The Long-Term Maintenance of Upper Limb Motor Improvements Following Transcranial Direct Current Stimulation Combined with Rehabilitation in People with Stroke: A Systematic Review of Randomized Sham-Controlled Trials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Search Strategy and Database
2.3. Screening Process and Eligibility Criteria
2.4. Data Extraction
2.5. Methodological Quality Assessment and Risk of Bias
3. Results
3.1. Quality Assessment
3.2. Study Characteristics
3.2.1. Subject and Studies
3.2.2. Treatment
3.2.3. Measurement Tools
3.3. Study Results
3.3.1. Functionality of the UL
3.3.2. Strength of the UL
3.3.3. Spasticity of the UL
4. Discussion
4.1. UL Functionality
4.2. UL Strength
4.3. UL Spasticity
4.4. Subject Characteristics
4.5. Treatment Characteristics
4.6. Methodological Quality and Risk of Bias
4.7. Recommendations for Future Research and Clinical Practice
4.8. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NIBS | Noninvasive brain stimulation techniques |
RCT | Randomized controlled trial |
OT | Occupational therapy |
PT | Physiotherapy |
tDCS | Transcranial direct current stimulation |
UEFM | Fugl-Meyer Upper Extremity Test |
UL | Upper limb |
WMFT | Wolf Motor Function Test |
References
- World Health Organization. Global Status Report on Non-Communicable Diseases; WHO: Geneva, Switzerland, 2010. [Google Scholar]
- Di Pino, G.; Pellegrino, G.; Assenza, G.; Capone, F.; Ferreri, F.; Formica, D.; Ranieri, F.; Tombini, M.; Ziemann, U.; Rothwell, J.C.; et al. Modulation of brain plasticity in stroke: A novel model for neurorehabilitation. Nat. Rev. Neurol. 2014, 10, 597–608. [Google Scholar] [CrossRef]
- Cirillo, G.; Di Pino, G.; Capone, F.; Ranieri, F.; Florio, L.; Todisco, V.; Tedeschi, G.; Funke, K.; Di Lazzaro, V. Neurobiological after-effects of non-invasive brain stimulation. Brain Stimul. 2017, 10, 1–18. [Google Scholar] [CrossRef]
- Liew, S.L.; Santarnecchi, E.; Buch, E.R.; Cohen, L.G. Non-invasive brain stimulation in neurorehabilitation: Local and distant effects for motor recovery. Front. Hum. Neurosci. 2014, 8, 378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silvanto, J.; Muggleton, N.; Walsh, V. State-dependency in brain stimulation studies of perception and cognition. Trends Cogn. Sci. 2008, 12, 447–454. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Paulus, W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 2001, 57, 1899–1901. [Google Scholar] [CrossRef] [PubMed]
- Elsner, B.; Kwakkel, G.; Kugler, J.; Mehrholz, J. Transcranial direct current stimulation (tDCS) for improving capacity in activities and arm function after stroke: A network meta-analysis of randomised controlled trials. J. Neuroeng. Rehabil. 2017, 14, 95. [Google Scholar] [CrossRef]
- Lefaucheur, J.P.; Antal, A.; Ayache, S.S.; Benninger, D.H.; Brunelin, J.; Cogiamanian, F.; Cotelli, M.; De Ridder, D.; Ferrucci, R.; Langguth, B.; et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin. Neurophysiol. 2017, 128, 56–92. [Google Scholar] [CrossRef]
- Elsner, B.; Kugler, J.; Pohl, M.; Mehrholz, J. Transcranial direct current stimulation (tDCS) for improving activities of daily living, and physical and cognitive functioning, in people after stroke. Cochrane Database Syst. Rev. 2016. [Google Scholar] [CrossRef]
