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Abstract: Numerous optimization problems designed in different branches of science and the real
world must be solved using appropriate techniques. Population-based optimization algorithms are
some of the most important and practical techniques for solving optimization problems. In this paper,
a new optimization algorithm called the Cat and Mouse-Based Optimizer (CMBO) is presented
that mimics the natural behavior between cats and mice. In the proposed CMBO, the movement
of cats towards mice as well as the escape of mice towards havens is simulated. Mathematical
modeling and formulation of the proposed CMBO for implementation on optimization problems
are presented. The performance of the CMBO is evaluated on a standard set of objective functions
of three different types including unimodal, high-dimensional multimodal, and fixed-dimensional
multimodal. The results of optimization of objective functions show that the proposed CMBO has a
good ability to solve various optimization problems. Moreover, the optimization results obtained
from the CMBO are compared with the performance of nine other well-known algorithms including
Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Gravitational Search Algorithm (GSA),
Teaching-Learning-Based Optimization (TLBO), Grey Wolf Optimizer (GWO), Whale Optimization
Algorithm (WOA), Marine Predators Algorithm (MPA), Tunicate Swarm Algorithm (TSA), and
Teamwork Optimization Algorithm (TOA). The performance analysis of the proposed CMBO against
the compared algorithms shows that CMBO is much more competitive than other algorithms by
providing more suitable quasi-optimal solutions that are closer to the global optimal.

Keywords: optimization; population-based; stochastic; cat and mouse; optimization problem

1. Introduction
1.1. Motivation

Optimization is the adjustment and modification of the inputs and properties of a
device, a mathematical process, or an experimental experiment in order to obtain the best
output or result. Each optimization problem has three main parts: decision variables, con-
straints, and objective functions [1]. Decision variables should be adjusted and quantified
in such a way that the objective function of the problem is optimized according to the
constraints. In fact, there are several solutions to an optimization problem where finding
the best solution is the main challenge in optimizing the objective function [2].

1.2. Literature Review

Optimization problem solving methods from the general point of view are grouped
into two categories: (i) deterministic methods and (ii) stochastic methods [3].

Deterministic methods also are grouped into two categories: (i) gradient-based and
(ii) non-gradient-based methods. Gradient-based methods are valid and easy to use for
simple cost functions. Many complex problems can be transformed into functions with
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a little modification that can be solved using these methods. However, with increasing
dimensions of the problem, as well as in nonlinear search spaces, these methods are simply
stuck in local optimal solutions and are not able to provide a suitable solution. Non-
gradient-based methods use condition and objective function evaluation to converge to
the solution. However, the main disadvantage of these methods is that they are very
dependent on the initial conditions and their implementation requires high experience and
knowledge of mathematics [4].

Population-Based Optimization Algorithms

Population-based optimization algorithms is one of the most widely used methods
for solving optimization problems, which belongs to the group of stochastic methods [5].
Population-based optimization algorithms without the need to derivative and gradients
information and based on search operators and collective intelligence are able to provide
appropriate solutions to optimization problems by randomly scanning the search space [6].
Optimization algorithms have been developed based on the ideation of various natural
phenomena, the natural behaviors of animals and living organisms, the laws of physics, the
genetic sciences, the rules of games, and other processes that have the potential to evolve.

Genetic Algorithm (GA) is one of the oldest and most widely used optimization
methods in solving optimization problems, which is developed based on Darwin’s theory
of evolution and reproduction process simulation. In GA, three operators of selection,
crossover, and mutation is applied to model reproduction according to the law of survival
of the fittest and the evolution of the offspring [7]. The advantages of GA are that it has
simple and understandable concepts, but having control parameters that must be well
adjusted and also time-consuming implementation are the most important disadvantages
of this algorithm.

Particle Swarm Optimization (PSO) is another widely used algorithm which is based
on the imitation of bird and fish swarm motion. In PSO, the strategy of moving particles
and updating search agents is based on the best personal experience of each particle and
the global experience of the entire population [8]. The simplicity of mathematical equations
and their easy implementation are the main advantages of PSO. The main disadvantages
of PSO algorithm are falling into the trap of local optimal, reduced population diversity,
and low convergence speed.

Gravitational Search algorithm (GSA) is a physics-based algorithm which is inspired
by gravitational force and Newton’s laws of motion. In GSA, the gravitational force is mod-
eled between different objects that are actually members of the algorithm population and
are at different distances from each other. The acceleration, velocity, and displacement of
objects are then updated according to Newton’s laws of motion [9]. Fast convergence in sim-
ple problems, easy implementation, and low computational cost are the main advantages
of GSA. Among the disadvantages of the GSA are slow convergence, time-consumption,
and the tendency to become trapped in local optimal solutions.

Teaching Learning-based Optimization (TLBO) is a population-based technique which
is developed based on modeling behaviors and interactions between students and the
teacher in the classroom. TLBO updates the algorithm population in two phases of teacher
and learner. In the teacher phase, the educational behavior of the teacher, who is the
best member of the population, towards the students is modeled. In the learner phase,
students share their knowledge and information with each other [10]. Good global search,
simplicity, and no requirement to control parameters are the main advantages of TLBO.
Disadvantages of TLBO is that consumes lot of memory space and involves lot of iterations
so is a time-consuming method.

Grey Wolf Optimizer (GWO) is inspired by social life and hunting strategy of the
gray wolves in nature. In GWO, the hierarchical behavior of leadership in gray wolves is
modeled using four types of wolves: alpha, beta, delta, and omega. The hunting strategy
is also simulated in three stages including search for prey, encircling prey, and attacking
prey [11]. Easily implementation, fewer storage and computational requirements are the
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main advantages of GWO. Slow convergence, low solving precision, having controller
parameters, and bad local searching ability are the main disadvantages of GWO.

Whale Optimization Algorithm (WOA) is a nature-inspired algorithm which is de-
veloped based on social behavior of humpback whales and bubble-net hunting strategy.
WOA have three operators to simulate the search for prey, encircling prey, and bubble-net
foraging behavior of humpback whales [12]. Appropriate balance between exploration and
exploitation is the main advantage of WOA. The main disadvantages of WOA are slow
convergence speed, weak exploring search space, and easy falling into local optimal.

Marine Predators Algorithm (MPA) is introduced based on the movement strategies
that marine predators use when trapping their prey in the oceans. MPA performance is
simulated based on the behavior and strategy of search and pursuit of marine predators
due to the different speeds of predators and prey in three phases. Phase (i): When the
prey moves faster than the predator; Phase (ii): When the prey and the predator move
at almost the same speed; and Phase (iii): When the predator is moving faster than the
prey [13]. Good global search and fast convergence are the main advantages of MPA. The
main disadvantages of MPA are lack of escaping from the local optimization, the inability
to produce a diverse initial population with high productivity, and lack of broadly and
widely exploration of the search space.

Tunicate Swarm Algorithm (TSA) is a bio-inspired method which is introduced based
on simulation of jet propulsion and swarm behaviors of tunicates during the navigation
and foraging process. In TSA the jet propulsion behavior is simulated considering three
conditions including movement towards the position of best search agent, avoid the
conflicts between search agents, and remains close to the best search agent [14]. Good
global search and appropriate balance between exploration and exploitation are the main
advantages of TSA. Low convergence rate and weakness in local search are the main
disadvantages of TSA.

Teamwork Optimization Algorithm (TOA) is a population-based approach which is
developed based on mathematical modeling of relationships and interactions between team
members in doing a teamwork to achieve the goal of that team. In TOA, team members
are updated on each iteration in three phases: supervisor guidance, information sharing,
and individual activity [15]. Although TOA has advantages such as not requiring any
parameter controlling, good global search, having appropriate balance between exploration
and exploitation, and fast convergence, fall to local optimal solutions in solving high-
dimensional multimodal problems is the most important drawback of this algorithm.

In addition, several well-known optimization algorithms in the recent literature are
represented in Table 1.

Table 1. Proposed well-known optimization algorithms in the recent literature.

