A SSTDR Methodology, Implementations, and Challenges
Abstract
:1. Introduction
2. Reflectometry
2.1. Reflectometry Basics
2.2. Sequence Time Domain Reflectometry (STDR) and Spread Spectrum Time-Domain Reflectometry (SSTDR)
2.3. Reflectometry Challenges
2.3.1. Multiple Reflections
2.3.2. Small Reflections
2.3.3. Intermittent Faults
3. SSTDR Applications
3.1. Diagnostics for Aircraft Wiring Systems
3.2. Transmission Lines and Cabling
3.3. Motor Vehicles and Batteries
3.4. Power Systems
3.5. Photovoltaic Systems
3.6. Measurement of Complex Impedance
3.7. Tamper Detection
3.8. Structural Health Monitoring and Small Impedance Changes
4. SSTDR Signal Processing Algorithms
4.1. Inverse Methods
4.2. Forward Modeling
4.3. Improving Accuracy
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jones, S.B.; Wraith, J.M.; Or, D. Time domain reflectometry measurement principles and applications. Hydrol. Process. 2002, 16, 141–153. [Google Scholar] [CrossRef]
- Hsue, C.-W.; Pan, T.-W. Reconstruction of nonuniform transmission lines from time-domain reflectometry. IEEE Trans. Microw. Theory Tech. 1997, 45, 32–38. [Google Scholar] [CrossRef]
- Smith, P.; Furse, C.; Gunther, J. Analysis of spread spectrum time domain reflectometry for wire fault location. IEEE Sens. J. 2005, 5, 1469–1478. [Google Scholar] [CrossRef]
- Smith, P.S. Spread Spectrum Time Domain Reflectometry; Utah State University: Logan, UT, USA, 2004. [Google Scholar]
- Furse, C.; Chung, Y.C.; Lo, C.; Pendayala, P. A critical comparison of reflectometry methods for location of wiring faults. Smart Struct. Syst. 2006, 2, 25–46. [Google Scholar] [CrossRef] [Green Version]
- Furse, C.M.; Kafal, M.; Razzaghi, R.; Shin, Y.-J. Fault Diagnosis for Electrical Systems and Power Networks: A Review. IEEE Sens. J. 2020, 21, 888–906. [Google Scholar] [CrossRef]
- Griffiths, L.; Parakh, R.; Furse, C.; Baker, B. The invisible fray: A critical analysis of the use of reflectometry for fray location. IEEE Sens. J. 2006, 6, 697–706. [Google Scholar] [CrossRef]
- Nasrin, M.S.; Khan, F.H.; Alam, M.K. Quantifying Device Degradation in Live Power Converters Using SSTDR Assisted Impedance Matrix. IEEE Trans. Power Electron. 2013, 29, 3116–3131. [Google Scholar] [CrossRef]
- Das, S.; Khan, F.; Alam, M.K.; Goli, P. Detection of aging related IGBT bond-wire lift-off using spread spectrum time domain reflectometry (SSTDR). In Proceedings of the 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), Tampa, FL, USA, 26–30 March 2017; pp. 789–794. [Google Scholar] [CrossRef]
- Hanif, A.; Khan, F. Degradation Detection of Thermally Aged SiC and Si Power MOSFETs using Spread Spectrum Time Domain Reflectometry (SSTDR). In Proceedings of the 2018 IEEE 6th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Atlanta, GA, USA, 31 October–2 November 2018; pp. 18–23. [Google Scholar] [CrossRef]
- Saleh, M.U.; Deline, C.; Benoit, E.; Kingston, S.; Edun, A.S.; Jayakumar, N.K.T.; Harley, J.B.; Furse, C.; Scarpulla, M. An Overview of Spread Spectrum Time Domain Reflectometry Responses to Photovoltaic Faults. IEEE J. Photovolt. 2020, 10, 844–851. [Google Scholar] [CrossRef]
- Alam, M.K.; Khan, F.H.; Johnson, J.; Flicker, J. PV arc-fault detection using spread spectrum time domain reflectometry (SSTDR). In Proceedings of the 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, 14–18 September 2014; pp. 3294–3300. [Google Scholar] [CrossRef]
