
sensors

Article

A Unified Approach to Spatial Proximity Query Processing in
Dynamic Spatial Networks

Hyung-Ju Cho

����������
�������

Citation: Cho, H.-J. A Unified

Approach to Spatial Proximity Query

Processing in Dynamic Spatial

Networks. Sensors 2021, 21, 5258.

https://doi.org/10.3390/s21165258

Academic Editors: Guenther Retscher,

Ondrej Krejcar, Vassilis Gikas and

Michal Kačmařík

Received: 28 May 2021

Accepted: 2 August 2021

Published: 4 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Software, Kyungpook National University, 2559 Gyeongsang-daero,
Sangju-si 37224, Gyeongsangbuk-do, Korea; hyungju@knu.ac.kr

Abstract: Nearest neighbor (NN) and range (RN) queries are basic query types in spatial databases.
In this study, we refer to collections of NN and RN queries as spatial proximity (SP) queries. At peak
times, location-based services (LBS) need to quickly process SP queries that arrive simultaneously.
Timely processing can be achieved by increasing the number of LBS servers; however, this also
increases service costs. Existing solutions evaluate SP queries sequentially; thus, such solutions
involve unnecessary distance calculations. This study proposes a unified batch algorithm (UBA)
that can effectively process SP queries in dynamic spatial networks. With the proposed UBA, the
distance between two points is indicated by the travel time on the shortest path connecting them.
The shortest travel time changes frequently depending on traffic conditions. The goal of the proposed
UBA is to avoid unnecessary distance calculations for nearby SP queries. Thus, the UBA clusters
nearby SP queries and exploits shared distance calculations for query clusters. Extensive evaluations
using real-world roadmaps demonstrated the superiority and scalability of UBA compared with
state-of-the-art sequential solutions.

Keywords: spatial proximity query; nearest neighbor query; range query; unified batch algorithm;
dynamic spatial network

1. Introduction

This study investigates a unified batch approach to spatial proximity (SP) queries
in dynamic spatial networks. In the investigated approach, the distance between two
points is the travel time of the shortest path connecting them, and the shortest travel time
frequently changes depending on traffic conditions, such as traffic volume and accidents.
In this study, SP queries refer to a collection of nearest neighbor (NN) and range (RN)
queries, which are basic query types in spatial databases. NN queries retrieve points of
interest (POI), such as taxis and restaurants, closest to a query user [1,2], and RN queries
retrieve POIs within a query distance [3–5]. Typically, location-based services (LBS), such as
taxi-booking and ride-sharing services, use real-time spatial data to locate POIs close to the
query user [6–10]. When multiple SP queries reach an LBS server simultaneously at peak
times, if the SP queries are processed sequentially, it may not be possible to provide prompt
responses to the query users. This difficulty can be addressed by increasing the number of
LBS servers or by developing state-of-the-art algorithms based on “one-query-at-a-time
processing” [3,11–15] to process the SP queries quickly.

SP queries have many potential applications in dynamic spatial networks, such as
ride-hailing and car parking facilities. For example, in 2020, the ride-hailing company Uber
accomplished an average of 18.7 million trips per day [16], demonstrating the significance
of scalable and efficient solutions to promptly match Uber cabs with passengers. Another
example is real-time parking management, which helps drivers find a parking space close
to their destination.

Figure 1 shows two snapshots of SP queries in a dynamic spatial network, where a
set Q of SP query points and a set P of data points are expressed as Q = {qNN

1 , qRN
2 , qNN

3 }

Sensors 2021, 21, 5258. https://doi.org/10.3390/s21165258 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-7458-8888
https://doi.org/10.3390/s21165258
https://doi.org/10.3390/s21165258
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21165258
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21165258?type=check_update&version=2

Sensors 2021, 21, 5258 2 of 18

and P = {p1, p2, p3}, respectively. This study assumes that both the query points and
data points run freely within the spatial network and that spatial segments often change
their weights. In this example, qNN

1 and qNN
3 find the data points closest to qNN

1 and qNN
3 ,

respectively, and qRN
2 finds data points within a query distance (e.g., 4 km) to qRN

2 . As
shown in Figure 1a, at timestamp ti, data point p1 is the closest to both qNN

1 and qNN
3 , and

data point p2 is within 4 km of qRN
2 . However, as shown in Figure 1b, at timestamp tj, data

points p3 and p1 are closest to qNN
1 and qNN

3 , respectively, and no data point is within 4 km
of qRN

2 . A simple solution sequentially retrieves data points that satisfy the condition of
each SP query in Q. However, this simple solution involves unnecessary network traversal,
which can result in prohibitively high computational costs when a large number of SP
queries reach the LBS server during peak hours [3,12–15]. Thus, we propose a unified batch
algorithm (UBA) that can process SP queries in dynamic spatial networks effectively and
efficiently.

(a)

��

��

2

3

3

3

7

��

��

��

3

2

2

7

4 2

��
��

��

��

�	

3

��

�

��
��

6

1

��

��

3

9

3

7

��

3

2

6

6 2

��
��

��

��

�	

2

��

�

��
��

6

1

(b)

Figure 1. Snapshots of a set of SP queries, Q in a dynamic spatial network, where Q = {qNN
1 , qRN

2 , qNN
3 }: (a) at time ti.

(b) At time tj.

Figure 2 is a system diagram of the proposed UBA between query points and LBS
server. Query points send their locations and query requests to the LBS server (step
1). The LBS server collects the requests from query points and forwards them to the
UBA (step 2). The UBA first groups nearby query points into query clusters for shared
computation (step 3). Then, UBA retrieves candidate data points for each query cluster
to avoid unnecessary network traversals (step 4). UBA evaluates each query using the
candidate data points for the query cluster (step 5) and returns query results to the LBS
server (step 6). Finally, the LBS server provides the result to each query point (step 7).

All nearest neighbor (ANN) queries [17,18] are similar to SP queries. However, ANN
queries assume that each query point q in Q only finds a single data point closest to q and,
therefore does not consider RN queries. This study considers a highly dynamic situation
in which both query and data points run freely within a dynamic spatial network [19–21].
The proposed UBA can effectively process SP queries in dynamic spatial networks. For
simplicity, this study considers NN queries rather than kNN queries, which retrieve k
data points closest to the query user for a positive integer k. However, UBA can easily be
extended to process kNN queries.

The primary contributions of this study are summarized as follows.

• A unified batch processing algorithm, i.e., UBA, is proposed for the batch process-
ing of SP queries in dynamic spatial networks. The performance of UBA highly
depends on the distribution of query points. Thus, UBA clearly outperforms sequen-
tial algorithms when query points display a skewed distribution. Conversely, UBA
shows similar performance to sequential algorithms when query points display a
uniform distribution.

• Clustering of SP queries and their shared computation are presented to avoid un-
necessary distance computations. The correctness of UBA is proved using a lemma.
Furthermore, a theoretical analysis is presented to establish the advantage of UBA over
sequential algorithms, particularly when query points display a skewed distribution.

Sensors 2021, 21, 5258 3 of 18

• An empirical study is conducted under various conditions to demonstrate the superi-
ority and scalability of UBA compared with a sequential algorithm.

The remainder of this paper is organized as follows. Section 2 reviews related studies.
Section 3 introduces the necessary preliminaries, including a definition of the notations
and symbols used in this study. Section 4 explains how to cluster nearby SP queries into
query clusters and presents the proposed UBA for SP queries in dynamic spatial networks.
Section 5 presents an empirical study of UBA compared to a conventional algorithm under
various conditions. Conclusions and suggestions for future work are presented in Section 6.

��
�� ��

��

��
��

�|	|
�� ⋯

LBS server

(1) Each query point q sends

its location and request to LBS server.

(7) LBS server returns the

response to the query point q.

(3) Grouping nearby

query points into query

clusters

(4) Retrieving candidate

data points for each query

cluster

(5) Evaluating each query

using candidate data

points

UBA

Query snapshot at time ��
(2) Query request (6) Query response

Figure 2. System diagram of UBA between query points and LBS server.