Ref. Algorithm Main Idea (Inspiration Source)

[16] Cuckoo Search Behavior of cuckoo

[17] Aquila Optimizer Behavior of Aquila in nature during the process of catching the prey

[18] Lion Optimization Algorithm Behavior of lion

[19] Grasshopper Optimization Algorithm Grasshopper behavior

[20] Emperor Penguin Optimizer The behavior of emperor penguin

[21] Cat Swarm Optimization Algorithm Behaviors of cats

[22] Pity Beetle Algorithm Aggregation behavior, searching for nest and food

[23] Mouth Brooding Fish The behavior of mouthbrooding fish

[24] Sailfish Optimizer Group of hunting sailfish

[25] Following Optimization Algorithm Relationships between members and the leader of a community

[26] Multi-Leader Optimizer The presence of several leaders simultaneously for the population members

[27] Differential Evolution the natural phenomenon of evolution

[28] Evolution Strategy Darwinian evolution theory
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Table 1. Cont.

Ref. Algorithm Main Idea (Inspiration Source)

[29] Biogeography-Based Optimizer Biogeographic concepts

[30] Artificial Infectious Disease SEIQR epidemic model

[31] Rooted Tree Optimization Plant roots movement looking for water

[32] Weighted Superposition Attraction Weighted superposition of active fields

[33] Plant Intelligence Plants nervous system

[34] Chemotherapy Science Chemotherapy method

[35] Tree Growth Algorithm Trees competition for acquiring light and foods

[36] Simulated Annealing Metal annealing process

[37] Water Cycle Algorithms Water cycle process and how rivers and streams flow to the sea in the
real world

[38] Water Evaporation Optimization Evaporation of water molecules

[39] Galactic Swarm Optimized Motion The motion of stars, galaxies

[40] Spring Search Algorithms Hooke’s law

[41] Collective Decision Optimization The social behavior of human beings

[42] Very Optimistic Method Real-life practices of successful persons

[43] Momentum Search Algorithm Momentum law and Newton’s laws of motion

[44] Archimedes Optimization Algorithm Law of physics Archimedes’ Principle which imitates the principle of
buoyant force exerted upward on an object

[45] Dice Game Optimizer Rules governing the game of dice and the impact of players on each other

[46] Orientation Search Algorithm Game of orientation, in which players move in the direction of a referee

[47] Hide Objects Game Optimization Behavior and movements of players to find a hidden object

[48] Football Game Based Optimization Simulation of behavior of clubs in football league.

[49] Darts Game Optimizer Rules of the Darts game

[50] Shell Game Optimization Rules of the shell game

1.3. Research Gap and Question

Every optimization problem has a basic solution called global optimal solution. The
important thing about optimization algorithms is that there is no guarantee that the
solutions obtained from these methods necessarily be global optimal solution. For this
reason, the solutions that are obtained using optimization algorithms for optimization
problems are called quasi-optimal solutions [51].

At best, the quasi-optimal solution is equal to the global optimal solution; otherwise,
it must be close to it. Therefore, in analyzing the performance of several optimization
algorithms in solving an optimization problem, the algorithm that is able to provide a
quasi-optimal solution closer to the global optimal solution is the superior algorithm
for solving that optimization problem. Another point is that the optimization algorithm
may work very well in solving the optimization problem, but it will not be able to solve
another optimization problem. That is why researchers have developed many optimization
algorithms to achieve quasi-optimal solutions that are more appropriate and closer to the
global optimal solution.

In order to evaluate the performance of optimization algorithms in achieving quasi-
optimal solutions, optimization algorithms are implemented on standard optimization
problems as benchmark functions whose optimal solution is already known. The criterion
of superiority of optimization algorithms over each other is to provide a solution closer to
the global optimal. Therefore, it is always possible to design a new optimization algorithm
that provides better performance than existing algorithms in optimizing optimization
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problems. In this regard, the main research question of this paper is whether it is possible
to design a new optimization algorithm that can provide a quasi-optimal solution closer to
a global optimal solution.

1.4. Contribution and Applications

In this paper, a new stochastic method called Cat and Mouse Optimization Algorithm
(CMBO) is introduced to solve various optimization problems and provide suitable quasi-
optimal solutions. The contributions proposed by this paper are as follows:

(i) (CMBO is designed based on the simulation of natural interactions between cat
and mouse.

(ii) The various steps and theory of the proposed CMBO are described and its mathemat-
ical model is presented to use in optimizing objective functions.

(iii) The capability of the CMBO in solving optimization problems has been tested on
twenty-three standard objective functions.

(iv) The results obtained from the CMBO are also compared with the performance of nine
well-known optimization algorithms.

Optimization algorithms are used in all disciplines and real-world problems where the
optimization process or problem is designed and defined. The proposed CMBO can be used
to minimize or maximize various objective functions. CMBO can be used in engineering
sciences and optimal designs where decision variables must be well selected to optimize
device performance. In medical science, data mining, clustering, and in general in any
application that faces optimization, the proposed CMBO can be used.

1.5. Paper Organization

The rest of this paper is organized in such a way that the proposed CMBO is introduced
in Section 2. Simulation studies and evaluation of the CMBO are presented in Section 3.
The discussion and analysis of the results is presented in Section 4. Finally, in Section 5,
conclusions as well as several suggestions for future studies are provided.

2. Cat and Mouse Optimization Algorithm

In this section, the theory of the Cat and Mouse Optimization Algorithm (CMBO) is
stated, then its mathematical model is presented in order to use in optimizing various problems.

The CMBO is a population-based algorithm which is designed by inspiration from
the natural behaviors of a cat attacks on mouse and mouse escape to the haven. The search
agents in the proposed algorithm are divided into two groups of cats and mice that scan
the problem search space with random movements. The proposed algorithm updates
population members in two phases. In the first phase, the movement of cats towards
mice is modeled, and in the second phase, the escape of mice to havens to save its lives
is modeled.

From a mathematical point of view, each member of the population is a proposed
solution to the problem. In fact, a member of the population specifies values for the problem
variables according to its position in the search space. Thus, each member of the population
is a vector whose values determine the variables of the problem. The population of the
algorithm is determined using a matrix called the population matrix in Equation (1).

X =



X1
...

Xi
...

XN


N×m

=



x1,1 · · · x1,d · · · x1,m
...

. . .
... . . . ...

xi,1 · · · xi,d · · · xi,m
... . . . ...

. . .
...

xN,1 · · · xN,d · · · xN,m


N×m

, (1)
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where X is the population matrix of CMBO, Xi is the ith search agent, xi,d is the value for
the dth problem variable obtained by the ith search agent, N is the number of population
members, and m is the number of problem variables.

As mentioned, each member of the population determines the proposed values for
the problem variables. Therefore, for each member of the population, a value is specified
for the objective function. The values obtained for the objective function are denoted using
a vector in Equation (2).

F =



F1
...
Fi
...

FN


N×1

, (2)

where F is the vector of objective function values and Fi is the objective function value for
the ith search agent.

Based on the values obtained for the objective functions, the members of the popu-
lation are ranked from the best member with the lowest value of the objective function
to the worst member of the population with the highest value of the objective function.
The sorted population matrix as well as the sorted objective function are determined using
Equations (3) and (4).

XS =



XS
1
...

XS
i
...

XS
N


N×m

=



xs
1,1 · · · xs

1,d · · · xs
1,m

...
. . .

... . . . ...
xs

i,1 · · · xs
i,d · · · xs

i,m
... . . . ...

. . .
...

xs
N,1 · · · xs

N,d · · · xs
N,m


N×m

, (3)

FS =

 FS
1 min(F)
...

...
FS

N max(F)


N×1

, (4)

where XS is the sorted population matrix based on objective function value, XS
i is the

ith member of sorted population matrix, xs
i,d is the value for the dth problem variable

obtained by the ith search agent of sorted population matrix, and FS is the sorted vector of
an objective function.

The population matrix in the proposed CMBO consists of two groups of cats and
mice. In the CMBO, it is assumed that half of the population members who provided better
values for the objective function constitute the population of mice and the other half of the
population members who provided lower values for the objective function constitute the
cat population. Based on this concept, the populations of mice and cats are determined in
Equations (5) and (6), respectively.