- Roy, S.; Alam, M.K.; Khan, F.; Johnson, J.; Flicker, J. An Irradiance-Independent, Robust Ground-Fault Detection Scheme for PV Arrays Based on Spread Spectrum Time-Domain Reflectometry (SSTDR). IEEE Trans. Power Electron. 2017, 33, 7046–7057. [Google Scholar] [CrossRef]
- Li, Z.; Yang, Z.; Wu, C. Simulation of Fault Detection in Photovoltaic System Based On SSTDR. In Proceedings of the 2020 5th International Conference on Power and Renewable Energy (ICPRE), Shanghai, China, 12–14 September 2020; pp. 257–261. [Google Scholar]
- Furse, C.; Jayakumar, N.K.T.; Benoit, E.; Saleh, M.U.; LaCombe, J.; Scarpulla, M.; Harley, J.; Kingston, S.; Waddoups, B.; Deline, C. Spread Spectrum Time Domain Reflectometry for Complex Impedances: Application to PV Arrays. In Proceedings of the 2018 IEEE Autotestcon, National Harbor, MD, USA, 17–20 September 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Ellis, H.D.; Saleh, M.U.; Kingston, S.R.; Harley, J.B.; Scarpulla, M.A.; Benoit, E.J.; Furse, C.M. A Model for SSTDR Signal Propagation through Photovoltaic Strings. IEEE J. Photovolt. 2020, 10, 1846–1852. [Google Scholar] [CrossRef]
- Edun, A.S.; Jayakumar, N.K.T.; Kingston, S.R.; Furse, C.M.; Scarpulla, M.A.; Harley, J.B. Spread Spectrum Time Domain Reflectometry With Lumped Elements on Asymmetric Transmission Lines. IEEE Sens. J. 2020, 21, 921–929. [Google Scholar] [CrossRef]
- Edun, A.S.; La Flamme, C.; Kingston, S.R.; Tetali, H.V.; Benoit, E.J.; Scarpulla, M.; Furse, C.M.; Harley, J.B. Finding Faults in PV Systems: Supervised and Unsupervised Dictionary Learning with SSTDR. IEEE Sens. J. 2020, 21, 4855–4865. [Google Scholar] [CrossRef]
- Kingston, S.R.; Jayakumar, N.K.T.; Saleh, M.U.; Benoit, E.J.; Edun, A.S.; Sun, R.; Furse, C.M.; Scarpulla, M.A.; Harley, J.B. Measurement of Capacitance Using Spread Spectrum Time Domain Reflectometry (SSTDR) and Dictionary Matching. IEEE Sens. J. 2020, 20, 10102–10109. [Google Scholar] [CrossRef]
- Kingston, S.R.; Ellis, H.; Saleh, M.U.; Benoit, E.J.; Edun, A.; Furse, C.M.; Scarpulla, M.A.; Harley, J.B. Spread Spectrum Time Domain Reflectometry and Steepest Descent Inversion to Measure Complex Impedance. Appl. Comput. Electromagn. Soc. J. 2021, 36, 190–198. [Google Scholar] [CrossRef]
- Benoit, E.; Furse, C. Inversion Theory and SSTDR Analysis. In Proceedings of the 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, Montreal, QC, Canada, 5–10 July 2020; pp. 1265–1266. [Google Scholar]
- Benoit, E.; Jayakumar, N.K.T.; Kingston, S.; Saleh, M.U.; Scarpulla, M.; Harley, J.; Furse, C. Applicability of SSTDR analysis of complex loads. In Proceedings of the 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, GA, USA, 7–12 July 2019; pp. 2087–2088. [Google Scholar]
- Furse, C. Reflectometry for Structural Health Monitoring. In New Developments in Sensing Technology for Structural Health Monitoring; Mukhopadhyay, S.C., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 159–185. [Google Scholar] [CrossRef]
- Shi, X.; Liu, Y.; Xu, X.; Jing, T. Online Detection of Aircraft ARINC Bus Cable Fault Based on SSTDR. IEEE Syst. J. 2020, 15, 2482–2491. [Google Scholar] [CrossRef]