2. Related Work

Researchers developed algorithms and index structures to evaluate spatial queries,
including NN and RN queries for LBSs [6,22–25]. When calculating the length of the
shortest path between two points, spatial queries for dynamic spatial networks suffer
from high computational cost because graph traversal is required at runtime. Therefore,
numerous studies attempt to reduce the computational cost of the shortest path distance, to
avoid unnecessary shortest-path computations [6,22–25]. Incremental Euclidean restriction
(IER) and incremental network expansion (INE) were developed for NN queries [3]. IER
assumes that the shortest path between two points is larger than or equal to the Euclidean
distance. INE explores the spatial network incrementally from the query point, as in
Dijkstra’s algorithm, and investigates the data points in the encountered sequence. Range
network expansion (RNE), which is similar to INE, was also developed for RN queries [3].
The route overlay and association directory method, ROAD [12], hierarchically divides
the spatial network and pre-calculates the length of the shortest path between the border
vertices within each partition. The distance-browsing method, DisBrw [13], exploits the
spatially induced linkage cognizance index, and retains the length of the shortest path
between each pair of vertices. G-tree [15] hierarchically divides the spatial network and
uses an assembly based approach to compute the length of the shortest path between two
vertices. V-tree [14] iteratively divides the spatial network into sub-networks and identifies
the border vertices of each subnetwork. Then, the V-tree maintains a list of data points
closest to each border vertex to quickly evaluate the kNN queries. A scalable and in-memory
kNN query processing method called SIMkNN [26] was developed to quickly evaluate
snapshot kNN queries over moving objects in a spatial network. The existing methods
described in [6,22–25] are considered to be one-query-at-a-time processing algorithms

Sensors 2021, 21, 5258 4 of 18

because they aim to quickly evaluate a spatial query rather than a batch of spatial queries.
This study is motivated by the observation that, with simple modifications, NN query
processing algorithms can be applied to evaluate RN queries for spatial networks.

Multi-query optimization techniques were originally studied for relational database
systems [27]. Their goal is to reduce the computational costs for a collection of queries that
concurrently reach the database server by performing shared expressions once, materializ-
ing them temporarily, and then recycling them to evaluate other queries. Therefore, the
subexpressions are typically evaluated once. These multi-query optimization techniques
later expanded to involve query rewriting, query result caches, materialized views, and
intermediate query results for relational database systems [28–36] and streaming process-
ing systems [37–39]. Many applications involving high-load conditions have proven that
batch processing algorithms can significantly reduce the query processing time for multiple
simultaneous queries [19,30–43]. Furthermore, multi-query optimization techniques have
received significant attention in spatial databases. Several batch shortest path algorithms
also exist [19,40–44]. Furthermore, multi-query optimization techniques have received
significant attention in spatial databases. Several batch shortest path algorithms [19,40–44]
have been developed to efficiently evaluate multiple shortest path queries in spatial net-
works. However, these batch shortest path algorithms cannot be directly used to evaluate
SP queries because of their diverse problem definitions. Several cache strategies for query
results have been developed to efficiently process batches of kNN queries in spatial net-
works [6]. These strategies exploit the cached results of adjacent recently computed queries
to efficiently process a batch of kNN queries. However, cache strategies have clear limita-
tions in dynamic spatial networks, as their results may be invalidated by frequent updates
to the weight of the spatial segments and by the movement of query points or data points.
Finally, Li et al. [45–49] developed a series of algorithms for processing large complex net-
works, such as social networks. Specifically, they considered the trust management system
based on game theory [47], dynamic clustering for electronic commerce systems [45], iden-
tifiability for the community detection [49], an optimal estimation of low-rank factors [48],
and the identification of overlapping communities [46].

This work differs from existing studies in several respects. First, UBA considers SP
queries in dynamic spatial networks. Second, UBA avoids dispensable network traversal
by clustering SP queries and performing batch processing. Third, UBA can easily be incor-
porated into one-query-at-a-time processing algorithms for spatial networks [3,12,13,15].

3. Preliminaries

This section defines the terms and notations that are used in this paper.

Definition 1 (NN query [1,11,18,22,25]). Given a query point qNN and a set of data points P,
an NN query retrieves data point pNN closest to qNN such that dist(qNN , pNN) ≤ dist(qNN , p)
holds for ∀pNN ∈ Π(qNN) and ∀p ∈ P−Π(qNN).

Definition 2 (RN query [3–5]). Given a positive integer r, a query point qRN , and a set of
data points P, an RN query retrieves data points within query distance r to qRN such that
dist(qRN , pRN) ≤ r holds for ∀pRN ∈ Π(qRN).

Definition 3 (Spatial network [3,9,11,25,26,41,50,51]). A dynamic spatial network can be de-
scribed as a dynamic weighted graph G = 〈V, E, W〉, where V, E, and W indicate the vertex set,
edge set, and edge distance matrix, respectively. An edge has a nonnegative weight, e.g., travel time,
and changes its weight frequently.

Definition 4 (Intersection, intermediate, and terminal vertices). In this study, vertices are
categorized via their degree. In this study, vertices are categorized via their degree as follows: (1) if
the degree of a vertex is greater than or equal to three, the vertex is an intersection vertex; (2) if the
degree is two, the vertex is an intermediate vertex; (3) if the degree is one, the vertex is a terminal

Sensors 2021, 21, 5258 5 of 18

vertex. For example, v2 and v3 in Figure 3 are intersection vertices, v5 and v6 are intermediate
vertices, and v1 and v4 are terminal vertices.

Definition 5 (Vertex sequence and segment). A vertex sequence vlvl+1 . . . vm denotes a seg-
ment connecting two vertices vl and vm such that vl and vm are either an intersection vertex or a
terminal vertex, and the other vertices in the segment, i.e., vl+1, . . . , vm−1, are intermediate vertices.
The length of a vertex sequence is the total weight of the edges in the vertex sequence. Parts of a
vertex sequence are referred to as segments. By definition, a vertex sequence is also a segment. For
example, Figure 3 has four vertex sequences v1v2, v2v3, v3v4, and v2v5v6v3. Examples of query
segments in Figure 3 include v2v5v6, v5v6 and v3v6v5.

Table 1 summarizes the symbols and notations used in this study. Note that the
query points are often used interchangeably to refer to SP queries. Figure 3 illustrates the
difference between the distance and segment length between q1 and q2 in a spatial network.
Here, the shortest path from q1 to q2 is q1 → v2 → v3 → q2, whose distance dist(q1, q2) is
equal to eight. The segment connecting q1 and q2 (marked with a bold line) is q1v5v6q2,
and its length len(q1v5v6q2) is equal to 10.

Table 1. Definitions of symbols.

Symbol Definition

qNN and qRN NN and RN queries, respectively
p Data point
r Query distance (e.g., 4 km)
P Set of data points
Q Set of query points
QC and Q Query cluster and a set of query clusters, respectively
B(QC) Set of border points for QC
Π(qNN) Set of data points closest to query point qNN

Π(qRN) Set of data points within query distance r from a query point qRN

P(qp) Set of data points in a segment qp
dist(q, p) Length of the shortest path connecting points q and p
len(qp) Length of the segment qp connecting points q and p
vlvl+1. . .vm Vertex sequence where vl and vm are not intermediate vertices, and the other vertices,

vl+1, . . ., vm−1, are intermediate vertices (in short, vlvm)
qiqi+1. . .qj Query segment connecting nearby query points qi, qi+1, . . ., qj (in short, qiqj)

2 �� ��

1

6

2

4
2

4

7

��

�� ��

��
��

��

Figure 3. Difference between dist(q1, q2) = 8 and len(q1v5v6q2) = 10.

4. Batch Processing of SP Queries in Spatial Networks
4.1. Clustering Nearby SP Queries

Here, we consider five SP queries qNN
1 , qRN

2 , qNN
3 , qRN

4 , and qNN
5 in a spatial network

(Figure 4). Assume that the NN queries qNN
1 , qNN

3 , and qNN
5 find a data point closest to

themselves and that the RN queries qRN
2 and qRN

4 find data points within query distance
r (=4) to themselves.

Sensors 2021, 21, 5258 6 of 18

�� ��

��

2

3

3

3

��

��

��

3

2

2

7

4 2

��
��

��

�	

3

��

�

��
��

6

1

��

�

3

5

5

��

�	
��

2

4

Figure 4. Population comprising five SP queries qNN
1 , qRN

2 , qNN
3 , qRN

4 , and qNN
5 .

Figure 5 shows an example of the two-step clustering method, which converts nearby
query points into a query cluster. In the first step, query points in a vertex sequence are
connected to a query segment (Figure 5a). As a result, three query segments qNN

1 qRN
2 ,

qNN
3 , and qRN

4 qNN
5 are generated, where qNN

1 qRN
2 and qRN

4 qNN
5 connect two separate sets of

query points, i.e., qNN
1 and qRN

2 , and qRN
4 and qNN

5 , respectively, in vertex sequences v1v2
and v1v5, respectively. In the second step, adjacent query segments are grouped into a
query cluster using joint vertices (Figure 5b). The intersection vertex is referred to as a
joint vertex when it is adjacent to greater than two query segments. As shown in Figure 5b,
query segments qNN

1 qRN
2 and qRN

4 qNN
5 are adjacent to an intersection vertex v1, which

becomes a joint vertex for qNN
1 qRN

2 and qRN
4 qNN

5 . Similarly, query segments, qNN
1 qRN

2 and
qNN

3 are adjacent to intersection vertex v2, which becomes a joint vertex for qNN
1 qRN

2 and
qNN

3 . Finally, query segments qNN
3 and qRN

4 qNN
5 are adjacent to intersection vertex v5, which

becomes a joint vertex for qNN
3 and qRN

4 qNN
5 . Therefore, the three query segments, qNN

1 qRN
2 ,

qNN
3 , and qRN

4 qNN
5 are connected to a query cluster QC = {qNN

1 qRN
2 , qNN

3 , qRN
4 qNN

5 }. In
other words, the five query points qNN

1 , qRN
2 , qNN

3 , qRN
4 , and qNN

5 are clustered into query
cluster QC. Note that QC is represented by a set of query segments. Consequently, a set
of query points Q = {qNN

1 , qRN
2 , qNN

3 , qRN
4 , qNN

5 } is converted into a set of query clusters
Q = {{qNN

1 qRN
2 , qNN

3 , qRN
4 qNN

5 }}.