M =



M1 = XS
1

...
Mi = XS

i
...

MNm = XS
Nm


Nm×m

=



xs
1,1 · · · xs

1,d · · · xs
1,m

...
. . .

... . . . ...
xs

i,1 · · · xs
i,d · · · xs

i,m
... . . . ...

. . .
...

xs
Nm ,1 · · · xs

Nm ,d · · · xs
Nm ,m


Nm×m

, (5)
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C =



C1 = XS
Nm+1

...
Cj = XS

Nm+j
...

CNc = XS
Nm+Nc


Nc×m

=



xs
Nm+1,1 · · · xs

Nm+1,d · · · xs
Nm+1,m

...
. . .

... . . . ...
xs

Nm+j,1 · · · xs
Nm+j,d · · · xs

Nm+j,m
... . . . ...

. . .
...

xs
Nm+Nc ,1 · · · xs

Nm+Nc ,d · · · xs
Nm+Nc ,m


Nc×m

, (6)

where M is the population matrix of mice, Nm is the number of mice, Mi is the jth mouse,
C is the population matrix of cats, Nc is the number of cats, and Cj is the ith cat.

In order to update the search factors, in the first phase, the change of position of cats
is modeled based on the natural behavior of cats and movement towards mice. This phase
of the update of the proposed CMBO is mathematically modeled using Equations (7)–(9).

Cnew
j : cnew

j,d = cj,d + r×
(

mk,d − I × cj,d

)
& j = 1 : Nc, d = 1 : m, k ∈ 1 : Nm, (7)

I = round(1 + rand), (8)

Cj =

{
Cnew

j ,
∣∣∣Fc,new

j < Fc
j

Cj,
∣∣else

, (9)

Here, Cnew
j is the new status of the jth cat, cnew

j,d is the new value for the dth problem
variable obtained by the jth cat, r is a random number in interval [0, 1], mk,d is the dth
dimension of the kth mouse, Fc,new

j is the objective function value based on new status of
the jth cat.

In the second phase of the proposed CMBO, the escape of mice to havens is modeled.
In CMBO, it is assumed that there is a random haven for each mouse, and mice take refuge
in these havens. The position of the havens in the search space is randomly created based
on patterning the positions of different members of the algorithm. This phase of updating
the position of mice is mathematically modeled using Equations (10)–(12).

Hi : hi,d = xl,d & i = 1 : Nm, d = 1 : m, l ∈ 1 : N, (10)

Mnew
i : mnew

i,d = mi,d + r× (hi,d − I ×mi,d)× sign
(

Fm
i − FH

i
)

&
i = 1 : Nm, d = 1 : m,

(11)

Mi =

{
Mnew

i ,
∣∣Fm,new

i < Fm
i

Mi, |else
, (12)

Here, Hi is the haven for the ith mouse and FH
i is its objective function value. Mnew

i is
the new status of the ith mouse and Fm,new

i is its objective function value.
After all members of the algorithm population have been updated, the algorithm

enters the next iteration and, based on Equations (5)–(12), the iterations of the algorithm
continue until the stop condition is reached. The condition for stopping optimization
algorithms can be a certain number of iterations, or by defining an acceptable error between
obtained solutions in consecutive iterations. Moreover, the condition for stopping the
algorithm may be a certain period of time. Upon completion of the iterations and full
implementation of the algorithm on the optimization problem, the CMBO provides the
best obtained quasi-optimal solution. Flowcharts of different stages of the proposed CMBO
are specified in Figure 1 and its pseudocode is also presented in Algorithm 1.
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Figure 1. Flowchart of CMBO.



Sensors 2021, 21, 5214 9 of 30

Algorithm 1 Pseudocode of CMBO
Start CMBO.

Input problem information: variables, objective function, and constraints.
Set number of search agents (N) and iterations (T).
Generate an initial population matrix at random.
Evaluate the objective function.

For t = 1:T
Sort population matrix based on objective function value using Equations (3) and (4).
Select population of mice M using Equation (5).
Select population of cats C using Equation (6).
Phase 1: update status of cats.

For j = 1:Nc
Update status of the jth cat using Equations (7)–(9).
end

Phase 2: update status of mice.
For i = 1:Nm
Create haven for the ith mouse using Equation (10).
Update status of the ith mouse using Equations (11) and (12).
end

End
Output best quasi-optimal solution obtained with the CMBO.

End CMBO

Step-by-Step Example

In this subsection, a step-by-step example of how to implement the proposed CMBO
is provided to explain it in more detail. In this example, CMBO is applied to optimize the
sphere function. In this example, it is assumed that the number of problem variables is
2, the number of population members is 10, and the condition of stopping the algorithm
is 50 iterations. The mathematical model and information of the sphere function are
as follows:

Sphere function:

F(X) = ∑m
d=1 x2

d = F(x1, x2) = x2
1 + x2

2
subject to : −100 ≤ x1, x2 ≤ 100

Step 1:
In this step, the initial population of feasible solutions is created randomly. The

following general formula is used to define the initial random population:

Xi : xd = xlo + rand× (xhi − xlo) where i = 1 : N, d = 1 : m

For example:

X1 :
x1 = −100 + rand× (100− (−100)) : x1 = 69.00641
x2 = −100 + rand× (100− (−100)) : x2 = −74.5553

Step 2:
In this step, each member of the population is evaluated in the objective function

of the problem. In fact, each member of the population proposes values for the problem
variables based on which the objective function can be evaluated.

For example:

F1 : F(X1) = F(69.00641,−74.5553) = 10320.38
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Step 3:
In this step, based on comparing the values obtained for the objective function, the

population members are sorted from the best solution (minimum value of the objective
function) to the worst solution (maximum value of the objective function). Thus, the sort
criterion is the value of the objective function.

Step 4:
In this step, the population of mice (first half of the population with better objective

function values) and the population of cats (second half of the population with worse
objective function values) are determined according to Equations (5) and (6).

Step 5:
In this step, the position of the cats is updated based on Equations (7)–(9).
Step 6:
In this step, the position of the mice is updated based on Equations (10)–(12).
Step 7:
The third to sixth steps of the algorithm are repeated until the stop condition is met.

Finally, after the full implementation of the proposed algorithm on the objective function,
the best proposed solution using CMBO is presented for the problem.

The calculations of the different steps of CMBO for the first iteration are presented
in Table 2. The final solution for the intended problem after full implementation is also
specified in this table.
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Table 2. The various steps of the proposed CMBO for the first iteration in sphere function solving.

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

X
F(X) XS

FS(X) Cats Mice
C

FC M
Fm

x1 x2 xS
1 xS

2 c1 c2 m1 m2

X1 69.00641 −74.5553 10,320.38 −36.7889 19.51363 1734.208 M1 −36.7889 19.51363 1734.208

X2 18.96709 −45.9773 2473.659 18.96709 −45.9773 2473.659 M2 18.96709 −45.9773 2473.659

X3 99.35621 −34.7797 11,081.28 46.22603 18.41816 2476.074 M3 −12.7845 3.444065 175.3053

X4 −36.7889 19.51363 1734.208 41.24409 −45.8968 3807.588 M4 32.03547 −45.8968 3132.784

X5 46.22603 18.41816 2476.074 68.51469 −19.8287 5087.439 M5 −3.47199 −20.895 448.6563

X6 −91.4795 76.26784 14,185.29 57.48351 58.62186 6740.877 C1 52.12189 −42.9835 4564.272

X7 68.51469 −19.8287 5087.439 69.00641 −74.5553 10,320.38 C2 −24.7895 −40.9822 2294.059

X8 −64.1203 −80.2158 10,545.99 −64.1203 −80.2158 10,545.99 C3 −51.4096 −50.6034 5203.653

X9 41.24409 −45.8968 3807.588 99.35621 −34.7797 11,081.28 C4 87.51208 −30.541 8591.116

X10 57.48351 58.62186 6740.877 −91.4795 76.26784 14,185.29 C5 −16.7554 52.75574 3063.913

Full implementation

Best Solution: x1 = 3.51 × 10−12, x2 = 6.73 × 10−12 and F(X) = 5.7626 × 10−23
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3. Simulation Study and Results

In this section, the efficiency and ability of the proposed CMBO in solving various
optimization problems and providing quasi-optimal solutions are evaluated. For this
purpose, a standard set consisting of twenty-three objective functions of different types
in three groups of unimodal, high-dimensional multimodal, and fixed-dimensional mul-
timodal is applied. Complete information on these functions is provided in Appendix A
and Tables A1–A3.