- Wang, C.; Xiao, C.; Xin, W.; Jing, S. Aircraft Cable Fault Detection and Location Based on SSTDR. DEStech Trans. Comput. Sci. Eng. 2019. [Google Scholar] [CrossRef]
- Nasrin, M.S.; Khan, F.H. Real time monitoring of aging process in power converters using the SSTDR generated impedance matrix. In Proceedings of the 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 17–21 March 2013; pp. 1199–1205. [Google Scholar]
- Roy, S.; Hanif, A.; Khan, F. Degradation Detection of Power Switches in a Live Three Phase Inverter using SSTDR Signal Embedded PWM Sequence. In Proceedings of the 2020 IEEE International Reliability Physics Symposium (IRPS), Dallas, TX, USA, 28 April–30 May 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Tanksalvala, M.; Porter, C.L.; Esashi, Y.; Wang, B.; Jenkins, N.W.; Zhang, Z.; Miley, G.P.; Knobloch, J.L.; McBennett, B.; Horiguchi, N.; et al. Nondestructive, high-resolution, chemically specific 3D nanostructure characterization using phase-sensitive EUV imaging reflectometry. Sci. Adv. 2021, 7, eabd9667. [Google Scholar] [CrossRef] [PubMed]
- Savi, P.; Maio, I.A.; Ferraris, S. The Role of Probe Attenuation in the Time-Domain Reflectometry Characterization of Dielectrics. Electromagnetics 2010, 30, 554–564. [Google Scholar] [CrossRef] [Green Version]
- Glombitza, U.; Brinkmeyer, E. Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides. J. Light. Technol. 1993, 11, 1377–1384. [Google Scholar] [CrossRef]
- Von Der Weid, J.P.; Passy, R.; Mussi, G.; Gisin, N. On the characterization of optical fiber network components with optical frequency domain reflectometry. J. Lightwave Technol. 1997, 15, 1131–1141. [Google Scholar] [CrossRef]
- Topp, G.C.; Yanuka, M.; Zebchuk, W.D.; Zegelin, S. Determination of electrical conductivity using time domain reflectometry: Soil and water experiments in coaxial lines. Water Resour. Res. 1988, 24, 945–952. [Google Scholar] [CrossRef]
- Ledieu, J.; De Ridder, P.; De Clerck, P.; Dautrebande, S. A method of measuring soil moisture by time-domain reflectometry. J. Hydrol. 1986, 88, 319–328. [Google Scholar] [CrossRef]
- Dirksen, C.; Dasberg, S. Improved Calibration of Time Domain Reflectometry Soil Water Content Measurements. Soil Sci. Soc. Am. J. 1993, 57, 660–667. [Google Scholar] [CrossRef]
- Furse, C.; Chung, Y.C.; Dangol, R.; Nielsen, M.; Mabey, G.; Woodward, R. Frequency-domain reflectometry for on-board testing of aging aircraft wiring. IEEE Trans. Electromagn. Compat. 2003, 45, 306–315. [Google Scholar] [CrossRef]
- Yuksel, K.; Wuilpart, M.; Moeyaert, V.; Mégret, P. Optical frequency domain reflectometry: A review. In Proceedings of the 2009 11th International Conference on Transparent Optical Networks, Azores, Portugal, 28 June–2 July 2009; pp. 1–5. [Google Scholar]
- Auzanneau, F. Binary time domain reflectometry: A simpler and more efficient way of diagnosing defects in wired networks. In Proceedings of the 2018 IEEE Autotestcon, National Harbor, MD, USA, 17–20 September 2018; pp. 1–8. [Google Scholar] [CrossRef]
- Lo, C.; Furse, C. Noise-Domain Reflectometry for Locating Wiring Faults. IEEE Trans. Electromagn. Compat. 2005, 47, 97–104. [Google Scholar] [CrossRef]
- Auzanneau, F.; Ravot, N.; Incarbone, L. Chaos Time Domain Reflectometry for Online Defect Detection in Noisy Wired Networks. IEEE Sens. J. 2016, 16, 8027–8034. [Google Scholar] [CrossRef]