- Lüdemann-Podubecká, J.; Bösl, K.; Rothhardt, S.; Verheyden, G.; Nowak, D.A. Transcranial direct current stimulation for motor recovery of upper limb function after stroke. Neurosci. Biobehav. Rev. 2014, 47, 245–259. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.; Ugwu, J.; Madhavan, S. Anodal tDCS of the lower limb M1 does not acutely affect clinical blood pressure and heart rate in healthy and post stroke individuals. SOJ Neurol. 2015, 2. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Fricke, K.; Henschke, U.; Schlitterlau, A.; Liebetanz, D.; Lang, N.; Henning, S.; Tergau, F.; Paulus, W. Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J. Physiol. 2003, 553, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Fritsch, B.; Reis, J.; Martinowich, K.; Schambra, H.M.; Ji, Y.; Cohen, L.G.; Lu, B. Direct current stimulation promotes BDNF-dependent synaptic plasticity: Potential implica-tions for motor learning. Neuron 2010, 66, 198–204. [Google Scholar] [CrossRef] [Green Version]
- Kronberg, G.; Bridi, M.; Abel, T.; Bikson, M.; Parra, L.C. Direct current stimulation modulates LTP and LTD: Activity dependence and dendritic effects. Brain Stimul. 2017, 10, 51–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elsner, B.; Kugler, J.; Mehrholz, J. Transcranial direct current stimulation (tDCS) for upper limb rehabilitation after stroke: Future directions. J. Neuroeng. Rehabil. 2018, 15, 106. [Google Scholar] [CrossRef]
- Fleming, M.K.; Pavlou, M.; Newham, D.J.; Sztriha, L.; Teo, J.T. Non-invasive brain stimulation for the lower limb after stroke: What do we know so far and what should we be doing next? Disabil. Rehabil. 2017, 39, 714–720. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Jadad, A.R.; Moore, R.A.; Carroll, D.; Jenkinson, C.; Reynolds, D.J.; Gavaghan, D.J.; McQuay, H.J. Assessing the quality of reports of randomized clinical trials: Is blinding necessary? Control Clin. Trials 1996, 17, 1–12. [Google Scholar] [CrossRef]
- Higgins, J.P.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savovic, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343. [Google Scholar] [CrossRef] [Green Version]
- Allman, C.; Amadi, U.; Winkler, A.M.; Wilkins, L.; Filippini, N.; Kischka, U.; Stagg, C.J.; Johansen-Berg, H. Ipsilesional anodal tDCS enhances the functional benefits of rehabilitation in patients after stroke. Sci. Transl. Med. 2016, 8, 330re1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bornheim, S.; Croisier, J.L.; Maquet, P.; Kaux, J.F. Transcranial direct current stimulation associated with physical-therapy in acute stroke patients-A randomized, triple blind, sham-controlled study. Brain Stimul. 2020, 13, 329–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards, D.J.; Cortes, M.; Rykman-Peltz, A.; Chang, J.; Elder, J.; Thickbroom, G.; Mariman, J.J.; Gerber, L.M.; Oromendia, C.; Krebs, H.I.; et al. Clinical improvement with intensive robot-assisted arm training in chronic stroke is unchanged by supplementary tDCS. Restor Neurol. Neurosci. 2019, 37, 167–180. [Google Scholar] [CrossRef]
- Fusco, A.; Assenza, F.; Iosa, M.; Izzo, S.; Altavilla, R.; Paolucci, S.; Vernieri, F. The ineffective role of cathodal tDCS in enhancing the functional motor outcomes in early phase of stroke rehabilitation: An experimental trial. BioMed Res. Int. 2014, 2014, 547290. [Google Scholar] [CrossRef] [Green Version]