In order to analyze the quality of the proposed algorithm, the results obtained from
the CMBO are compared with nine other optimization algorithms including (i) popular
and widely used algorithms: Genetic Algorithm (GA), Particle Swarm Optimization (PSO);
(ii) highly cited algorithms: Gravitational Search Algorithm (GSA), Teaching-Learning-
Based Optimization (TLBO), Grey Wolf Optimizer (GWO), Whale Optimization Algorithm
(WOA); and (iii) recently published algorithms: Tunicate Swarm Algorithm (TSA), Marine
Predators Algorithm (MPA), and Teamwork Optimization Algorithm (TOA). The perfor-
mance results of optimization algorithms are presented using two indicators of average
of the best quasi-optimal solutions (ave) and standard deviation of the best quasi-optimal
solutions (std). The used values for the parameters of the optimization algorithms are
specified in Table 3.

Table 3. Parameter values for the compared algorithms.

Algorithm Parameter Value

GA
Type Real coded

Selection Roulette wheel (Proportionate)

Crossover Whole arithmetic (Probability = 0.8,
α ∈ [−0.5, 1.5])

Mutation Gaussian (Probability = 0.05)

PSO
Topology Fully connected

Cognitive and social constant (C1, C2) = (2, 2)
Inertia weight Linear reduction from 0.9 to 0.1
Velocity limit 10% of dimension range

GSA
Alpha, G0, Rnorm, Rpower 20, 100, 2, 1

TLBO
TF: teaching factor TF = round [(1 + rand)]
random number rand is a random number in the range [0− 1].

GWO
Convergence parameter (a) a: Linear reduction from 2 to 0.

WOA
Convergence parameter (a) a: Linear reduction from 2 to 0.

r is a random vector in [0, 1].
l is a random number in [−1, 1].

TSA
Pmin and Pmax 1, 4

C1, C2, C3 random numbers, which lie in the range [0− 1].

MPA
Constant number p = 0.5
Random vector R is a vector of uniform random numbers in the range [0− 1].

Fish Aggregating Devices (FADs) FADs = 0.2
Binary vector U = 0 or 1

TOA
Update index I = round [(1 + rand)]

r r is a uniform random number in the range [0− 1].
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3.1. Evaluation of Unimodal Objective Functions

Objective functions F1 to F7 are considered to analyze and evaluate the ability of
optimization algorithms to solve and optimize unimodal optimization problems. The
results of the implementation of the proposed CMBO as well as nine compared optimization
algorithms are presented in Table 4. The proposed algorithm provides the global optimal
solution for F6. In addition, CMBO performs very well in the F1, F2, F3, F4, F5, and
F7 functions and provides quasi-optimal solutions that are close to the global optimal.
Analysis and comparison of the results obtained from the proposed algorithm against the
other nine optimization algorithms shows that the CMBO has a higher ability to solve
unimodal optimization problems.

3.2. Evaluation of High-Dimensional Objective Functions

Six F8 to F13 objective functions of the high-dimensional multi-model functions are
selected to evaluate the ability of optimization algorithms to provide optimal quasi-optimal
solutions. The results of optimization of these objective functions using the proposed
CMBO and nine compared algorithms are presented in Table 5. CMBO provides the global
optimal solution for the objective functions of F9 and F11. For F12 and F13 functions,
CMBO provides the best performance and provides suitable quasi-optimal solutions. The
optimization results show that CMBO obtains very competitive results in majority of the
objective functions than other algorithms.

3.3. Evaluation of Fixed-Dimensional Objective Functions

F14 to F23 objective functions are selected to evaluate the ability of optimization
algorithms to provide suitable solutions for fixed-dimensional multimodal optimization
problems. The results of the implementation of optimization algorithms on this type of
objective functions are presented in Table 6. CMBO provides good performance in all
F14 to F23 objective functions and provides appropriate quasi-optimal solutions for these
objective functions. In addition, comparison and analysis of the results show that the
proposed algorithm is provided more appropriate solutions in most cases. On the other
hand, in functions where CMBO has a similar performance in index “ave” with some
algorithms, it is able to solve these optimization problems more effectively with a more
appropriate index “std”.

In order to further analyze and visually compare the performance of the optimization
algorithms, the boxplot of results for each algorithm and objective function is shown in
Figure 2. In Tables 4–6, the bold results indicate an algorithm that has performed better in
optimizing the specified function.



Sensors 2021, 21, 5214 14 of 30

Table 4. Optimization results of CMBO and other algorithms on unimodal function.

CMBO TOA MPA TSA WOA GWO TLBO GSA PSO GA

F1
ave 2.69 × 10−236 0 3.2715 × 10−21 7.71 × 10−38 2.1741 × 10−9 1.09 × 10−58 8.3373 × 10−60 2.0255 × 10−17 1.7740 × 10−5 13.2405
std 0 0 4.6153 × 10−21 7.00 × 10−21 7.3985 × 10−25 5.1413 × 10−74 4.9436 × 10−76 1.1369 × 10−32 6.4396 × 10−21 4.7664 × 10−15

F2
ave 6.88 × 10−121 0 1.57 × 10−12 8.48 × 10−39 0.5462 1.2952 × 10−34 7.1704 × 10−35 2.3702 × 10−8 0.3411 2.4794
std 2.46 × 10−135 0 1.42 × 10−12 5.92 × 10−41 1.7377 × 10−16 1.9127 × 10−50 6.6936 × 10−50 5.1789 × 10−24 7.4476 × 10−17 2.2342 × 10−15

F3
ave 2.44 × 10−60 0 0.0864 1.15 × 10−21 1.7634 × 10−8 7.4091 × 10−15 2.7531 × 10−15 279.3439 589.492 1536.8963
std 1.82 × 10−67 0 0.1444 6.70 × 10−21 1.0357 × 10−23 5.6446 × 10−30 2.6459 × 10−31 1.2075 × 10−13 7.1179 × 10−13 6.6095 × 10−13

F4
ave 1.04 × 10−93 0 2.6 × 10−8 1.33 × 10−23 2.9009 × 10−5 1.2599 × 10−14 9.4199 × 10−15 3.2547 × 10−9 3.9634 2.0942
std 2.09 × 10−108 0 9.25 × 10−9 1.15 × 10−22 1.2121 × 10−20 1.0583 × 10−29 2.1167 × 10−30 2.0346 × 10−24 1.9860 × 10−16 2.2342 × 10−15

F5
ave 24.87011 26.2476 46.049 28.8615 41.7767 26.8607 146.4564 36.10695 50.26245 310.4273
std 1.91 × 10−14 3.26 × 10−14 0.4219 4.76 × 10−3 2.5421 × 10−14 0 1.9065 × 10−14 3.0982 × 10−14 1.5888 × 10−14 2.0972 × 10−13

F6
ave 0 0 0.398 7.10 × 10−21 1.6085 × 10−9 0.6423 0.4435 0 20.25 14.55
std 0 0 0.1914 1.12 × 10−25 4.6240 × 10−25 6.2063 × 10−17 4.2203 × 10−16 0 1.2564 3.1776 × 10−15

F7
ave 0.002709 9.92 × 10−06 0.0018 3.72 × 10−4 0.0205 0.0008 0.0017 0.0206 0.1134 5.6799 × 10−3

std 1.94 × 10−19 1.74 × 10−20 0.001 5.09 × 10−5 1.5515 × 10−18 7.2730 × 10−20 3.87896 × 10−19 2.7152 × 10−18 4.3444 × 10−17 7.7579 × 10−19

Table 5. Optimization results of CMBO and other algorithms on high-dimensional function.

