abouaissa A, Lorenz P. Identifying Misbehaving Greedy Nodes in IoT Networks. Sensors. 2021; 21(15):5127. https://doi.org/10.3390/s21155127
Chicago/Turabian StyleSadek, Fatima Salma, Khaled Belkadi, Abdelhafid Abouaissa, and Pascal Lorenz. 2021. "Identifying Misbehaving Greedy Nodes in IoT Networks" Sensors 21, no. 15: 5127. https://doi.org/10.3390/s21155127
APA StyleSadek, F. S., Belkadi, K., Abouaissa, A., & Lorenz, P. (2021). Identifying Misbehaving Greedy Nodes in IoT Networks. Sensors, 21(15), 5127. https://doi.org/10.3390/s21155127