- Hesse, S.; Waldner, A.; Mehrholz, J.; Tomelleri, C.; Pohl, M.; Werner, C. Combined transcranial direct current stimulation and robot-assisted arm training in subacute stroke patients: An exploratory, randomized multicenter trial. Neurorehabil. Neural Repair 2011, 25, 838–846. [Google Scholar] [CrossRef]
- Khedr, E.M.; Shawky, O.A.; El-Hammady, D.H.; Rothwell, J.C.; Darwish, E.S.; Mostafa, O.M.; Tohamy, A.M. Effect of anodal versus cathodal transcranial direct current stimulation on stroke rehabilitation: A pilot randomized controlled trial. Neurorehabil. Neural Repair 2013, 27, 592–601. [Google Scholar] [CrossRef]
- Kim, D.Y.; Lim, J.Y.; Kang, E.K.; You, D.S.; Oh, M.K.; Oh, B.M.; Paik, N.J. Effect of transcranial direct current stimulation on motor recovery in patients with subacute stroke. Am. J. Phys. Med. Rehabil. 2010, 89, 879–886. [Google Scholar] [CrossRef]
- Koh, C.L.; Lin, J.H.; Jeng, J.S.; Huang, S.L.; Hsieh, C.L. Effects of Transcranial Direct Current Stimulation with Sensory Modulation on Stroke Motor Rehabilitation: A Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2017, 98, 2477–2484. [Google Scholar] [CrossRef] [PubMed]
- Triccas, L.T.; Burridge, J.H.; Hughes, A.; Verheyden, G.; Desikan, M.; Rothwell, J. A double-blinded randomised controlled trial exploring the effect of anodal transcranial direct current stimulation and uni-lateral robot therapy for the impaired upper limb in sub-acute and chronic stroke. NeuroRehabilitation 2015, 37, 181–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.; Yan, F.; Liu, A.; Liu, T.; Wang, H. Electrical Stimulation of the Motor Cortex or Paretic Muscles Improves Strength Production in Stroke Patients: A Systematic Review and Meta-Analysis. PM&R 2021, 13, 171–179. [Google Scholar] [CrossRef]
- Elsner, B.; Kugler, J.; Pohl, M.; Mehrholz, J. Transcranial direct current stimulation for improving spasticity after stroke: A systematic review with meta-analysis. J. Rehabil. Med. 2016, 48, 565–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marquez, J.; van Vliet, P.; McElduff, P.; Lagopoulos, J.; Parsons, M. Transcranial direct current stimulation (tDCS): Does it have merit in stroke rehabilitation? A systematic review. IJS 2015, 10, 306–316. [Google Scholar] [CrossRef] [PubMed]
- Del Felice, A.; Daloli, V.; Masiero, S.; Manganotti, P. Contralesional cathodal versus dual transcranial direct current stimulation for decreasing upper limb spasticity in chronic stroke individuals: A clinical and neurophysiological study. J. Stroke Cerebrovasc. Dis. 2016, 25, 2932–2941. [Google Scholar] [CrossRef] [PubMed]
- Friehs, M.A.; Frings, C. Offline beats online: Transcranial direct current stimulation timing influences on working memory. Neuroreport 2019, 30, 795–799. [Google Scholar] [CrossRef] [PubMed]
- Jeffery, D.T.; Norton, J.A.; Roy, F.D.; Gorassini, M.A. Effects of transcranial direct current stimulation on the excitability of the leg motor cortex. Exp. Brain Res. 2007, 182, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Rueger, M.A.; Keuters, M.H.; Walberer, M.; Braun, R.; Klein, R.; Sparing, R.; Fink, G.R.; Graf, R.; Schroeter, M. Multi-session transcranial direct current stimulation (tDCS) elicits inflammatory and regenerative processes in the rat brain. PLoS ONE 2012, 7, e43776. [Google Scholar] [CrossRef] [Green Version]