- Hassen, W.B.; Auzanneau, F.; Incarbone, L.; Pérès, F.; Tchangani, A.P. OMTDR using BER estimation for ambiguities cancellation in ramified networks diagnosis. In Proceedings of the Intelligent Sensors, Sensor Networks and Information Processing, Melbourne, Australia, 2–5 April 2013; pp. 414–419. [Google Scholar]
- Incarbone, L.; Evain, S.; Ben Hassen, W.; Auzanneau, F.; Dupret, A.; Bonhomme, Y.; Morel, F.; Gabet, R.; Solange, L.; Zanchetta, A. OMTDR based integrated cable health monitoring system SmartCo: An embedded reflectometry system to ensure harness auto-test. In Proceedings of the 2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA), Auckland, New Zealand, 15–17 June 2015; pp. 1761–1765. [Google Scholar] [CrossRef]
- Hassen, W.B.; Ravot, N.; Dupret, A.; Zanchetta, A.; Morel, F.; Pillon, L.; Imbert, N.; Boisrivent, N.; Chuc, C. OMTDR-based embedded cable diagnosis for mutliple fire zones detection and location in aircraft engines. In Proceedings of the 2017 IEEE Sensors, Scotland, UK, 30 October–1 November 2017; pp. 1–3. [Google Scholar]
- Shin, Y.-J.; Powers, E.J.; Choe, T.-S.; Hong, C.-Y.; Song, E.-S.; Yook, J.-G.; Park, J.B. Application of Time-Frequency Domain Reflectometry for Detection and Localization of a Fault on a Coaxial Cable. IEEE Trans. Instrum. Meas. 2005, 54, 2493–2500. [Google Scholar] [CrossRef]
- Song, E.; Shin, Y.-J.; Stone, P.E.; Wang, J.; Choe, T.-S.; Yook, J.-G.; Park, J.B. Detection and Location of Multiple Wiring Faults via Time–Frequency-Domain Reflectometry. IEEE Trans. Electromagn. Compat. 2009, 51, 131–138. [Google Scholar] [CrossRef]
- Wang, J.; Stone, P.; Shin, Y.-J.; Dougal, R. Application of joint time–frequency domain reflectometry for electric power cable diagnostics. IET Signal Process. 2010, 4, 395. [Google Scholar] [CrossRef] [Green Version]
- Furse, C.; Smith, P. Method and Apparatus for Characterizing a Signal Path Carrying an Operational Signal. U.S. Patent 7,250,772, 31 July 2007. [Google Scholar]
- Furse, C.; Smith, P.; Safavi, M.; Lo, C. Feasibility of spread spectrum sensors for location of arcs on live wires. IEEE Sens. J. 2005, 5, 1445–1450. [Google Scholar] [CrossRef]
- Zigangirov, K.S. Theory of Code Division Multiple Access Communication; IEEE Press: New York, NY, USA, 2004; Available online: http://pws.npru.ac.th/sartthong/data/files/Wiley.IEEE.Press.%20CDMA.pdf (accessed on 9 April 2021).
- Wenqi, Z.; Li, W.; Wei, C. Theoretical and experimental study of Spread Spectral Domain Reflectometry. In Proceedings of the Electrical Systems for Aircraft, Railway and Ship Propulsion, Bologna, Italy, 16–18 October 2012; pp. 1–5. [Google Scholar] [CrossRef]
- Sharma, C.R.; Furse, C.; Harrison, R.R. Low-Power STDR CMOS Sensor for Locating Faults in Aging Aircraft Wiring. IEEE Sens. J. 2006, 7, 43–50. [Google Scholar] [CrossRef]
- Smith, P.; Kuhn, P.; Diamond, M.; Furse, C.; Sekar, S.; Edmunds, L.; Kukowski, T. ASIC Implementation of Live Arc Fault SSTDR Tester. In Proceedings of the Joint FAA/DOD/NASA Conference on Aging Aircraft, Phoenix, AZ, USA, 21–24 April 2008. [Google Scholar]
- Harrison, R.; Furse, C.; Sharma, C. Reflectometry Test System Using a Sliding Pseudo-Noise Reference. U.S. Patent US7548071B2, 16 June 2009. Available online: https://patents.google.com/patent/US7548071B2/en (accessed on 9 April 2021).