CMBO TOA MPA TSA WOA GWO TLBO GSA PSO GA

F8
ave −6561.15 −9631.41 −3594.1632 −5740.3388 −1663.9782 −5885.1172 −7408.6107 −2849.0724 −6908.6558 −8184.4142
std 1.83 × 10−12 3.86 × 10−12 811.32651 41.5 716.3492 467.5138 513.5784 264.3516 625.6248 833.2165

F9
ave 0 0 140.1238 5.70 × 10−3 4.2011 8.5265 × 10−15 10.2485 16.2675 57.0613 62.4114
std 0 0 26.3124 1.46 × 10−3 4.3692 × 10−15 5.6446 × 10−30 5.5608 × 10−15 3.1776 × 10−15 6.3552 × 10−15 2.5421 × 10−14

F10
ave 4.44 × 10−15 8.88 × 10−16 9.6987 × 10−12 9.80 × 10−14 0.3293 1.7053 × 10−14 0.2757 3.5673 × 10−9 2.1546 3.2218
std 0 0 6.1325 × 10−12 4.51 × 10−12 1.9860 × 10−16 2.7517 × 10−29 2.5641 × 10−15 3.6992 × 10−25 7.9441 × 10−16 5.1636 × 10−15

F11
ave 0 0 0 1.00 × 10−7 0.1189 0.0037 0.6082 3.7375 0.0462 1.2302
std 0 0 0 7.46 × 10−7 8.9991 × 10−17 1.2606 × 10−18 1.9860 × 10−16 2.7804 × 10−15 3.1031 × 10−18 8.4406 × 10−16

F12
ave 1.10 × 10−08 0.2463 0.0851 0.0368 1.7414 0.0372 0.0203 0.0362 0.4806 0.047
std 1.66 × 10−22 7.45 × 10−17 0.0052 1.5461 × 10−2 8.1347 × 10−12 4.3444 × 10−17 7.7579 × 10−19 6.2063 × 10−18 1.8619 × 10−16 4.6547 × 10−18

F13
ave 1.78 × 10−07 1.25 0.4901 2.9575 0.3456 0.5763 0.3293 0.002 0.5084 1.2085
std 3.10 × 10−18 4.47 × 10−16 0.1932 1.5682 × 10−12 3.25391 × 10−12 2.4825 × 10−15 2.1101 × 10−14 4.2617 × 10−14 4.9650 × 10−17 3.2272 × 10−16
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Table 6. Optimization results of CMBO and other algorithms on fixed-dimensional function.

CMBO TOA MPA TSA WOA GWO TLBO GSA PSO GA

F14
ave 0.998 0.9980 0.998 1.9923 0.998 3.7408 2.2721 3.5913 2.1735 0.9986
std 0 4.72 × 10−16 4.2735 × 10−16 2.6548 × 10−7 9.4336 × 10−16 6.4545 × 10−15 1.9860 × 10−16 7.9441 × 10−16 7.9441 × 10−16 1.5640 × 10−15

F15
ave 0.000307 0.000307 0.003 0.0004 0.0049 0.0063 0.0033 0.0024 0.0535 5.3952 × 10−2

std 1.21 × 10−20 1.16 × 10−18 4.0951 × 10−15 9.0125 × 10−4 3.4910 × 10−18 1.1636 × 10−18 1.2218 × 10−17 2.9092 × 10−19 3.8789 × 10−19 7.0791 × 10−18

F16
ave −1.03163 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316
std 1.47 × 10−16 1.99 × 10−16 4.4652 × 10−16 2.6514 × 10−16 9.9301 × 10−16 3.9720 × 10−16 1.4398 × 10−15 5.9580 × 10−16 3.4755 × 10−16 7.9441 × 10−16

F17
ave 0.3978 0.3978 0.3979 0.3991 0.4047 0.3978 0.3978 0.3978 0.7854 0.4369
std 0 9.93 × 10−17 9.1235 × 10−15 2.1596 × 10−16 2.4825 × 10−17 8.6888 × 10−17 7.4476 × 10−17 9.9301 × 10−17 4.9650 × 10−17 4.9650 × 10−17

F18
ave 3 3 3 3 3 3 3.0009 3 3 4.3592
std 0 0 1.9584 × 10−15 2.6528 × 10−15 5.6984 × 10−15 2.0853 × 10−15 1.5888 × 10−15 6.9511 × 10−16 3.6741 × 10−15 5.9580 × 10−16

F19
ave −3.86278 −3.86278 −3.8627 −3.8066 −3.8627 −3.8621 −3.8609 −3.8627 −3.8627 −3.85434
std 1.83 × 10−16 2.68 × 10−16 4.2428 × 10−15 2.6357 × 10−15 3.1916 × 10−15 2.4825 × 10−15 7.3483 × 10−15 8.3413 × 10−15 8.9371 × 10−15 9.9301 × 10−17

F20
ave −3.322 −3.322 −3.3211 −3.3206 −3.2424 −3.2523 −3.2014 −3.0396 −3.2619 −2.8239
std 1.59 × 10−16 1.69 × 10−15 1.1421 × 10−11 5.6918 × 10−15 7.9441 × 10−16 2.1846 × 10−15 1.7874 × 10−15 2.1846 × 10−14 2.9790 × 10−16 3.97205 × 10−16

F21
ave −10.1532 −10.1532 −10.1532 −5.5021 −7.4016 −9.6452 −9.1746 −5.1486 −5.3891 −4.3040
std 1.15 × 10−16 1.39 × 10−15 2.5361 × 10−11 5.4615 × 10−13 2.3819 × 10−11 6.5538 × 10−15 8.5399 × 10−15 2.9790 × 10−16 1.4895 × 10−15 1.5888 × 10−15

F22
ave −10.4029 −10.4029 −10.4029 −5.0625 −8.8165 −10.4025 −10.0389 −9.0239 −7.6323 −5.1174
std 1.39 × 10−16 3.18 × 10−15 2.8154 × 10−11 8.4637 × 10−14 6.7524 × 10−15 1.9860 × 10−15 1.5292 × 10−14 1.6484 × 10−12 1.5888 × 10−15 1.2909 × 10−15

F23
ave −10.5364 −10.5364 −10.5364 −10.3613 −10.0003 −10.1302 −9.2905 −8.9045 −6.1648 −6.5621
std 1.35 × 10−16 7.94 × 10−16 3.9861 × 10−11 7.6492 × 10−12 9.1357 × 10−15 4.5678 × 10−15 1.1916 × 10−15 7.1497 × 10−14 2.7804 × 10−15 3.8727 × 10−15
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Figure 2. Cont.
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Figure 2. Boxplot of composition objective functions results for different optimization algorithms.

3.4. Statistical Analysis

Presentation and analysis of optimization results using the two indicators of the
average of the best results and the standard deviation of the best results provide valuable
and useful information about the performance of optimization algorithms. However, even
with a very low probability, the superiority of one algorithm over several other algorithms
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may be coincidental. In this regard, in this subsection, a statistical analysis called Wilcoxon
rank-sum test is presented in order to further evaluate and analyze the performance of
optimization algorithms as well as the proposed CMBO. The Wilcoxon rank-sum test is
one of the nonparametric tests which is used in statistical analysis.

In the Wilcoxon test, a p-value determines whether the considered optimization
algorithm is statistically significant or not. If the p-value of the algorithm is less than 0.05,
the result is that the algorithm is statistically significant. Table 7 presents the simulation
results of statistical analysis using Wilcoxon rank-sum test. What can be concluded from the
comparison and analysis of the values presented in this table is that the proposed CMBO
has a significant superiority over the compared algorithm in cases where the p-value is
less than 0.05. In fact, a p-value indicates whether the proposed CMBO has significant
superiority over the compared algorithms. Based on the simulation results, the proposed
CMBO has a significant superiority over MPA, WOA, GSA, PSO and GA in optimizing the
F1 to F7 unimodal function group. In the second group of objective functions including F8
to F13, CMBO has a significant superiority over TSA, MPA, WOA, GWO, and GSA. The
proposed CMBO in optimizing the objective functions of the third group, including F14 to
F23, has a significant superiority over all TSA, MPA, WOA, GWO, TLBO, GSA, PSO, GA.