- Rushmore, R.J.; DeSimone, C.; Valero-Cabré, A. Multiple sessions of transcranial direct current stimulation to the intact hemisphere improves visual function after unilateral ablation of visual cortex. Eur. J. Neurosci. 2013, 38, 3799–3807. [Google Scholar] [CrossRef] [Green Version]
- Paneri, B.; Adair, D.; Thomas, C.; Khadka, N.; Patel, V.; Tyler, W.J.; Parra, L.; Bikson, M. Tolerability of repeated application of transcranial electrical stimulation with limited outputs to healthy subjects. Brain Stimul. 2016, 9, 740–754. [Google Scholar] [CrossRef] [PubMed]
- Boggio, P.S.; Nunes, A.; Rigonatti, S.P.; Nitsche, M.A.; Pascual- Leone, A.; Fregni, F. Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients. Restor. Neurol. Neurosci. 2007, 25, 123–129. [Google Scholar]
Study | Population (Number, Men/Women, Age) | Design | Participants’ Characteristics | Protocol | Therapy |
---|---|---|---|---|---|
Allman et al., 2016 [20] | 24 (17/7), 63.5 years | Randomized, double blind, sham-controlled | Chronic, 54.125 months, L/R, cortical and subcortical, 37.66 points | Anodal, 9, daily, 20 min, 1 mA, 35 cm2, M1, before rehabilitation | tDCS + PT (40 min daily) |
Bornheim et al., 2020 [21] | 50 (33/17), 62.98 years | Randomized, triple blind, sham-controlled | Acute, ischemic, Medial Cerebral Artery, Anterior Cerebral Artery, Internal Capsule, L/R, WMFT—47.9 points, handgrip strength—18.06 Kg | Anodal, 20, 5 per week, 20 min, 1 mA, 25 cm2, M1, before rehabilitation | tDCS + PT + OT (2 h daily) |
Edwards et al., 2019 [22] | 82 (50/32), 67.8 years | Randomized, dual-site, double blind, sham-controlled | Chronic, 43.9 months, ischemic stroke, dominant hemisphere, 25.45 points | Anodal, 36, 3 per week, 20 min, 2 mA, 35 cm2, M1, before rehabilitation | tDCS + RAT (60 min) |
Fusco et al., 2014 [23] | 11 (5/6), 58.36 years | Randomized, double blind, sham-controlled | Acute, 19.09 days, L/R, cortical and subcortical (partial anterior circulation, total anterior circulation, lacunar), 24.72 points | Cathodal, 10, daily, 10 min, 1.5 mA, 35 cm2, M1, before rehabilitation | tDCS + PT (2 days/week, 45 min) |
Hesse et al., 2011 [24] | 96 (59/37), 64.97 years | Randomized, double blind, sham-controlled | Subacute, 3.67 months, ischemic stroke, L/R, cortical and subcortical (partial anterior circulation, total anterior circulation, lacunar) 7.97 points | Multimodal, 30, daily, 20 min, 2 mA, 35 cm2, M1, during rehabilitation | tDCS + RAT (20 min) |
Khedr et al., 2013 [25] | 40 (26/14), 58.36 years | Pilot randomized, double blind, sham-controlled | Chronic, 15.6 months, L/R, cortical and subcortical, hand-grip strength—1.67 Kg | Multimodal, 6, daily, 25 min, 2 mA, 35 cm2, M1, 1 h before rehabilitation | tDCS + RHB (30 min, daily) |
Kim et al., 2010 [26] | 18 (13/18), 57.27 years | Prospective, randomized, double blind, sham-controlled | Subacute, 25.43 months, L/R, cortical and subcortical, 37.07 points | Multimodal, 10, daily, 20 min, 2 mA, 25 cm2, M1, before and after RHB | tDCS + OT (30 min before and 10 min after) |