(a)

�� ��

��

2

3

5

3

3

��

��

��

3

2

2

7

4 2

��
		

��

�

3

��
�	

��
		

6

1

��
�	

3

5

��

�

		

2

4

�� ��

��

2

3

5

3

3

��

��

��

3

2

2

7

4 2

��
		

��

�

3

��
�	

��
		

6

1

��
�	

3

5

��

�

		

2

4

(b)

Figure 5. Clustering nearby query points into a query cluster: (a) connecting query points in a vertex sequence into a query
segment. (b) Clustering adjacent query segments into a query cluster using joint vertices.

Next, we define the border point of query cluster QC. Any point at which QC and its
non-query cluster G−QC meet is referred to as the border point of QC. In this example,
QC has three border points, i.e., v1, v2, and v5, where QC and its non-query cluster G−QC
meet. Note that sequential solutions should evaluate the five SP queries shown in Figure 4.
The two-step clustering method enables UBA to evaluate the three SP queries at border
points v1, v2, and v5 rather than at query points qNN

1 , qRN
2 , qNN

3 , qRN
4 , and qNN

5 .
Figure 6 illustrates the computation of the distance between query point q in query

segment qiqj and data point p for the following cases: p /∈ qiqj and p ∈ qiqj. As shown
in Figure 6a, when data point p is outside query segment qiqj, i.e., p /∈ qiqj, the dis-
tance from q to p is given as dist(q, p) = min{len(qqi) + dist(qi, p), len(qqj) + dist(qj, p)}
because the shortest path between q and p is either q → qi → p or q → qj → p.
As shown in Figure 6b, when p is inside qiqj, i.e., p ∈ qiqj, the distance is given as
dist(q, p) = min{len(qp), len(qqi) + dist(qi, p), len(qqj) + dist(qj, p)} because the shortest

Sensors 2021, 21, 5258 7 of 18

path between q and p is governed by one of the following three cases: q→ p, q→ qi → p,
or q→ qj → p.

�� �� �

������� ,
� ������� ,
�

������� �������

(a) (b)

������� ,
� ������� ,
�

�� �� �

����
�

������� �������

Figure 6. Computation of the distance between query point q in query segment qiqj and data point p: (a) p /∈ qiqj.
(b) p ∈ qiqj.

4.2. Unified Batch Processing Algorithm for SP Queries

Algorithm 1 provides the key concept of UBA for the unified batch processing of
SP queries in a spatial network. Here, the result set Π(Q) is initially set to an empty set
(line 1). Then, the nearby query points are first grouped into query clusters (lines 2 and
3), as discussed in Section 4.1. A Cluster search then is executed for each query cluster
QC to perform batch processing of the SP queries in QC, and its query result is saved
to Π(QC) (line 6). Then, the query cluster result Π(QC) is appended to Π(Q), where
Π(QC) ={〈q, Π(q)〉|q ∈ QC} and Π(Q) ={〈q, Π(q)〉|q ∈ Q} (line 7). When cluster_search
(Algorithm 2) is performed for each query cluster in Q, UBA terminates by returning the
query result Π(Q) (line 8).

Algorithm 1 UBA(Q, P)
Input: Q: collection of SP queries, P: collection of data points
Output: Π(Q): collection of tuples of each SP query q in Q, and the query result for q, i.e.,

Π(Q)={〈q, Π(q)〉|q ∈ Q}
1: Π(Q)← ∅ // The result set Π(Q) is initially set to an empty set.
2: // Nearby query points are grouped into query clusters, as explained in Section 4.1.
3: Q← cluster_points(Q) // A set Q of query points is changed into a set Q of query clusters.
4: // cluster_search function performs a batch processing of SP queries in QC, as detailed in

Algorithm 2.
5: for each query cluster QC ∈ Q do
6: Π(QC)← cluster_search(QC, P) // Note that Π(QC) ={〈q, Π(q)〉|q ∈ QC}.
7: Π(Q)← Π(Q) ∪Π(QC) // The result for query points in a query cluster QC, i.e., Π(QC),

is appended to Π(Q).
8: return Π(Q) // Π(Q) is returned after the cluster search for all query clusters in Q is

executed.

Algorithm 2 describes the cluster search algorithm employed to answer SP queries
in query cluster QC. Here, cluster search performs batch execution for a query cluster to
avoid dispensable network traversal. This algorithm runs in two steps. In the first step,
the SP queries are evaluated at the border points of QC rather than at the query points
in QC (lines 3–6). Note that an SP query is either an NN or RN query; thus, the type
of spatial query must be determined, which is evaluated at a border point b. If a query
cluster QC includes only NN queries, an NN query is evaluated at the border point b,
i.e., SPQ(b, QC) = Π(bNN). Similarly, if QC includes only RN queries, the SPQ(b, QC)
function evaluates an RN query at border point b, i.e., SPQ(b, QC) = Π(bRN). Finally, if
QC includes both NN and RN queries, the SPQ(b, QC) function evaluates the SP query
that finds all the data points satisfying the NN or RN conditions at border point b, i.e.,
SPQ(b, QC) = Π(bNN)∪Π(bRN). In the second step, a shared computation is performed
for each query segment qiqj in QC using the candidate data points obtained at the border
points of QC (lines 7–10). Here, each SP query in qiqj chooses qualified data points from

Sensors 2021, 21, 5258 8 of 18

the candidate data points in Π(bi)∪Π(bj)∪P(bibj), where it is assumed that query segment
qiqj belongs to segment bibj in QC. When the segment_search (Algorithm 3) is performed
for each query segment in QC, the cluster_search algorithm (Algorithm 2) terminates by
returning the query result Π(QC) (line 11).

Algorithm 2 cluster_search(QC, P)

Input: QC: query cluster, P: collection of data points
Output: Π(QC): collection of tuples of each SP query q in QC, and the query result for q, i.e.,

Π(QC)={〈q, Π(q)〉|q ∈ QC}
1: // Note that B(QC) refers to a set of border points in QC.
2: Π(QC)← ∅, Π(B(QC))← ∅ // Both Π(QC) and Π(B(QC)) are initially set to an empty set.
3: // An SP query is evaluated at each border point b of QC to retrieve candidate data points for

QC.
4: for each border point b ∈ B(QC) do
5: Π(b)← SPQ(b, QC) // An SP query is evaluated at a border point b, and its result is saved

to Π(b).
6: Π(B(QC))← Π(B(QC)) ∪Π(b) // The query result at a border point b of QC is appended

to Π(B(QC)).
7: // qiqj is assumed to belong to a segment bibj in QC.
8: for each query segment qiqj ∈ QC do
9: Π(qiqj)← segment_search(qiqj, Π(bi)∪Π(bj)∪P(bibj)) // segment_search is detailed in

Algorithm 3.
10: Π(QC)← Π(QC) ∪Π(qiqj) // The result for a query segment qiqj, i.e., Π(qiqj), is

appended to Π(QC).
11: return return Π(QC) // cluster_search ends by returning the batch result Π(QC) for the SP

queries in QC.

Algorithm 3 segment_search(qiqj, Π(bi)∪Π(bj)∪P(bibj))

Input: qiqj: query segment in QC, Π(bi)∪Π(bj)∪P(bibj): collection of candidate data points of SP
queries in qiqj

Output: Π(qiqj): collection of tuples of each query q in qiqj and the query result for q, i.e.,
Π(qiqj) ={〈q, Π(q)〉|q ∈ qiqj}

1: Π(qiqj)← ∅ // Π(qiqj) is initially set to an empty set.
2: for each SP query q ∈ qiqj do
3: Π(q)← ∅ // Π(q) is initially set to an empty set.
4: for each candidate data point p ∈ Π(bi)∪Π(bj)∪P(bibj) do
5: // Step 1: dist(q, p) is evaluated considering the two cases p/∈bibj and p∈bibj, which are

shown in Figure 6.
6: if p is outside bibj then
7: dist(q, p)← min{len(qbi) + dist(bi, p), len(qbj) + dist(bj, p)} // See Figure 6a.
8: else
9: dist(q, p)← min{len(qp), len(qbi) + dist(bi, p), len(qbj) + dist(bj, p)} // See

Figure 6b.
10: // Step 2: p is appended to Π(q) when it satisfies the query condition.
11: if q = qNN and dist(q, p) ≤ dist(q, pNN) then
12: Π(q)← Π(q) ∪ {p} − {pNN} // p replaces pNN that is the current NN of q so far.
13: else if q = qRN and dist(q, p) ≤ q.r then
14: Π(q)← Π(q) ∪ {p} // If dist(q, p) ≤ q.r, p is simply appended to Π(q).
15: Π(qiqj)← Π(qiqj) ∪Π(q)
16: return Π(qiqj) // segment_search ends by returning the batch result Π(qiqj) for the SP

queries in qiqj.