Table 7. Statistical analysis results from the Wilcoxon test (p ≥ 0.05).

Compared
Algorithms Unimodal High-Dimensional

Multi Modal
Fixed-Dimensional

Multi Modal

CMBO vs. TOA 0.4375 0.4375 0.625

CMBO vs. TSA 0.109375 0.0625 0.0625

CMBO vs. MPA 0.015625 0.03125 0.003906

CMBO vs. WOA 0.015625 0.03125 0.007813

CMBO vs. GWO 0.15625 0.03125 0.011719

CMBO vs. TLBO 0.15625 0.4375 0.005859

CMBO vs. GSA 0.03125 0.03125 0.019531

CMBO vs. PSO 0.015625 0.4375 0.003906

CMBO vs. GA 0.015625 0.4375 0.001953

3.5. Sensitivity Analysis

In this subsection, the sensitivity analysis of the proposed CMBO with respect to the
two parameters of the number of population members of the algorithm and the maximum
number of iterations of the algorithm is presented.

In order to sensitivity analyze of the performance of the CMBO to the number of
parameters of population members, it has been implemented on all twenty-three objective
functions for different populations with 20, 30, 50, and 80 members. The results of this
analysis are presented in Table 8, and also the behavior of convergence curves due to
changes in the number of population members is presented in Figure 3. What has been
concluded from the simulation results of the sensitivity analysis to the number of popula-
tion member’s parameter is that as the number of members of the algorithm increases, the
proposed CMBO converges to more suitable quasi-optimal solutions and the values of the
objective function decrease.
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Table 8. Results of the algorithm sensitivity analysis to the number of population members.

Objective
Functions

Number of Population Members

20 30 50 80

F1 3.7 × 10−201 1.4 × 10−214 2.7 × 10−236 1.1 × 10−243

F2 5.4 × 10−137 1.4 × 10−126 6.9 × 10−121 4.3 × 10−119

F3 8.69 × 10−74 8.34 × 10−60 2.44 × 10−60 2.42 × 10−57

F4 5.5 × 10−108 1.23 × 10−98 1.04 × 10−93 4.96 × 10−92

F5 26.86162 25.87908 24.87011 24.58636

F6 0 0 0 0

F7 0.008517 0.006639 0.002709 0.001691

F8 −4696 −7900.45 −6561.15 −7142.03

F9 0 0 0 0

F10 4.44 × 10−15 4.44 × 10−15 4.44 × 10−15 4.44 × 10−15

F11 0 0 0 0

F12 0.038614 0.003171 1.1 × 10−08 1.36 × 10−09

F13 1.281798 0.305144 1.78 × 10−07 5.22 × 10−09

F14 1.593234 1.196414 0.998 0.998004

F15 0.000418 0.000311 0.000307 0.000307

F16 −1.03163 −1.03163 −1.03163 −1.03163

F17 0.397887 0.397887 0.3978 0.397887

F18 9.75 3 3 3

F19 −3.82413 −3.86278 −3.86278 −3.86278

F20 −3.3005 −3.30416 −3.322 −3.322

F21 −8.71417 −8.61749 −10.1532 −10.1532

F22 −7.84302 −8.35605 −10.4029 −10.4029

F23 −8.57191 −9.61404 −10.5364 −10.5364
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Figure 3. Sensitivity analysis of CMBO for number of population members.
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In order to sensitivity analyze of the performance of the CMBO to the maximum
number of iterations parameter, the proposed algorithm has been run independently
on all twenty-three objective functions for the maximum number of iterations equal to
100, 500, 800, and 1000. Table 9 presents the evaluation results of this analysis and the
behavior of convergence curves under the influence of changes in the maximum number of
iterations is presented in Figure 4. The simulation results of the sensitivity analysis of the
proposed CMBO with respect to the maximum number of iterations parameter indicate that
increasing the maximum number of iterations has led the CMBO to converge to solutions
closer to the global optimal.

Table 9. Results of the algorithm sensitivity analysis to the maximum number of iterations.

Objective
Functions

Maximum number of iterations

100 500 800 1000

F1 9.54 × 10−20 6.7 × 10−115 9.3 × 10−187 2.7 × 10−236

F2 9.48 × 10−11 3.22 × 10−59 1.47 × 10−95 6.9 × 10−121

F3 0.047734 7.69 × 10−24 7.75 × 10−41 2.44 × 10−60

F4 5.41 × 10−08 1.27 × 10−45 8.96 × 10−74 1.04 × 10−93

F5 27.78238 26.04638 25.62131 24.87011

F6 0 0 0 0

F7 0.012014 0.005967 0.005116 0.002709

F8 −3642.94 −4496.48 −5014.61 −6561.15

F9 0 0 0 0

F10 7.19 × 10−11 4.44 × 10−15 4.44 × 10−15 4.44 × 10−15

F11 0 0 0 0

F12 0.023937 0.000129 1.23 × 10−05 1.1 × 10−08

F13 0.324195 0.030145 0.016247 1.78 × 10−07

F14 1.096872 0.998004 0.998004 0.998

F15 0.000529 0.000341 0.000308 0.000307

F16 −1.03163 −1.03163 −1.03163 −1.03163

F17 0.397887 0.397887 0.397887 0.3978

F18 3 3 3 3

F19 −3.86278 −3.86278 −3.86278 −3.86278

F20 −3.31584 −3.32199 −3.322 −3.322

F21 −8.93555 −9.64077 −10.1532 −10.1532

F22 −9.13251 −10.4027 −10.4029 −10.4029

F23 −10.4926 −10.5364 −10.5362 −10.5364
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Figure 4. Sensitivity analysis of CMBO for maximum number of iterations.
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4. Discussion

Exploitation and exploration are two important criteria that play a valuable role
in evaluating and determining the quality of optimization algorithms. Optimization
algorithms must have a favorable situation in these two criteria in order to be able to have
acceptable performance in solving optimization problems.

The concept of exploitation means the ability of optimization algorithms to achieve a
suitable quasi-optimal solution that is close to the global optimal. In fact, an optimization
algorithm must provide a suitable quasi-optimal solution to an optimization problem
after fully implemented. Therefore, in analyzing the effectiveness of several optimization
algorithms in solving an optimization problem, the algorithm that suggests a better quasi-
optimal solution for that problem has a higher quality in the criterion of exploitation.
This criterion is especially important for optimization problems that have only one main
solution. The F1 to F7 objective functions, which are selected as unimodal functions, have
only one main optimal solution and no optimal local areas. These types of functions
are suitable for evaluating the exploitation criterion because of this feature. The results
of optimization of these objective functions using the proposed CMBO as well as nine
compared algorithms are presented in Table 4. The analysis of these results indicates that
the CMBO with high exploitation capability has been able to provide suitable quasi-optimal
solutions for F1 to F7 functions, which have a much higher quality than similar algorithms.
Therefore, the CMBO is in a much better position than the nine compared algorithms in
the exploitation criterion.

The concept of exploration means the ability of optimization algorithms to accurately
and appropriately scan the search space of an optimization problem. In fact, optimization
algorithms must be able to search different areas of the search space in order to achieve
solutions closer to the global optimization. Therefore, in analyzing the performance of
several optimization algorithms, an algorithm has a higher quality in the exploration index
that provides a more suitable quasi-optimal solution by accurately scanning the search
space. This indicator is especially important in optimization problems that have local
optimal solutions in addition to the main optimal solution. The F8 to F13 high-dimensional
multimodal functions and the F14 to F23 fixed-dimensional multimodal functions have
optimal local solutions in addition to basic optimal solution; therefore, these functions are
suitable for evaluating the exploration power of optimization algorithms. The optimization
results of F8 to F13 objective functions and F14 to F23 objective functions are presented in
Tables 5 and 6, respectively, using the proposed CMBO as well as nine compared algorithms.
Based on the simulation results, it is determined that the CMBO with high ability to scan
the search space is able to converge to quasi-optimal solutions without getting stuck in local
optimal points. Therefore, the proposed CMBO has a high capability in the exploration
index and is much more competitive than the competing algorithms.