- Jani, N.D.; Nigam, A.; Furse, C.M. System and Method for Characterizing a Signal Path Using a Sub-Chip Sampler. U.S. Patent 7,165,200, 16 January 2007. [Google Scholar]
- Nandini, A. Design and Implementation of Analog Multiplier with Improved Linearity. VLSICS 2012, 3, 93–109. [Google Scholar] [CrossRef]
- Madhavan, S.; Sandya, S. CMOS architecture for SSTDR implementation. In Proceedings of the International Conference on Circuits Communication, Control and Computing, Bhopal, India, 14–16 November 2014; pp. 54–57. [Google Scholar] [CrossRef]
- Dhamija, H. Optical Sequence Time Domain Reflectometry for Aircraft Wire Fault Location; University of Utah: Salt Lake City, UT, USA, 2010. [Google Scholar]
- Roy, S.; Hanif, A.; Khan, F.H. Aging Detection and State of Health Estimation of Live Power Semiconductor Devices Using SSTDR Embedded PWM Sequence. IEEE Trans. Power Electron. 2020, 36, 4991–5005. [Google Scholar] [CrossRef]
- Roy, S.; Khan, F. Live condition monitoring of switching devices using SSTDR embedded PWM sequence: A platform for intelligent gate-driver architecture. In Proceedings of the 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, USA, 1–5 October 2017; pp. 3502–3507. [Google Scholar] [CrossRef]
- Thayoob, Y.H.M.; Sulaiman, S.; Ariffin, A.M. Analysis of wave propagation in Time Domain Reflectometry circuit simulation model. In Proceedings of the 2010 IEEE International Conference on Power and Energy, Kuala Lumpur, Malaysia, 29 November–1 December 2010; pp. 276–281. [Google Scholar] [CrossRef]
- Saleh, M.U.; Deline, C.; Benoit, E.J.; Kingston, S.R.; Harley, J.B.; Furse, C.M.; Scarpulla, M.A. Detection and Localization of Damaged Photovoltaic Cells and Modules Using Spread Spectrum Time Domain Reflectometry. IEEE J. Photovolt. 2020, 11, 195–201. [Google Scholar] [CrossRef]
- Lele, L.; Yang, J.; Liu, Y. Research on Cable Fault Detection Algorithm Based on SSTDR. Electron. Sci. Technol. 2015, 8, 81–83. [Google Scholar]
- Viper Innovations. Railways|Viper Innovations|Electrical Integrity Management. Available online: https://www.viperinnovations.com/railways/ (accessed on 9 April 2021).
- Steve, S.; Paul, R.O. Test Arrangement. GB2552143A, 17 January 2018. Available online: https://patents.google.com/patent/GB2552143A/en?oq=GB2552143A (accessed on 11 May 2021).
- Roy, S.; Khan, F. Detection of Degraded/Aged Cell in a Li-ion Battery Pack using Spread Spectrum Time Domain Reflectometry (SSTDR). In Proceedings of the 2020 IEEE Applied Power Electronics Conference and Exposition (APEC), New Orleans, LA, USA, 14–17 June 2020; pp. 1483–1488. [Google Scholar] [CrossRef]
- Berger, W.; Furse, C. Spread Spectrum Techniques for Measurement of Dielectric Aging on Low Voltage Cables for Nuclear Power Plants. IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 1028–1033. [Google Scholar] [CrossRef]
- Ball, G.; Brooks, B.; Flicker, J.; Johnson, J.; Rosenthal, A.; Wiles, J.; Sherwood, L.; Albers, M.; Zgonena, T. Fault Detection “Blind Spot” and Mitigation Methods; Solar America Board for Codes and Standards: Boulder, CO, USA, 2013; p. 42. [Google Scholar]
- He, Z.; Shardt, Y.A.W.; Wang, D.; Hou, B.; Zhou, H.; Wang, J. An incipient fault detection approach via detrending and denoising. Control Eng. Pract. 2018, 74, 1–12. [Google Scholar] [CrossRef]
- Ji, H.; He, X.; Shang, J.; Zhou, D. Incipient fault detection with smoothing techniques in statistical process monitoring. Control Eng. Pract. 2017, 62, 11–21. [Google Scholar] [CrossRef]
- Alam, M.K.; Khan, F.; Johnson, J.; Flicker, J. A comprehensive review of catastrophic faults in PV arrays: Types, detection, and mitigation techniques. IEEE J. Photovolt. 2015, 5, 982–997. [Google Scholar] [CrossRef]
- Lu, S.; Phung, B.; Zhang, D. A comprehensive review on DC arc faults and their diagnosis methods in photovoltaic systems. Renew. Sustain. Energy Rev. 2018, 89, 88–98. [Google Scholar] [CrossRef]
- Müller, P.; Tenbohlen, S.; Maier, R.; Anheuser, M. Characteristics of Series and Parallel Low Current Arc Faults in the Time and Frequency Domain. In Proceedings of the 2010 56th IEEE Holm Conference on Electrical Contacts, Charleston, SC, USA, 4–7 October 2010; pp. 1–7. [Google Scholar] [CrossRef]
- McCormick, J.M.; Theisen, P. Arc Fault Circuit Interrupter Development Overview. SAE Tech. Pap. 2002. [Google Scholar] [CrossRef]
- AC Solar Warehouse. What Is Rapid Shutdown and Why Was It Implemented in the United States? 4 July 2019. Available online: https://www.acsolarwarehouse.com/news/rapid-shutdown/ (accessed on 23 July 2020).