Algorithm 3 describes the segment search algorithm employed to answer the SP
queries in a query segment QC using the candidate data points in Π(bi)∪Π(bj)∪P(bibj).
Here, the batch query result for qiqj, i.e., Π(qiqj), is initially set to an empty set (line 1).
The distance between a query point q in qiqj and a candidate data point p, i.e., dist(q, p) is
then calculated (lines 5–9), as shown in Figure 6. When p is outside bibj, i.e., p /∈ bibj, the

Sensors 2021, 21, 5258 9 of 18

distance from q to p is given as dist(q, p) = min{len(qbi)+ dist(bi, p), len(qbj)+ dist(bj, p)}.
When p is inside bibj, i.e., p ∈ bibj, the distance from q to p is given as dist(q, p) =

min{len(qp), len(qbi) + dist(bi, p), len(qbj) + dist(bj, p)}. If query point q is an NN query
and candidate data point p is closer to q than the current NN pNN , then p is appended
to Π(q) and pNN is removed from Π(q), i.e., Π(q) ← Π(q) ∪ {p} − {pNN} (lines 11–12).
Similarly, if query point q is an RN query and dist(q, p) is not greater than the query
distance q.r, then p is simply appended to Π(q), i.e., Π(q)← Π(q) ∪ {p}, where q.r is the
query distance of q (lines 13–14). The Segment_search algorithm (Algorithm 3) ends by
returning the batch result Π(qiqj) for qiqj (line 16).

Lemma 1 proves the correctness of UBA, which means that each query point q in a
query cluster Qc can retrieve its qualified data points from the candidate data points for Qc.

Lemma 1. Each query point q in a query cluster Qc can retrieve its qualified data points from the
candidate data points for Qc.

Proof. We prove Lemma 1 by contradiction under the assumption that there exists a
qualified data point p for query point q in Qc such that p is not a candidate data point
for Qc. Clearly, set Σ(Qc) of candidate data points for Qc is the union of set P(Qc) of
data points inside Qc and the SP query result SPQ(b, Qc) at each border point of Qc as
follows: Σ(Qc) = P(Qc) ∪ (SPQ(bl , Qc)∪ SPQ(bl+1, Qc) ∪ . . . ∪SPQ(bm, Qc)) where it is
assumed that B(QC) = {bl , bl+1, . . . , bm}. Clearly, this data point p must be outside Qc.
This is because as illustrated in Figure 6b, qualified data point p inside Qc becomes a
candidate data point for Qc according to the definition of Σ(Qc). When qualified data point
p is outside Qc as illustrated in Figure 6a, the following two cases should be considered:
∃p((qRN ∈ Qc ∧ p ∈ ∏(qRN)) → p /∈ Σ(Qc)) and ∃p((qNN ∈ Qc ∧ p ∈ ∏(qNN)) → p /∈
Σ(Qc)). In the first case, i.e., ∃p((qRN ∈ Qc ∧ p ∈ ∏(qRN)) → p /∈ Σ(Qc)), qualified
data point p satisfies the range query qRN ; however, it is not a candidate data point for
Qc. In the second case, i.e., ∃p((qNN ∈ Qc∧ p ∈ ∏(qNN)) → p /∈ Σ(Qc)), qualified data
point p satisfies the NN query qNN ; however, it is not a candidate data point for Qc. The
shortest path from qRN to p should pass through a border point of Qc. For convenience,
assume that the shortest path from qRN to p is qRN → bl → p where bl is a border point
of Qc. Note that the distance from qRN to p is less than or equal to query distance r, i.e.,
dist(qRN , p) ≤ r. Thus, the distance from the border point bl to p is also less than or equal
to r, i.e., dist(bl , p) ≤ r. This leads to a contradiction to the assumption that the qualified
data point p for qRN is not a candidate data point for Qc. Next, consider the second case
that the qualified data point p for qNN is not a candidate data point for Qc. For convenience,
assume that the shortest path from qNN to p is qNN → bl → p and that a data point pl is the
NN of bl rather than p. This means that pl is closer to bl than p, i.e., dist(bl , pl) < dist(bl , p).
Note that the shortest path from qNN to p (pl) is qNN → bl → p (qNN → bl → pl). Thus, pl
should be the NN of qNN rather than p. This leads to a contradiction to the assumption
that p is the NN of qNN . Therefore, each query point q in a query cluster Qc can retrieve its
qualified data points from the candidate data points for Qc.

Table 2 compares the time complexities of UBA and sequential algorithms, such as
INE [3] and RNE [3], for dynamic spatial networks. Note that UBA is independent of
the one-query-at-a-time processing algorithms [3,11–15] and can be easily incorporated
into these algorithms. For simplicity, INE and RNE are considered to evaluate a single SP
query in dynamic spatial networks, and their time complexity is O(|E|+|V| · log|V|). UBA
evaluates as many as M·

∣∣Q∣∣ SP queries, where
∣∣Q∣∣ is the number of query clusters in Q

and M is the maximum number of border points in QC, i.e., M = max{|B(QC)| | QC ∈
Q}. Conversely, sequential algorithms evaluate as many as |Q| SP queries because each
query point should be handled individually. Thus, the time complexities of UBA and
the sequential algorithms are O(|Q| · (|E|+ |V| · log|V|)) and O(|Q| · (|E|+ |V| · log|V|)),
respectively. The results of the time complexity analysis indicate that UBA is superior
to sequential algorithms, particularly when |Q| � |Q|, i.e., the query points exhibit a

Sensors 2021, 21, 5258 10 of 18

highly skewed distribution. In addition, the results demonstrate that UBA shows similar
performance to sequential algorithms when |Q| ∼= |Q|, i.e., the query points exhibit a
uniform distribution.

Table 2. Comparison of time complexities of UBA and sequential algorithms.

UBA Sequential Algorithms

Number of SP queries to be evaluated M · |Q| |Q|
Time complexity to evaluate a SP query O(|E|+ |V| · log|V|) O(|E|+ |V| · log|V|)
Time complexity to evaluate SP queries in Q O(|Q|·(|E|+ |V| · log|V|)) O(|Q|·(|E|+ |V| · log|V|))

4.3. Evaluation of Example SP Queries Using UBA

This section describes the process used to evaluate five example SP queries using
UBA. As shown in Figure 5, the five SP queries qNN

1 , qRN
2 , qNN

3 , qRN
4 , and qNN

5 are grouped
into a query cluster QC = {qNN

1 qRN
2 , qNN

3 , qRN
4 qNN

5 }, whose border points are v1, v2, and
v5. Clearly, a set of query points Q={qNN

1 , qRN
2 , qNN

3 , qRN
4 , qNN

5 } is transformed into a set
of query clusters Q = {{qNN

1 qRN
2 , qNN

3 , qRN
4 qNN

5 }}. Note that UBA evaluates only three SP
queries at the border points of Q rather than the five query points qNN

1 , qRN
2 , qNN

3 , qRN
4 , and

qNN
5 . Note that QC includes both the NN queries (qNN

1 , qNN
3 , and qNN

5) and RN queries (qRN
2

and qRN
4); thus the results of the SP queries at the border points v1, v2, and v5 should be

Π(v1) = Π(vNN
1)∪Π(vRN

1), Π(v2) = Π(vNN
2)∪Π(vRN

2), and Π(v5) = Π(vNN
5)∪Π(vRN

5),
respectively. Table 3 shows the results of the SP queries at the three border points v1, v2,
and v5.

Table 3. Computation of the SP queries at the border points.