Execution Time Analysis

In this subsection, studies of the execution time of optimization algorithms in solving
objective functions are presented. The experimentation and algorithms are implemented in
Matlab R2014a (8.3.0.532) version and run in the environment of Microsoft Windows 10
with 64 bits on Core i-7 processor with 2.40 GHz and 6 GB memory. The average execution
time (ave_time) in seconds and the standard deviation for execution time (std_time) are
computed as the metrics of performance. To generate and report the results, for each
objective function, optimization algorithms utilize 20 independent runs where each run
employs 1000 times of iterations.

The results of execution time analysis for all twenty-three objective functions are
presented in Table 10. What can be deduced from the simulation results of this analysis
is that the proposed CMBO is implemented on optimization problems in less time and
has provided quasi-optimal solutions. A comparative review of the CMBO and compared
algorithms is presented in Table 11.
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Table 10. Comparison of average execution time (ave_time) in seconds and the standard deviation for execution time
(std_time).

CMBO TOA MPA TSA WOA GWO TLBO GSA PSO GA

F1
ave_time 2.06327 2.288047 2.828934 2.27456 2.856446 3.142379 3.662429 9.024897 3.685416 3.876233
std_time 0.008802 0.103601 0.021766 0.00882 0.039718 0.01458 0.008365 0.110843 0.01622 0.044052

F2
ave_time 2.149418 2.33419 2.222183 2.496359 3.143495 3.000322 3.747463 9.602311 3.425936 3.34707
std_time 0.009976 0.05675 0.00619 0.004159 0.012551 0.001226 0.00205 0.029098 0.001869 0.001112

F3
ave_time 3.759693 6.014573 6.474818 5.805883 10.96679 6.132736 13.31042 11.65223 14.68167 12.16981
std_time 0.049343 0.184878 0.056553 0.003913 0.020291 0.002126 0.005486 0.05522 0.023614 0.063015

F4
ave_time 2.095707 2.303496 2.830211 2.429061 2.82791 2.884421 3.475663 9.399065 3.298336 3.218456
std_time 0.000425 0.058168 0.006382 0.001313 0.002522 0.000774 0.000146 0.095684 0.002026 0.001128

F5
ave_time 2.319993 2.668194 3.271111 2.837473 4.076267 3.362668 4.743216 9.85618 4.510391 4.74454
std_time 0.001194 0.098008 0.020855 0.001889 0.004884 0.0012 0.013286 0.000635 0.004473 0.015477

F6
ave_time 2.051842 2.142897 2.778443 2.388851 2.636699 2.884786 3.543828 9.739783 2.826627 3.964025
std_time 0.000734 0.053895 0.002564 0.000531 0.000103 0.000545 0.003082 0.081756 0.00079 0.002177

F7
ave_time 2.799308 3.426696 5.361778 4.208485 7.73167 4.624996 9.5011 11.0389 10.25112 8.948355
std_time 0.000298 0.138022 0.010684 0.001381 0.013762 0.000748 0.01131 0.002795 0.062275 0.003807

F8
ave_time 2.368102 2.787053 3.54212 3.038116 4.470513 3.45166 5.934958 10.15033 6.189501 5.35854
std_time 0.001774 0.146471 0.028588 0.001872 0.008998 0.000947 0.024404 0.002614 0.027143 0.006958

F9
ave_time 2.105224 2.141418 3.207098 2.70311 2.998242 2.962939 5.075711 10.07901 4.697519 4.632448
std_time 0.000457 0.022495 0.00947 0.000574 0.001451 0.001075 0.007871 0.034299 0.006383 0.001877

F10
ave_time 2.119633 2.213827 3.199752 2.685157 3.250468 2.951537 4.663569 9.862325 4.465213 4.851987
std_time 0.000675 0.106657 0.008234 0.001502 0.002534 0.000494 0.002845 0.030374 0.003311 0.000453

F11
ave_time 2.382237 2.702994 3.627042 3.029926 4.341168 3.544234 5.783952 10.09065 5.962496 5.935665
std_time 0.000521 0.090901 0.002333 0.006447 0.004761 0.011232 0.004814 0.001281 0.004878 0.010718

F12
ave_time 4.689757 6.401408 9.786492 7.746796 16.08114 8.081277 22.27949 13.02264 23.24494 18.18917
std_time 0.000582 0.136896 0.121341 0.003636 0.010787 0.005813 0.145335 0.001683 0.143479 0.016131

F13
ave_time 4.683313 6.317049 9.715068 7.882488 16.03426 8.216492 21.93277 12.87604 22.93827 17.26237
std_time 0.00164 0.142056 0.059173 0.015565 0.009175 0.040121 0.238577 0.080775 0.040952 0.026452

F14
ave_time 6.77659 11.05703 10.17388 11.25044 28.35404 10.67249 38.58243 10.43203 42.03153 31.15071
std_time 0.024394 0.495939 0.132818 0.007729 0.043197 0.004033 0.463309 0.00956 0.793664 0.187898

F15
ave_time 1.162517 2.036434 1.674953 1.143977 2.66252 1.168071 4.228257 4.381512 2.407291 3.348114
std_time 0.0006 0.076443 0.004268 0.001227 0.003729 0.000474 0.004635 0.000891 0.003895 0.000252

F16
ave_time 0.981154 1.965747 1.553408 1.014295 2.554895 0.98797 4.155264 3.895143 2.183457 3.277226
std_time 0.000487 0.097936 0.013704 0.001489 0.002058 0.000326 0.002632 0.006833 0.000941 0.000117

F17
ave_time 0.976854 1.818405 1.235874 0.86938 2.127932 0.865444 3.596898 3.391429 1.754779 2.926444
std_time 0.025755 0.076691 0.005655 0.000666 0.001913 0.000584 0.005077 0.002162 0.001703 0.000751

F18
ave_time 0.895712 1.828383 1.161598 0.778106 1.943841 0.827821 3.474254 3.32534 1.553584 3.013364

std_time 0.000171 0.115063 0.000996 5.56E-
05 0.000193 0.000381 0.004198 0.007157 0.002831 0.002876

F19
ave_time 1.15748 2.291343 1.500319 1.165046 2.852 1.19711 4.232431 3.811885 2.8576 3.788615
std_time 0.002134 0.265954 0.00141 0.000364 0.00364 0.000711 0.007588 0.009134 0.009284 0.000403

F20
ave_time 1.282607 2.124999 1.57968 1.384633 3.174224 1.359368 4.217968 4.155625 3.802493 4.105984
std_time 0.000401 0.068302 0.001507 0.001233 0.004248 0.000464 0.003929 0.00207 0.082165 0.003145

F21
ave_time 1.325595 2.387586 1.958585 1.625469 3.975843 1.81357 5.617517 3.935374 3.834105 7.570488
std_time 0.001363 0.086822 0.021254 0.002127 0.072322 0.009181 0.026092 0.004605 0.006494 8.978715

F22
ave_time 1.460515 2.645545 2.197999 1.762546 4.159347 1.714076 6.661208 4.227989 4.859716 5.190246
std_time 0.004856 0.142053 0.018205 0.00058 0.002778 0.000859 0.005957 0.03825 0.028151 0.001234

F23
ave_time 1.558004 2.857437 2.69353 2.168531 5.108969 2.032143 7.707782 5.007117 6.206333 6.102901
std_time 0.001463 0.159845 0.019916 0.002441 0.007591 0.003044 0.00225 0.005821 0.15752 0.001592
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Table 11. Comparative review for CMBO and compared algorithms.

Algorithm Disadvantage Advantage

GA
High memory consumption, having
control parameters, and poor local
search.