- Zhang, J.; Zhang, Y.; Guan, Y. Analysis of Time-Domain Reflectometry Combined with Wavelet Transform for Fault Detection in Aircraft Shielded Cables. IEEE Sens. J. 2016, 16, 4579–4586. [Google Scholar] [CrossRef]
- Yaramasu, A.; Cao, Y.; Liu, G.; Wu, B. Aircraft electric system intermittent arc fault detection and location. IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 40–51. [Google Scholar] [CrossRef]
- Sallem, S.; Olivas, M.; Vogel, L.S.; Peltier, A. Wire arc defect localization and mathematical characterization by MCTDR reflectometry. In Proceedings of the 2017 IEEE Autotestcon, Chicago, IL, USA, 11–14 September 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Incarbone, L.; Auzanneau, F.; Ben Hassen, W.; Bonhomme, Y. Embedded wire diagnosis sensor for intermittent fault location. In Proceedings of the 2014 IEEE Sensors, Valencia, Spain, 2–5 November 2014; pp. 562–565. [Google Scholar] [CrossRef]
- Smith, P.; Kuhn, P.; Furse, C. Intermittent Fault Location on Live Electrical Wiring Systems. SAE Int. J. Aerosp. 2008, 1, 1101–1106. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.; Wang, L.; Mao, J.; Gao, C.; Zhang, B.; Yang, S. Synchronous Online Diagnosis of Multiple Cable Intermittent Faults Based on Chaotic Spread Spectrum Sequence. IEEE Trans. Ind. Electron. 2018, 66, 3217–3226. [Google Scholar] [CrossRef]
- Yang, A. Accurate Data Collection: Roadmap to Proactive Aircraft Wiring Maintenance; Naval Air Systems Command: Patuxent River, MD, USA, 2006. [Google Scholar]
- Liu, Z.; Fuller, R.J.; Yu, W.; Ye, Y.; Liu, G.G. Power Line Communication Based Aircraft Power Distribution System with Real Time Wiring Integrity Monitoring Capability. U.S. Patent US7868621B2, 11 January 2011. [Google Scholar]
- Madhavan, S.; Sandya, S. Low Power SoC for Mil-Std 1553 Cable Fault Detection. In Proceedings of the 2020 IEEE International Conference for Innovation in Technology (INOCON), Bangalore, India, 6–8 November 2020; pp. 1–8. [Google Scholar] [CrossRef]
- Shi, X.; Xu, X.; Liu, Y.; Jing, T. Verification Research on On-line Monitoring Method of Aircraft ARINC825 Bus Cable Fault Based on SSTDR. In Proceedings of the 11th International Conference on Modelling, Identification and Control (ICMIC2019), Tianjin, China, 13–15 July 2019; pp. 41–51. [Google Scholar] [CrossRef]
- Furse, C.; Wu, S.; Diamond, M.; Mih, D.; Lo, C.; Smith, P. The potential of prognostics for preventative maintenance of electrical wiring. In Proceedings of the Conference on Aging Aircraft, Palm Springs, VA, USA, 16–19 April 2007. [Google Scholar]
- Drost, B. System and Method for Health Monitoring of Electrical Systems. U.S. Patent US10345352B2, 9 July 2019. Available online: https://patents.google.com/patent/US10345352B2 (accessed on 22 March 2021).
- Drost, B.; Thompson, B.; Mastrianni, M. Aircraft Wire Fault Detection and Isolation using Spread Spectrum Time Domain Reflectometry. In Proceedings of the AHS International Forum 70, Montréal, QC, Canada, 20–22 May 2014; Available online: https://vtol.org/store/product/aircraft-wire-fault-detection-and-isolation-using-spread-spectrum-time-domain-reflectometry-9539.cfm (accessed on 17 July 2021).