Border Point b Π(bNN) Π(bRN) Π(bNN)∪Π(bRN)

v1 {p4} ∅ {p4}
v2 {p2} {p2} {p2}
v5 {p1} {p1} {p1}

The Segment_search algorithm (Algorithm 3) is called for each query segment in QC.
For convenience, the three query segments qNN

1 qRN
2 , qNN

3 , and qRN
4 qNN

5 are processed
sequentially. First, the segment_search function evaluates the SP queries in qNN

1 qRN
2 with

the candidate data points in Π(vNN
1)∪Π(vRN

1) ∪Π(vNN
2)∪Π(vRN

2) ∪ P(v1v2) = {p2, p4}.
This function computes the distance between each pair of query points qNN

1 and qRN
2

in qNN
1 qRN

2 , and the candidate data points p2 and p4. Table 4 summarizes the distances
between each pair of query points q in query segment qiqj and their candidate data points
p. Here, the SP query qNN

1 finds the data point closest to qNN
1 from the candidate data

points p2 and p4. Consequently, p4 is the chosen NN of qNN
1 because p4 is closer to qNN

1
than p2 (Table 4). Similarly, the SP query qRN

2 locates data points within a query distance
r = 4 to qRN

2 . Accordingly, p2 is included in the result of qRN
2 because dist(qRN

2 , p2) = 4
and dist(qRN

2 , p4) = 11 (Table 4). The query result for qNN
1 qRN

2 is Π(qNN
1 qRN

2)=Π(qNN
1) ∪

Π(qRN
2) = {

〈
qNN

1 , {p4}
〉
,
〈
qRN

2 , {p2}
〉
}.

Next, the segment_search function evaluates the SP queries in qNN
3 with the candidate

data points in Π(vNN
2)∪Π(vRN

2) ∪Π(vNN
5)∪Π(vRN

5) ∪ P(v2v5) = {p1, p2}. First, the dis-
tance between each pair of query points qNN

3 and then candidate data points p1 and p2 is
computed. Then, the SP query qNN

3 locates the data point that is closest to qNN
3 in p1 and

p2. Consequently, p1 is the chosen NN of qNN
3 because p1 is closer to qNN

3 than p2 (Table 4).
The query result for qNN

3 is Π(qNN
3) = {

〈
qNN

3 , {p1}
〉
}.

Sensors 2021, 21, 5258 11 of 18

Table 4. Computation of the distances between the queries and the candidate data points.

q p Condition dist(q, p) Π(q)

qNN
1

p2 p2 /∈ v1v2 dist(qNN
1 , p2) = 8

Π(qNN
1) = {p4}

p4 p4 /∈ v1v2 dist(qNN
1 , p4) = 7

qRN
2

p2 p2 /∈ v1v2 dist(qRN
2 , p2) = 4

Π(qRN
2) = {p2}

p4 p4 /∈ v1v2 dist(qRN
2 , p4) = 11

qNN
3

p1 p1 /∈ v2v5 dist(qNN
3 , p1) = 4

Π(qNN
3) = {p1}

p2 p2 /∈ v2v5 dist(qNN
3 , p2) = 5

qRN
4

p1 p1 /∈ v1v5 dist(qRN
4 , p1) = 9

Π(qRN
4) = ∅

p4 p4 /∈ v1v5 dist(qRN
4 , p4) = 8

qNN
5

p1 p1 /∈ v1v5 dist(qNN
5 , p1) = 7

Π(qNN
5) = {p1}

p4 p4 /∈ v1v5 dist(qNN
5 , p4) = 10

Finally, the segment_search function evaluates the SP queries in qRN
4 qNN

5 using the
candidate data points in Π(vNN

1)∪Π(vRN
1)∪Π(vNN

5)∪Π(vRN
5)∪ P(v1v5) = {p1, p4}. First,

the distances between each pair of query points in qRN
4 qNN

5 and then the candidate data
points p1 and p4 are calculated. The SP query qRN

4 locates the data points within a query
distance r = 4 to qRN

4 . No data points belong to the result set of qRN
4 because dist(qRN

4 , p1) =
9 and dist(qRN

4 , p4) = 8 (Table 4). The SP query qNN
5 identifies the data point that is

closest to qNN
5 in p1 and p4. Consequently, p1 is the chosen NN of qNN

5 because p1 is
closer to qNN

5 than p4 (Table 4). The query result for qRN
4 qNN

5 is Π(qRN
4 qNN

5)=Π(qRN
4) ∪

Π(qNN
5) = {

〈
qRN

4 ,∅
〉
,
〈
qNN

5 , {p1}
〉
}. Clearly, the results of the SP queries in Q are the union

of the results for the query segments in QC: Π(Q)= Π(qNN
1 qRN

2)∪Π(qNN
3)∪Π(qRN

4 qNN
5)=

{
〈
qNN

1 , {p4}
〉
,
〈
qRN

2 , {p2}
〉
,
〈
qNN

3 , {p1}
〉
,
〈
qRN

4 ,∅
〉
,
〈
qNN

5 , {p1}
〉
}.

5. Performance Study

In this section, the results from an empirical analysis of UBA are presented and
compared with those of the conventional method [3]. The experimental settings are
described in Section 5.1 and the experimental results are presented in Section 5.2.

5.1. Experimental Settings

Three real-world spatial networks [52] (Table 5) were used for the empirical study.
These real-world spatial networks have different sizes and are part of the United States
road network. For convenience, the extents of the spatial networks were normalized to a
unit square [0, 1]2, and the query distance r was set to 10−2. The query points followed a
centroid distribution, and the data points followed either a centroid or uniform distribution.
Here, centroid-based points were generated to mimic highly skewed distributions of POIs
in the real world. First, the centroids c1, c2, . . . , c|C| were selected randomly based on the
extent of the spatial networks, where |C| is to the number of centroids. The points around
each centroid followed a normal distribution, with the mean indicating the centroid, and
the standard deviation was set to σ = 10−2. A total of 1–10 centroids were selected as the
query points, and five centroids were selected as the data points. The number of NN queries
was the same as that of the RN queries for the SP queries. The experimental parameters are
listed in Table 6. In each experiment, a single parameter was varied within the range, and
the other parameters were maintained at their default values (shown in bold).

Sensors 2021, 21, 5258 12 of 18

Table 5. Real-world roadmaps.

Name Description Vertices Edges Intersection Vertices Vertex Sequences

CAL California and Nevada 1,890,815 2,315,222 995,408 1,794,708
FLA Florida 1,070,376 1,343,951 615,172 1,100,675
COL Colorado 435,666 521,200 206,069 374,355

Table 6. Experimental parameter settings.

Parameter Range

Number of query points (|Q|) 1, 3, 5, 7, 10 (×103)
Number of data points (|P|) 1, 3, 5, 7, 10 (×103)
Distribution of query points in Q (C)entroid
Distribution of data points in P (U)niform, (C)entroid
Number of centroids for query points in Q 1, 3, 5, 7, 10
Number of centroids for data points in P 5
Standard deviation for normal distribution (σ) 10−2

Query distance (r) 10−2

Number of NN queries in Q 0.5× |Q|
Roadmap CAL, FLA, COL

Next, the proposed UBA was compared in terms of query processing time and the
number of evaluated SP queries to a sequential algorithm called SEQ, which computes SP
queries sequentially. Here, it was assumed that the query and data points moved freely
within the dynamic spatial networks. Note that it is impractical to exploit the precomputa-
tion techniques presented in the literature [12,13,15] because the precomputed distances
might be invalidated frequently when the query and data points run freely within a dy-
namic spatial network. UBA and SEQ use common subroutines for similar tasks, e.g., the
evaluation of SP queries at a single query point; thus, both algorithms were implemented
in C++ using the Microsoft Visual Studio 2019 development environment. The experi-
ments were executed on a desktop computer running the Windows 10 operating system
with 32 GB RAM and a 3.1 GHz processor (i9-9900). As in many recent studies [11,26,53],
the indexing structures for UBA and SEQ remained in main memory to provide prompt
responses, which are crucial in online map services. The experiments were repeated 10
times, and the average processing time was measured to determine the SP queries in Q.
As stated previously, the proposed UBA is orthogonal to one-query-at-a-time processing
algorithms [3,11–15] and can be easily incorporated into these algorithms. In this study,
INE [3] and RNE [3] were used to evaluate the NN and RN queries, respectively, for the
dynamic spatial networks because INE and RNE are based on network expansion similar
to Dijkstra’s algorithm, which is well-suited to dynamic spatial networks.