Koh et al., 2017 [27] | 25 (15/10), 56.1 years | Randomized, double blind, sham-controlled | Chronic, 14.6 months, L/R, cortical and subcortical, 23.8 points | Bi-hemispheric, 24, 3 per week, 30 min, 1.5 mA, 25 cm2, M1, before RHB | tDCS-SM + OT (20 min) + PT (30 min), 3 times per wek |
Triccas et al., 2015 [28] | 23 (14/9), 63.4 years | Randomized, double blind, sham-controlled | Subacute and chronic, 31 months, L/R, cortical and subcortical, 19.6 points | Anodal, 18, 2–3 per week, 20 min, 1 mA, 25 cm2, M1, before RHB | tDCS + RAT (40 min) |
Study | Follow-Up | Outcome Measures | Results * | Risk of Bias | ||
---|---|---|---|---|---|---|
Allman et al., 2016 [20] | Three months | Follow-up | Baseline | End of treatment | Last follow-up | Low Risk |
UEFM | Anodal Mean (SD): 38.90 (15.89) | Anodal Mean (SD): 50.36 (11.16) | Anodal Mean (SD): 48.18 (14.35) | |||
Sham Mean (SD): 36.42 (17.38) | Sham Mean (SD): 45.54 (14.62) | Sham Mean (SD): 43.15 (16.29) | ||||
ARAT | Anodal Mean (SD): 20.27 (17.37) | Anodal Mean (SD): 29.91 (21.54) | Anodal Mean (SD): 30.45 (20.92) | |||
Sham Mean (SD): 26.27 (20.17) | Sham Mean (SD): 32.54 (21.54) | Sham Mean (SD): 31.31 (21.84) | ||||
WMFT | Anodal Mean (SD): 38.91 (20.21) | Anodal Mean (SD): 47.18 (17.46) | Anodal Mean (SD): 48.36 (18.19) | |||
Sham Mean (SD): 39.65 (25.39) | Sham Mean (SD): 48.00 (23.42) | Sham Mean (SD): 43.09 (23.78) | ||||
Bornheim et al., 2020 [21] | One year | UEFM | Main effect for time: F = 173.1, p = 0.0001 Main effect for treatment: F = 2.5, p = 0.123 Time-by-treatment interaction: F = 28, p = 0.0001 | Low Risk | ||
WMFT | Main effect for time: F = 358.8, p = 0.0001 Main effect for treatment: F = 6.6, p = 0.015 Time-by-treatment interaction: F = 56.6, p = 0.0001 | |||||
Edwards et al., 2019 [22] | Six months | UEFM | Anodal Mean (SD): 25.7 (16.3) | Anodal Mean (SD): 32.0 (18.8) | Anodal Mean (SD): 32.3 (18.8) | Some concerns |
Sham Mean (SD): 25.3 (16.3) | Sham Mean (SD): 33.4 (19.2) | Sham Mean (SD): 35.1 (19.3) | ||||
WMFT | Anodal Mean (SD): 56.0 (47.2) | Anodal Mean (SD): 68.5 (23.2) | Anodal Mean (SD): 72.7 (54.5) | |||
Sham Mean (SD): 60.0 (48.3) | Sham Mean (SD): 67.1 (54.0) | Sham Mean (SD): 51.8 (57.8) | ||||
MRC | No mean difference reported | |||||
Fusco et al., 2014 [23] | Three months | UEFM | T1–T0 changes Cathodal Mean (SD): 4 (5); p = 0.045 Sham Mean (SD): 4 (7); p = 0.003 | Low Risk | ||
MF | Main effect for time: p = 0.130 Main effect for treatment: p = 0.612 Time-by-treatment interaction: p = 0.882 | |||||
9HPT | Main effect for time: p = 0.007 Main effect for treatment: p = 0.655 Time-by-treatment interaction: p = 0.372 | |||||
Hesse et al., 2011 [24] | Three months | UEFM | Anodal Mean (SD): 7.8 (3.8) | Anodal Mean (SD): 19.1 (14.4) | Anodal Mean (SD): 23.2 (18.3) | Some concerns |
Cathodal Mean (SD): 7.9 (3.4) | Cathodal Mean (SD):18.9 (10.5) | Cathodal Mean (SD): 23.5 (14.5) | ||||
Sham Mean (SD): 8.2 (4.4) | Sham Mean (SD): 19.2 (15.0) | Sham Mean (SD): 22.5 (17.1) | ||||
MRC | Anodal Mean (SD): 3.5 (3.6) | Anodal Mean (SD): 11.9 (12.5) | Anodal Mean (SD): 11.7 (14.4) | |||
Cathodal Mean (SD): 2.9 (3.4) | Cathodal Mean (SD): 13.7 (10.4) | Cathodal Mean (SD): 13.5 (10.3) | ||||
Sham Mean (SD): 3.4 (3.2) | Sham Mean (SD): 12.8 (12.1) | Sham Mean (SD): 13.5 (14.3) | ||||
MAS | Anodal Mean (SD): 1.6 (2.9) | Anodal Mean (SD): 3.3 (3.6) | Anodal Mean (SD): 3.6 (6.9) | |||