- Reis, J.; Castro, A.L.S.; Costa, J.W.; Riu, J.R.I.; Ericson, K. Sequence and spread spectrum time domain reflectometry for transmission line analysis. Broadband Access Commun. Technol. II 2007, 6776, 67760L. [Google Scholar] [CrossRef] [Green Version]
- Sandquist, G.M.; Sandquist, C.J. Spread Spectrum Time Domain Reflectrometry Applied to Electrical Systems in Nuclear Power Plants. In Proceedings of the 18th International Conference on Nuclear Engineering, Xi’an, China, 17–21 May 2010; pp. 109–111. [Google Scholar] [CrossRef]
- Simpson, S. Monitoring Arrangement. U.S. Patent US10267841B2, 23 April 2019. Available online: https://patents.google.com/patent/US10267841B2 (accessed on 22 March 2021).
- Zhu, C.X. The Research of Railway Signal Cable Fault On-Line Detection System Based on the STDR/SSTDR Method; Lanzhou Jiaotong University: Lanzhou, China, 2012. [Google Scholar]
- Gao, C.; Li, W.; Mao, J.; Hu, S.; Zhang, B.; Yang, S. Non-intrusive Cable Fault Diagnosis Based on Inductive Directional Coupling. IEEE Trans. Power Deliv. 2019, 34, 1684–1694. [Google Scholar] [CrossRef]
- Coutelou, O. Locating Faults in an Electrical Network. WO2012049378A1, 19 April 2012. Available online: https://patents.google.com/patent/WO2012049378A1 (accessed on 22 March 2021).
- Courter, M. System and Method for Spread-Spectrum Time-Domain Reflectometry and Design Data. U.S. Patent US10504307B2, 10 December 2019. Available online: https://patents.google.com/patent/US10504307B2 (accessed on 22 March 2021).
- Rotariu, M. Fault Detection in the DC Bus of a Vehicle. Universidad de Oviedo. 2014. Available online: https://digibuo.uniovi.es/dspace/handle/10651/29936 (accessed on 11 May 2021).
- Nasrin, M.S.; Khan, F.H. Use of spread spectrum time domain reflectometry to estimate state of health of power converters. In Proceedings of the 2012 IEEE 13th Workshop on Control and Modeling for Power Electronics (COMPEL), Kyoto, Japan, 10–13 June 2012; pp. 1–6. [Google Scholar] [CrossRef]
- Khan, F. State of Health Estimation of Power Converters. U.S. Patent US9494657B2, 15 November 2016. Available online: https://patents.google.com/patent/US9494657B2 (accessed on 22 March 2021).
- Roy, S.; Hanif, A.; Khan, F. Aging Detection of Multiple Power Switches in a Live 3-Phase Inverter using Reflectometry. In Proceedings of the 2020 IEEE Kansas Power and Energy Conference (KPEC), Manhattan, KS, USA, 13–14 April 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Hanif, A.; Das, S.; Khan, F. Active power cycling and condition monitoring of IGBT power modules using reflectometry. In Proceedings of the 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, USA, 4–8 March 2018; pp. 2827–2833. [Google Scholar] [CrossRef]
- Moell, W.; Broeckmann, E.; Schaefer, O.; Mager, T. Method and Device for Extended Insulation Fault Location in an Ungrounded Power Supply System and Method for Status Monitoring of the Power Supply System. U.S. Patent US10605853B2, 31 March 2020. Available online: https://patents.google.com/patent/US10605853B2/en?oq=US10605853B2 (accessed on 11 May 2021).
- Hanif, A.; Khan, F. Reflectometry Based SOH Estimation Scheme for a SiC Buck Converter Having Branched Network. In Proceedings of the 2018 Second International Symposium on 3D Power Electronics Integration and Manufacturing (3D-PEIM), College Park, MD, USA, 25–27 June 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Hanif, A.; Major, J.; Devoto, D.; Khan, F. Bond Wire Damage Detection and State of Health Estimation of a 1200V, 900A Dual Pack IGBT Power Module using the RL-Equivalent Circuit. In Proceedings of the 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), Anaheim, CA, USA, 17–22 March 2019; pp. 3421–3426. [Google Scholar] [CrossRef]
- Alam, M.K. Prognostics and Diagnosis of Catastrophic Faults in Photovoltaic Arrays and Reliability Centered Maintenance (RCM) for Power Converters using Spread Spectrum Time Domain Reflectometry (SSTDR); University of Utah: Salt Lake City, UT, USA, 2014; Available online: https://core.ac.uk/download/pdf/276263995.pdf (accessed on 11 May 2021).