5.2. Experimental Results

Figure 7 compares the query processing times of UBA and SEQ to evaluate the SP
queries in the CAL roadmap. In Figures 7–9, the three upper-row and three bottom-row
charts show the experimental results when the data points followed a uniform distribution
and a centroid distribution, respectively. Each chart shows the query processing time and
number of evaluated SP queries by varying one parameter at a time (Table 6). The values in
parentheses in Figures 7–10 indicate the number of SP queries evaluated by the proposed
UBA. Note that the numbers of SP queries evaluated by SEQ were omitted because these
numbers were exactly equal to |Q| of the SP queries in Q. Figure 7a shows the query
processing times of UBA and SEQ when |Q| of the query points was between 1 K and 10 K,
i.e., 1 K ≤ |Q| ≤ 10 K. As can be seen, the proposed UBA clearly outperformed SEQ as
the number of SP queries in Q increased. In terms of query processing times, UBA was
up to 2.9 times faster than SEQ for |Q| = 7 K. However, UBA was up to 2.59 times slower

Sensors 2021, 21, 5258 13 of 18

than SEQ for |Q| = 1 K. Note that the proposed UBA was not sensitive to |Q|, unlike SEQ,
which means that the effectiveness of batch processing in UBA increased as |Q| increased.
When |Q| = 1 K, 3 K, 5 K, 7 K, and 10 K, UBA evaluated fewer SP queries than SEQ by 75%,
89%, 88%, 91%, and 92%, respectively. Figure 7b shows the query processing times when
|P| of data points was varied between 1 K and 10 K, i.e., 1 K ≤ |P| ≤ 10 K. Thus, UBA
clearly outperformed SEQ in all cases. The query processing times of UBA were up to 8.9
times lower than those of SEQ when |P| = 1 K. As the |P| value decreased, the search space
for the NN query processing increased. Regardless of the change in |P|, UBA and SEQ
evaluated 789 and 10,000 SP queries, respectively. Figure 7c shows the query processing
times when |C| of the centroids for the query points was varied between 1 and 10, i.e.,
1 ≤ |C| ≤ 10. The proposed UBA was up to 2.3 times faster than SEQ for all cases. As
|C| increased, the difference in query processing times between UBA and SEQ decreased
because increasing |C| led to a reduced density of the query points, which resulted in an
increased |Q| value. Specifically, when |C| =1, 3, 5, 7, and 10, UBA evaluated 789, 1196,
2438, 3928, and 4015 SP queries, respectively, whereas SEQ evaluated 10 K SP queries for
all these cases.

|�|

(789)
(1196)

(2438)

(3928) (4015)

(d) (e) (f)

|�|

(789)

(1196)

(2438)

(3928) (4015)

|�|

(249) (328) (575) (789)

(590)

|�|

(789)
(789) (789) (789)

(789)

(249)

(328)
(575)

(789)

(590) |�| |�|

(789)

(789)
(789)

(789)
(789)

(a) (b) (c)

Figure 7. Comparison of query processing times for the CAL roadmap: (a) 1 K ≤ |Q| ≤ 10 K. (b) 1 K ≤ |P| ≤ 10 K.
(c) 1 ≤ |C| ≤ 10. (d) 1 K ≤ |Q| ≤ 10 K. (e) 1 K ≤ |P| ≤ 10 K. (f) 1 ≤ |C| ≤ 10.

Figure 7d–f show the query processing times of UBA and SEQ when the data points
followed a centroid distribution. The query processing times of the proposed UBA were up
to 18.95 times lower than those of SEQ for all cases. Unlike the case shown in Figure 7a, the
query processing times of UBA and SEQ did not increase with |Q|, as shown in Figure 7d,
which means that the query processing time was more sensitive to the distribution of
data points than |Q| when the data points followed a highly skewed distribution. When
|Q| = 1 K, 3 K, 5 K, 7 K, and 10 K, the query processing times of UBA were 21.7, 162.8,
21.9, 126.8, and 468.7 s, respectively. As shown in Figure 7d–f, UBA was faster than SEQ in
all cases. The difference in query processing times between UBA and SEQ for a centroid
distribution of data points was up to several orders of magnitude greater than that for a
uniform distribution of data points.

Figure 8 compares the query processing times obtained when using UBA and SEQ
to evaluate the SP queries in the FLA roadmap. Figure 8a shows the query processing
time as a function of |Q|. We found that the proposed UBA was up to 2.2 times faster than

Sensors 2021, 21, 5258 14 of 18

SEQ for |Q| ≥ 3 K. However, SEQ was 2.7 times faster than UBA for |Q| = 1 K because
the batch processing of UBA was for a large number rather than a small number of SP
queries. Figure 8b shows the query processing time as a function of |P|. UBA was 5.5 and
2.2 times faster than SEQ for |P| = 1 K and 10 K, respectively, even though UBA and SEQ
evaluated 1601 and 10,000 SP queries, respectively, for these two cases. This is because the
search space for the NN queries when |P| = 1 K was greater than that when |P| = 10 K.
Figure 8c shows the query processing time as a function of |C|, which, for UBA was up
to 2.1 times shorter than that of SEQ in all cases. Clearly, the number of query clusters
increased with |C|, which adversely affected the performance of the proposed UBA. As
shown in Figure 8d–f, UBA was up to 11 times faster than SEQ in all cases. The query
processing times of both UBA and SEQ fluctuated, which means that the distribution of
highly skewed data points affected the NN query processing time significantly. Specifically,
as shown in Figure 8d, the query processing time of UBA for |Q| = 1 K was 8.9 times
longer than that for |Q| = 3 K despite the difference in the number of SP queries in Q.

|�|

(1601)

(3483)

(4446)

(6152)
(6841)

|�|

(1601) (3483)

(4446)
(6152)

(6841)

(f)

|�|

(413)
(1008) (1000) (938)

(1601)

|�|

(1601)

(1601) (1601) (1601) (1601)

|�|

(413)

(1000)

(1008)

(938)
(1601)

|�|

(1601)

(1601)

(1601)

(1601)
(1601)

(e) (d)

(a) (b) (c)

Figure 8. Comparison of query processing times for the FLA roadmap: (a) 1 K ≤ |Q| ≤ 10 K. (b) 1 K ≤ |P| ≤ 10 K.
(c) 1 ≤ |C| ≤ 10. (d) 1 K ≤ |Q| ≤ 10 K. (e) 1 K ≤ |P| ≤ 10 K. (f) 1 ≤ |C| ≤ 10.

Figure 9 compares the query processing times obtained using UBA and SEQ with the
COL roadmap. As shown in Figure 9a, the proposed UBA was up to 3.1 times faster than
SEQ when 5K ≤ |Q| ≤ 10 K. Here, as |Q| increased, UBA was superior to SEQ. As shown
in Figure 9b, UBA was up to 16.3 times faster than SEQ regardless of the |P| value because
UBA and SEQ evaluated 409 and 10,000 SP queries, respectively. Clearly, this difference in
the number of evaluated SP queries (i.e., 9591) occurred the proposed UBA can exploit the
batch processing of the clustered SP queries; thus, unnecessary distance computations can
be avoided. As shown in Figure 9c, UBA clearly outperformed SEQ in all cases of |C|. As
|C| increased, the density of the query points decreased, which was ineffective for the batch
processing of UBA. As shown in Figure 9d–f, UBA was up to 26.6 times faster than SEQ in
all cases. As shown in Figure 9d, the query processing times of UBA and SEQ fluctuated
significantly because the highly skewed distributions of data points affected the search
space of the NN queries significantly.

Two versions of UBA, i.e., UBASEG and UBACLS, were implemented and evaluated to
investigate the effect of the two-step clustering method on the batch processing of UBA and
its scalability in terms of |Q|. UBASEG transforms nearby query points into query segments,

Sensors 2021, 21, 5258 15 of 18

and UBACLS transforms nearby query points into query clusters. UBASEG and UBACLS are
illustrated in Figure 5a,b, respectively. Figure 10 compares the query processing times using
UBASEG and UBACLS with the CAL roadmap, where the two values in the parentheses
indicate the number of SP queries evaluated by UBASEG and UBACLS, respectively. As can
be seen, the number of SP queries evaluated by UBASEG was greater than that of UBACLS.
As shown in Figure 10a, when the data points exhibited a uniform distribution, UBASEG
was up to 6.1 times faster than UBACLS for 1 K ≤ |Q| ≤ 10 K. However, as |Q| increased,
UBACLS was faster than UBASEG, which means that UBACLS scaled better than UBASEG
with |Q|. Specifically, UBACLS was 1.5 times faster than UBASEG for |Q| = 100 K. As
shown in Figure 10b, when the data points exhibited a centroid distribution, UBACLS was
up to 2.2 times faster than UBASEG in all cases. Therefore, UBACLS scaled with |Q| better
than UBASEG. It is clear that the distribution of data points affected query processing
time significantly. Specifically, when the data points exhibited uniform and centroid
distributions, the query processing times of UBACLS were 1.5 and 497.7 s, respectively, for
|Q| = 100 K.

|�|
(409) (409) (409)

(409)
(409) |�|

(409) (811) (1024) (1033) (1267)

|�|

(409)

(811)
(1024) (1033)

(1267)

(f)

|�|

(123)

(221)

(242) (396) (409)

|�|

(123)

(221)
(396) (409)

(242)
|�|

(409)
(409)

(409)

(409) (409)

(d) (e)

(a) (b) (c)

Figure 9. Comparison of query processing times for the COL roadmap: (a) 1 K ≤ |Q| ≤ 10 K. (b) 1 K ≤ |P| ≤ 10 K.
(c) 1 ≤ |C| ≤ 10. (d) 1 K ≤ |Q| ≤ 10 K. (e) 1 K ≤ |P| ≤ 10 K. (f) 1 ≤ |C| ≤ 10.

|�|

(343)

(249)

(1021)

(575)

(3759)

(2011)

(5815)

(3006)

(7116)

(3469)

(9685)

(4147)

(556)

(328)

(942)

(590)

(1380)

(789)

UBACLS UBA
SEG

|�|

(343)

(249)

(556)

(328)

(942)

(590)

(1021)

(575)

(1380)

(789)

(3759)

(2011) (5815)

(3006)

(9685)

(4147)

(7116)

(3469)

UBACLS UBA
SEG

(a) (b)

Figure 10. Effect of two-step clustering on the CAL roadmap: (a) uniform data points. (b) Skewed data points.