Cathodal Mean (SD): 1.0 (1.8) | Cathodal Mean (SD): 3.5 (4.9) | Cathodal Mean (SD): 3.5 (5.0) | ||||
Sham Mean (SD): 1.4 (2.7) | Sham Mean (SD): 3.5 (4.0) | Sham Mean (SD): 3.8 (5.5) | ||||
Khedr et al., 2013 [25] | Three months | Hand-grip strength | No mean difference reported, p = 0.175 | Low Risk | ||
Kim et al., 2010 [26] | Six months | UEFM | Main effect for time: F = 16.95, p < 0.001 Main effect for treatment: F = 0.65, p = 0.537 Time-by-treatment interaction: F = 3.55, p = 0.017 Cathodal: p < 0.05 | Low Risk | ||
Koh et al., 2017 [27] | Three and six months | UEFM | Bi-hemispheric Mean (SD): 20.4 (6.2) | Bi-hemispheric Mean (SD): 6.0 (1.5) | Bi-hemispheric Mean (SD): 4.3 (1.5) | Low Risk |
Sham Mean (SD): 27.2 (9.4) | Sham Mean (SD): 1.3 (1.8) | Sham Mean (SD): 0.2 (1.7) | ||||
ARAT | Bi-hemispheric Mean (SD): 2.1 (2.1) | Bi-hemispheric: 0.5 (0.5). | Bi-hemispheric: 0.7 (0.6) | |||
Sham: 4.7 (9.1) | Sham: 0.0 (0.6) | Sham: −0.7 (0.7). | ||||
MAS (Elbow flexion) | Bi-hemispheric Mean (SD): 1.4 (0.7) | Bi-hemispheric Mean (SD): −0.1 (0.1) | Bi-hemispheric Mean (SD): 0.1 (0.1) | |||
Sham Mean (SD): 1.3 (0.3) | Sham Mean (SD): −0.2 (0.2) | Sham Mean (SD): −0.1 (0.2) | ||||
Triccas et al., 2015 [28] | Three months | UEFM | Anodal Mean (SD): 24.91 (16.01) | Anodal Mean (SD): 33.64 (16.25) | Anodal Mean (SD): 32.09 (16.65) | Low Risk |
Sham Mean (SD): 37.09 (13.57) | Sham Mean (SD): 44.82 (16.29) | Sham Mean (SD): 44.18 (18.08) | ||||
ARAT | Effect Of time: X2 = 16.636, df = 2, p < 0.001 Effect of group: X2 = 1.403, df = 1, p = 0.236 Time-by-group: X2 = 2.293, df = 1, p = 0.130 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navarro-López, V.; del Valle-Gratacós, M.; Fernández-Matías, R.; Carratalá-Tejada, M.; Cuesta-Gómez, A.; Molina-Rueda, F. The Long-Term Maintenance of Upper Limb Motor Improvements Following Transcranial Direct Current Stimulation Combined with Rehabilitation in People with Stroke: A Systematic Review of Randomized Sham-Controlled Trials. Sensors 2021, 21, 5216. https://doi.org/10.3390/s21155216
Navarro-López V, del Valle-Gratacós M, Fernández-Matías R, Carratalá-Tejada M, Cuesta-Gómez A, Molina-Rueda F. The Long-Term Maintenance of Upper Limb Motor Improvements Following Transcranial Direct Current Stimulation Combined with Rehabilitation in People with Stroke: A Systematic Review of Randomized Sham-Controlled Trials. Sensors. 2021; 21(15):5216. https://doi.org/10.3390/s21155216
Chicago/Turabian StyleNavarro-López, Víctor, Manuel del Valle-Gratacós, Rubén Fernández-Matías, María Carratalá-Tejada, Alicia Cuesta-Gómez, and Francisco Molina-Rueda. 2021. "The Long-Term Maintenance of Upper Limb Motor Improvements Following Transcranial Direct Current Stimulation Combined with Rehabilitation in People with Stroke: A Systematic Review of Randomized Sham-Controlled Trials" Sensors 21, no. 15: 5216. https://doi.org/10.3390/s21155216
APA StyleNavarro-López, V., del Valle-Gratacós, M., Fernández-Matías, R., Carratalá-Tejada, M., Cuesta-Gómez, A., & Molina-Rueda, F. (2021). The Long-Term Maintenance of Upper Limb Motor Improvements Following Transcranial Direct Current Stimulation Combined with Rehabilitation in People with Stroke: A Systematic Review of Randomized Sham-Controlled Trials. Sensors, 21(15), 5216. https://doi.org/10.3390/s21155216