Good global search, simplicity and
comprehensibility

PSO
Having control parameters, poor
convergence and entrapment in local
optimum areas.

Simplicity of the relationship and its
implementation.

GSA

High computations, time consuming,
having several control parameters, and
poor convergence in complex objective
functions.

Easy implementation, fast convergence
in simple problems, and low
computational cost.

TLBO Poor convergence rate. Good global search, simplicity, and not
requiring any parameter.

GWO
Low convergence speed, poor local
search, and low accuracy in solving
complex problems.

Fast convergence due to continuous
reduction of search space, less storage
and computational requirements, and
easy to implement due to its simple
structure.

WOA Low accuracy, slow convergence, and
easy to fall into local optimum.

Simple structure, less required operator,
and having appropriate balance
between exploration and exploitation.

MPA High computations, time consuming,
and having control parameters.

Good global search and fast
convergence.

TSA

Poor convergence, having control
parameters and fall to local optimal
solutions in solving high-dimensional
multimodal problems.

Fast convergence, good global search,
having appropriate balance between
exploration and exploitation.

TOA
Fall to local optimal solutions in
solving high-dimensional multimodal
problems.

Not requiring any parameter, good
global search, having appropriate
balance between exploration and
exploitation, and fast convergence.

CMBO

The important thing about all
optimization algorithms is that it
cannot be claimed that one particular
algorithm is the best optimizer for all
optimization problems. It is also always
possible to develop new optimization
algorithms that can provide more
desirable quasi-optimal solutions that
are also closer to the global optimal.

Easy implementation, simplicity of
equations, lack of control parameters,
proper exploitation, proper exploration,
high convergence power, and not
getting caught up in local optimal
solutions.

5. Conclusions and Feature Works

Designed optimization problems in different sciences should be solved using appro-
priate methods. Optimization algorithms are one of the most widely used and effective
methods to provide appropriate solutions to optimization problems. In this paper, a new
optimizer called Cat and Mouse-Based Optimizer (CMBO) has been presented that mimics
the natural behavior between cats and mice. The mathematical model of the proposed
CMBO has been presented based on simulating the cats attack on mice and the escape of
mice to shelters. The performance of the CMBO in optimization was tested on a standard
set consisting of twenty-three objective functions and the results were compared with
the performance of nine algorithms Genetic Algorithm (GA), Particle Swarm Optimiza-
tion (PSO), Gravitational Search Algorithm (GSA), Teaching-Learning-Based Optimization
(TLBO), Grey Wolf Optimizer (GWO), Whale Optimization Algorithm (WOA), Marine
Predators Algorithm (MPA), Tunicate Swarm Algorithm (TSA), and Teamwork Optimiza-
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tion Algorithm (TOA). The results of optimization of Unimodal objective functions showed
that the proposed CMBO has a high capability in solving this type of optimization prob-
lems and has a very good exploitation power. The results of the implementation of the
proposed algorithm on the objective functions of high-dimensional and fixed-dimensional
multimodal showed the high exploration power of the proposed CMBO in order to accu-
rately scan the search space of optimization problems. Moreover, analyzing the results
and comparing the performance of the mentioned algorithms with the performance of the
CMBO showed the superiority and more competitiveness of the proposed algorithm.

The conclusions presented in this section about the performance and ability of the
proposed CMBO to solve optimization problems were based on the optimization of twenty-
three standard objective functions. From a general point of view, in optimization studies, it
cannot be claimed that a particular optimization algorithm is the best optimizer to solve
all optimization problems. In fact, the algorithm should be used to solve the problems,
and based on the results, it should be stated whether the proposed algorithm is generally
better than the existing methods or for a set of problems that need to be identified. The
important thing about all optimization algorithms is that it is always possible to develop
new optimization algorithms that can provide more desirable quasi-optimal solutions that
are also closer to the global optimal.

The authors present several ideas as potentials for future studies, including the design
of a multi-objective version as well as a binary version of the CMBO. In addition, the
application of the proposed CMBO in solving real-life problems and other optimization
problems in various sciences is suggestions for further research.
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Appendix A

Complete information and details on the standard objective functions of unimodal,
high-dimensional multimodal, and fixed-dimensional multimodal are provided in Tables A1–A3,
respectively.
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Table A1. Unimodal test functions.

Objective Function Range Dimensions Fmin

F1(x) = ∑m
i=1 x2

i [−100, 100] 30 0

F2(x) = ∑m
i=1|xi|+ ∏m

i=1|xi| [−10, 10] 30 0

F3(x) = ∑m
i=1

(
∑i

j=1 xi

)2
[−100, 100] 30 0

F4(x) = max{|xi| , 1 ≤ i ≤ m} [−100, 100] 30 0

F5(x) = ∑m−1
i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2)
]

[−30, 30] 30 0

F6(x) = ∑m
i=1([xi + 0.5])2 [−100, 100] 30 0

F7(x) = ∑m
i=1 ix4

i + random(0, 1) [−1.28, 1.28] 30 0

Table A2. High-dimensional multimodal test functions.

Objective Function Range Dimensions Fmin

F8(x) = ∑m
i=1−xi sin

(√
|xi|
)

[−500, 500] 30 −12,569

F9(x) = ∑m
i=1
[

x2
i − 10 cos(2πxi) + 10

]
[−5.12, 5.12] 30 0

F10(x) = −20 exp
(
−0.2

√
1
m ∑m

i=1 x2
i

)
− exp

(
1
m ∑m

i=1 cos(2πxi)
)
+ 20 + e [−32, 32] 30 0

F11(x) = 1
4000 ∑m

i=1 x2
i −∏m

i=1 cos
(

xi√
i

)
+ 1 [−600, 600] 30 0

F12(x) = π
m {10 sin (πy1)

+∑m
i=1(yi − 1)2[1 + 10 sin2(πyi+1)

]
+ (yn − 1)2

}
+∑m

i=1 u(xi, 10, 100, 4)
u(xi, a, i, n) =


k(xi − a)n, xi > −a;
0, − a < xi < a;
k(−xi − a)n, xi < −a.

[−50, 50] 30 0

F13(x) = 0.1
{

sin2 (3πx1)

+∑m
i=1(xi − 1)2[1 + sin2(3πxi + 1)

]
+ (xn − 1)2[1

+ sin2(2πxm)
]
}+ ∑m

i=1 u(xi, 5, 100, 4)

[−50, 50] 30 0
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Table A3. Fixed-dimensional multimodal test functions.

Objective Function Range Dimensions Fmin

F14(x) =
(

1
500 + ∑25

j=1
1

j+∑2
i=1(xi−aij)

6

)−1
[−65.53, 65.53] 2 0.998

F15(x) = ∑11
i=1

[
ai −

x1(b2
i +bi x2)

b2
i +bi x3+x4

]2
[−5, 5] 4 0.00030

F16(x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 [−5, 5] 2 −1.0316

F17(x) =
(

x2 − 5.1
4π2 x2

1 +
5
π x1 − 6

)2
+ 10

(
1− 1

8π

)
cosx1 + 10 [−5,10]×[0,15] 2 0.398

F18(x) = [1 + (x1 +x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2

+3x2
2
)
]×
[
30 + (2x1 − 3x2)

2 ×
(
18− 32x1 + 12x2

1

+48x2 − 36x1x2 + 27x2
2
)
]

[−5, 5] 2 3

F19(x) = −∑4
i=1 ci exp

(
−∑3

j=1 aij

(
xj − Pij

)2
)

[0, 1] 3 −3.86

F20(x) = −∑4
i=1 ci exp

(
−∑6

j=1 aij

(
xj − Pij

)2
)

[0, 1] 6 −3.22

F21(x) = −∑5
i=1

[
(X− ai)(X− ai)

T + 6ci

]−1
[0, 10] 4 −10.1532

F22(x) = −∑7
i=1

[
(X− ai)(X− ai)

T + 6ci

]−1
[0, 10] 4 −10.4029

F23(x) = −∑10
i=1

[
(X− ai)(X− ai)

T + 6ci

]−1
[0, 10] 4 −10.5364
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