Sensors 2021, 21, 5258 16 of 18

6. Conclusions

This paper has proposed the UBA to efficiently process SP queries comprising NN
and RN queries in dynamic spatial networks. The goal of the proposed UBA is to avoid
dispensable distance computations during batch processing. Accordingly, UBA performs
two-step clustering of SP queries and their batch processing to reduce the number of
SP queries evaluated for query clusters. The experimental results have confirmed that
the proposed UBA outperformed a conventional algorithm based on one-query-at-a-time
processing and scaled well with the number of queries. We found that the proposed UBA
was up to 26.6 times faster than the compared conventional algorithm. The proposed UBA
has several advantages. First, UBA avoids dispensable network traversal by clustering
SP queries and performing batch processing. Second, UBA can easily be incorporated
into one-query-at-a-time processing algorithms for spatial networks [3,12,13,15]. However,
the proposed UBA also exhibits a disadvantage, i.e., its performance is very sensitive to
the distribution of query points. Thus, UBA demonstrates similar performance to that of
sequential algorithms, particularly when the query points exhibit a uniform distribution.
The proposed UBA clearly outperforms sequential algorithms when the query points
exhibit a highly skewed distribution. In future, we plan to apply this unified batch solution
to extremely large spatial networks for distributed batch processing of sophisticated spatial
queries, e.g., spatial join queries [54] and spatial keyword queries [2,50].

Funding: This research was supported by Basic Science Research Program through the National
Research Foundation of Korea(NRF) funded by the Ministry of Education (NRF-2020R1I1A3052713).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mouratidis, K.; Yiu, M.L.; Papadias, D.; Mamoulis, N. Continuous nearest neighbor monitoring in road networks. In Proceedings

of the International Conference on Very Large Data Bases, Seoul, Korea, 12–15 September 2006; pp. 43–54.
2. Zheng, B.; Zheng, K.; Xiao, X.; Su, H.; Yin, H.; Zhou, X.; Li, G. Keyword-aware continuous knn query on road networks.

In Proceedings of the International Conference on Data Engineering, Helsinki, Finland, 16–20 May 2016; pp. 871–882.
3. Papadias, D.; Zhang, J.; Mamoulis, N.; Tao, Y. Query processing in spatial network databases. In Proceedings of the International

Conference on Very Large Data Bases, Berlin, Germany, 9–12 September 2003; pp. 802–813.
4. Taniar, D.; Rahayu, W. A taxonomy for region queries in spatial databases. J. Comput. Syst. Sci. 2015, 81, 1508–1531. [CrossRef]
5. Zacharatou, E.T.; Sidlauskas, D.; Tauheed, F.; Heinis, T.; Ailamaki, A. Efficient bundled spatial range queries. In Proceedings of the

International Conference on Advances in Geographic Information Systems, Chicago, IL, USA, 5–8 November 2019; pp. 139–148.
6. Huang, X.; Jensen, C.S.; Saltenis, S. Multiple k nearest neighbor query processing in spatial network databases. In Proceedings

of the European Conference on Advances in Databases and Information Systems, Thessaloniki, Greece, 3–7 September 2006;
pp. 266–281.

7. Liu, Y.; Peng, M.; Shou, G. Mobile edge computing-enhanced proximity detection in time-aware road networks. IEEE Access 2019,
7, 167958–167972. [CrossRef]

8. Miao, X.; Gao, Y.; Mai, G.; Chen, G.; Li, Q. On efficiently monitoring continuous aggregate k nearest neighbors in road networks.
IEEE Trans. Mob. Comput. 2020, 19, 1664–1676. [CrossRef]

9. Ouyang, D.; Wen, D.; Qin, L.; Chang, L.; Zhang, Y.; Lin, X. Progressive top-k nearest neighbors search in large road networks.
In Proceedings of the International Conference on Management of Data, Portland, OR, USA, 14–19 June 2020; pp. 1781–1795.

10. Tang, X.; Chai, M.; Chen, X.; Chen, W. Spatio-temporal reachable area calculation based on urban traffic data. IEEE Syst. J. 2021,
15, 641–652. [CrossRef]

11. Abeywickrama, T.; Cheema, M.A.; Taniar, D. k-Nearest neighbors on road networks: A journey in experimentation and in-memory
implementation. Proc. VLDB Endow. 2016, 9, 492–503. [CrossRef]

12. Lee, K.C.K.; Lee, W.-C.; Zheng, B.; Tian, Y. ROAD: A new spatial object search framework for road networks. IEEE Trans. Knowl.
Data Eng. 2012, 24, 547–560. [CrossRef]

13. Samet, H.; Sankaranarayanan, J.; Alborzi, H. Scalable network distance browsing in spatial databases. In Proceedings of the
International Conference on Mobile Data Management, Beijing, China, 27–30 April 2008; pp. 43–54.

http://doi.org/10.1016/j.jcss.2014.12.025
http://dx.doi.org/10.1109/ACCESS.2019.2937337
http://dx.doi.org/10.1109/TMC.2019.2911950
http://dx.doi.org/10.1109/JSYST.2020.2980076
http://dx.doi.org/10.14778/2904121.2904125
http://dx.doi.org/10.1109/TKDE.2010.243

Sensors 2021, 21, 5258 17 of 18

14. Shen, B.; Zhao, Y.; Li, G.; Zheng, W.; Qin, Y.; Yuan, B.; Rao, Y. V-tree: Efficient knn search on moving objects with road-network
constraints. In Proceedings of the International Conference on Data Engineering, San Diego, CA, USA, 19–22 April 2017;
pp. 609–620.

15. Zhong, R.; Li, G.; Tan, K.-L.; Zhou, L.; Gong, Z. G-tree: An efficient and scalable index for spatial search on road networks. IEEE
Trans. Knowl. Data Eng. 2015, 27, 2175–2189. [CrossRef]

16. Uber Revenue and Usage Statistics. Available online: https://www.businessofapps.com/data/uber-statistics/ (accessed on
22 July 2021).

17. Xu, Y.; Qi, J.; Borovica-Gajic, R.; Kulik, L. Finding all nearest neighbors with a single graph traversal. In Proceedings of the
International Conference on Database Systems for Advanced Applications, Gold Coast, Australia, 21–24 May 2018; pp. 221–238.

18. Zhang, J.; Mamoulis, N.; Papadias, D.; Tao, Y. All-nearest-neighbors queries in spatial databases. In Proceedings of the Interna-
tional Conference on Scientific and Statistical Database Management, Santorini Island, Greece, 21–23 June 2004; pp. 297–306.

19. Li, L.; Zhang, M.; Hua, W.; Zhou, X. Fast query decomposition for batch shortest path processing in road networks. In Proceedings
of the International Conference on Data Engineering, Dallas, TX, USA, 20–24 April 2020; pp. 1189–1200.

20. Wang, Y.; Li, G.; Tang, N. Querying shortest paths on time dependent road networks. Proc. VLDB Endow. 2019, 12, 1249–1261.
[CrossRef]

21. Wei, V.J.; Wong, R.C.-W.; Long, C. Architecture-intact oracle for fastest path and time queries on dynamic road networks.
In Proceedings of the International Conference on Management of Data, Portland, OR, USA, 14–19 June 2020; pp. 1841–1856.

22. Dong, T.; Lulu, Y.; Shang, Y.; Ye, Y.; Zhang, L. Direction-aware continuous moving k-nearest-neighbor query in road networks.
ISPRS Int. J. Geo Inf. 2019, 8, 379. [CrossRef]

23. Luo, S.; Kao, B.; Li, G.; Hu, J.; Cheng, R.; Zheng, Y. TOAIN: A throughput optimizing adaptive index for answering dynamic knn
queries on road networks. Proc. VLDB Endow. 2018, 11, 594–606. [CrossRef]

24. Yang, Y.; Li, H.; Wang, J.; Hu, Q.; Wang, X.; Leng, M. A novel index method for k nearest object query over time-dependent road
networks. Complexity 2019, 2019, 4829164. [CrossRef]

25. Abeywickrama, T.; Cheema, M.A. Efficient landmark-based candidate generation for knn queries on road networks. In Pro-
ceedings of the International Conference on Database Systems for Advanced Applications, Suzhou, China, 27–30 March 2017;
pp. 425–440.

26. Cao, B.; Hou, C.; Li, S.; Fan, J.; Yin, J.; Zheng, B.; Bao, J. SIMkNN: A scalable method for in-memory knn search over moving
objects in road networks. IEEE Trans. Knowl. Data Eng. 2018, 30, 1957–1970. [CrossRef]

27. Sellis, T.K. Multiple-query optimization. ACM Trans. Database Syst. 1988, 13, 23–52. [CrossRef]
28. Eslami, M.; Tu, Y.; Charkhgard, H.; Xu, Z.; Liu, J. PsiDB: A framework for batched query processing and optimization. In Proceed-

ings of the International Conference on Big Data, Los Angeles, CA, USA, 9–12 December 2019; pp. 6046–6048.
29. Giannikis, G.; Alonso, G.; Kossmann, D. SharedDB: killing one thousand queries with one stone. Proc. VLDB Endow. 2012, 5,

526–537. [CrossRef]
30. Giannikis, G.; Makreshanski, D.; Alonso, G.; Kossmann, D. Shared workload optimization. Proc. VLDB Endow. 2014, 7, 429–440.

[CrossRef]
31. Makreshanski, D.; Giannikis, G.; Alonso, G.; Kossmann, D. MQJoin: Efficient shared execution of main-memory joins. Proc.

VLDB Endow. 2016, 9, 480–491. [CrossRef]
32. Makreshanski, D.; Giannikis, G.; Alonso, G.; Kossmann, D. Many-query join: Efficient shared execution of relational joins on

modern hardware. VLDB J. 2018, 27, 669–692. [CrossRef]
33. Marroquin, R.; Müller, I.; Makreshanski, D.; Alonso, G. Pay one, get hundreds for free: Reducing cloud costs through shared

query execution. In Proceedings of the Symposium on Cloud Computing, Carlsbad, CA, USA, 11–13 October 2018; pp. 439–450.
34. Michiardi, P.; Carra, D.; Migliorini, S. In-memory caching for multi-query optimization of data-intensive scalable computing

workloads. In Proceedings of the Workshops of the EDBT/ICDT Joint Conference, Lisbon, Portugal, 26 March 2019.
35. Psaroudakis, I.; Athanassoulis, M.; Ailamaki, A. Sharing data and work across concurrent analytical queries. Proc. VLDB Endow. 2013,

6, 637–648. [CrossRef]
36. Rehrmann, R.; Binnig, C.; Böhm, A.; Kim, K.; Lehner, W.; Rizk, A. OLTPShare: The case for sharing in oltp workloads. Proc. VLDB

Endow. 2018, 11, 1769–1780. [CrossRef]
37. Jonathan, A.; Chandra, A.; Weissman, J.B. Multi-query optimization in wide-area streaming analytics. In Proceedings of the

Symposium on Cloud Computing, Carlsbad, CA, USA, 11–13 October 2018; pp. 412–425.
38. Karimov, J.; Rabl, T.; Markl, V. AStream: Ad-hoc shared stream processing. In Proceedings of the International Conference on

Management of Data, Amsterdam, The Netherlands, 30 June–5 July 2019; pp. 607–622.
39. Karimov, J.; Rabl, T.; Markl, V. AJoin: Ad-hoc stream joins at scale. Proc. VLDB Endow. 2019, 13, 435–448. [CrossRef]
40. Mahmud, H.; Amin, A.M.; Ali, M.E.; Hashem, T.; Nutanong, S. A group based approach for path queries in road networks. In Pro-

ceedings of the International Symposium on Advances in Spatial and Temporal Databases, Munich, Germany, 21–23 August 2013;
pp. 367–385.

41. Reza, R.M.; Ali, M.E.; Hashem, T. Group processing of simultaneous shortest path queries in road networks. In Proceedings of
the International Conference on Mobile Data Management, Pittsburgh, PA, USA, 15–18 June 2015; pp. 128–133.

42. Zhang, M.; Li, L.; Hua, W.; Zhou, X. Efficient batch processing of shortest path queries in road networks. In Proceedings of the
International Conference on Mobile Data Management, Hong Kong, China, 10–13 June 2019; pp. 100–105.

http://dx.doi.org/10.1109/TKDE.2015.2399306
https://www.businessofapps.com/data/uber-statistics/
http://dx.doi.org/10.14778/3342263.3342265
http://dx.doi.org/10.3390/ijgi8090379
http://dx.doi.org/10.1145/3187009.3177736
http://dx.doi.org/10.1155/2019/4829164
http://dx.doi.org/10.1109/TKDE.2018.2808971
http://dx.doi.org/10.1145/42201.42203
http://dx.doi.org/10.14778/2168651.2168654
http://dx.doi.org/10.14778/2732279.2732280
http://dx.doi.org/10.14778/2904121.2904124
http://dx.doi.org/10.1007/s00778-017-0475-4
http://dx.doi.org/10.14778/2536360.2536364
http://dx.doi.org/10.14778/3229863.3229866
http://dx.doi.org/10.14778/3372716.3372718

Sensors 2021, 21, 5258 18 of 18

43. Zhang, M.; Li, L.; Hua, W.; Zhou, X. Batch processing of shortest path queries in road networks. In Proceedings of the Australasian
Database Conference on Databases Theory and Applications, Sydney, Australia, 29 January–1 February 2019; pp. 3–16.

44. Thomsen, J.R.; Yiu, M.L.; Jensen, C.S. Effective caching of shortest paths for location-based services. In Proceedings of the
International Conference on Management of Data, Scottsdale, AZ, USA, 20–24 May 2012; pp. 313–324.

45. Li, H.-J.; Bu, Z.; Wang, Z.; Cao, J. Dynamical clustering in electronic commerce systems via optimization and leadership expansion.
IEEE Trans. Ind. Inform. 2020, 16, 5327–5334. [CrossRef]

46. Li, H.-J.; Zhang, J.; Liu, Z.-P.; Chen, L.; Zhang, X.-S. Identifying overlapping communities in social networks using multi-scale
local information expansion. Eur. Phys. J. B 2012, 85, 190. [CrossRef]

47. Li, H.-J.; Wang, Q.; Liu, S.; Hu, J. Exploring the trust management mechanism in self-organizing complex network based on game
theory. Phys. A Stat. Mech. Appl. 2020, 542, 123514. [CrossRef]

48. Li, H.-J.; Wang, Z.; Pei, J.; Cao, J.; Shi, Y. Optimal estimation of low-rank factors via feature level data fusion of multiplex signal
systems. IEEE Trans. Knowl. Data Eng. 2020. [CrossRef]

49. Li, H.-J.; Wang, L.; Zhang, Y.; Perc, M. Optimization of identifiability for efficient community detection. New J. Phys. 2020, 22, 063035.
[CrossRef]

50. Attique, M.; Afzal, M.; Ali, F.; Mehmood, I.; Ijaz, M.F.; Cho, H.-J. Geo-social top-k and skyline keyword queries on road networks.
Sensors 2020, 20, 798. [CrossRef]

51. Cho, H.-J.; Attique, M. Group processing of multiple k-farthest neighbor queries in road networks. IEEE Access 2020, 8, 110959–110973.
[CrossRef]

52. 9th DIMACS Implementation Challenge: Shortest Paths. Available online: http://www.dis.uniroma1.it/challenge9/download.
shtml (accessed on 22 July 2021).

53. Wu, L.; Xiao, X.; Deng, D.; Cong, G.; Zhu, A.D.; Zhou, S. Shortest path and distance queries on road networks: An experimental
evaluation. Proc. VLDB Endow. 2012, 5, 406–417. [CrossRef]

54. Corral, A.; Manolopoulos, Y.; Theodoridis, Y.; Vassilakopoulos, M. Multi-way distance join queries in spatial databases. GeoInfor-
matica 2004, 8, 373–402. [CrossRef]

http://dx.doi.org/10.1109/TII.2019.2960835
http://dx.doi.org/10.1140/epjb/e2012-30015-5
http://dx.doi.org/10.1016/j.physa.2019.123514
http://dx.doi.org/10.1109/TKDE.2020.3015914
http://dx.doi.org/10.1088/1367-2630/ab8e5e
http://dx.doi.org/10.3390/s20030798
http://dx.doi.org/10.1109/ACCESS.2020.3002263
http://www.dis.uniroma1.it/challenge9/download.shtml
http://www.dis.uniroma1.it/challenge9/download.shtml
http://dx.doi.org/10.14778/2140436.2140438
http://dx.doi.org/10.1023/B:GEIN.0000040832.25622.8d

	Introduction
	Related Work
	Preliminaries
	Batch Processing of SP Queries in Spatial Networks
	Clustering Nearby SP Queries
	Unified Batch Processing Algorithm for SP Queries
	Evaluation of Example SP Queries Using UBA

	Performance Study
	Experimental Settings
	Experimental Results

	Conclusions
	References