- Hanif, A.; Roy, S.; Khan, F. Detection of gate oxide and channel degradation in SiC power MOSFETs using reflectometry. In Proceedings of the 2017 IEEE 5th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Santa Ana Pueblo, NM, USA, 30 October–1 November 2017; pp. 383–387. [Google Scholar] [CrossRef]
- Watkins, L.A. Live Circuit Monitoring. U.S. Patent US9588169B1, 7 March 2017. Available online: https://patents.google.com/patent/US9588169B1 (accessed on 22 March 2021).
- Jayakumar, N.K.T.; Saleh, M.U.; Benoit, E.; Lacombe, J.; Scarpulla, M.; Furse, C. Fault Detection In PV Strings Using SSTDR. In Proceedings of the 2018 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), Boston, MA, USA, 8–13 July 2018; pp. 9–10. [Google Scholar] [CrossRef]
- Alam, M.K.; Khan, F.; Johnson, J.; Flicker, J. PV ground-fault detection using spread spectrum time domain reflectometry (SSTDR). In Proceedings of the 2013 IEEE Energy Conversion Congress and Exposition, Denver, CO, USA, 15–19 September 2013; pp. 1015–1102. [Google Scholar] [CrossRef]
- Saleh, M.U.; Deline, C.; Kingston, S.; Jayakumar, N.K.T.; Benoit, E.; Harley, J.B.; Furse, C.; Scarpulla, M. Detection and Localization of Disconnections in PV Strings Using Spread-Spectrum Time-Domain Reflectometry. IEEE J. Photovolt. 2019, 10, 236–242. [Google Scholar] [CrossRef]
- Saleh, M.U. Photovoltaic String Monitoring Using Spread Spectrum Time Domain Reflectometry. Ph.D. Thesis, University of Utah, Salt Lake City, UT, USA, 2020. [Google Scholar]
- Kingston, S.; Benoit, E.; Jayakumar, N.K.; Saleh, M.U.; LaCombe, J.; Furse, C.M.; Scarpulla, M.A.; Harley, J.B. Spread spectrum time-domain reflectometry for detecting and locating capacitive impedances. AIP Conf. Proc. 2019, 2102, 090009. [Google Scholar]
- Kingston, S.; Jayakumar, N.K.T.; Saleh, M.U.; Edun, A.; Benoit, E.; Sun, R.; Furse, C.M.; Scarpulla, M.A.; Harley, J. Spread Spectrum Time Domain Reflectometry (SSTDR) and Dictionary Matching to Measure Capacitance for PV cells. In Proceedings of the 2019 IEEE Autotestcon, National Harbor, MD, USA, 26–29 August 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Sheen, D.M.; Smith, L.E.; Tedeschi, J.R.; Moore, D.E.; Gavric, G.; Conrad, R.C. Active Time Domain Reflectometry for Tamper Indication in Unattended Safeguards Systems; Institute of Nuclear Materials Management: Deerfield, IL, USA, 2015; PNNL-SA-110815. Available online: https://www.osti.gov/biblio/1322535 (accessed on 22 March 2021).
- Furse, C.; Smith, P.; Diamond, M. Feasibility of Reflectometry for Nondestructive Evaluation of Prestressed Concrete Anchors. IEEE Sens. J. 2009, 9, 1322–1329. [Google Scholar] [CrossRef]
- Kafal, M.; Benoit, J. Baselining: A critical approach used for soft fault detection in wire networks. Int. J. Digit. Inf. Wirel. Commun. 2017, 8, 52–57. [Google Scholar] [CrossRef]
- Lundquist, E.J.; Furse, C. Statistical variation of wire parameters within complex aerospace networks. Microw. Opt. Technol. Lett. 2016, 58, 2082–2084. [Google Scholar] [CrossRef]
- Benoit, E.; Mismash, J.; Kingston, S.R.; Edun, A.S.; Ellis, H.; LaFlamme, C.; Scarpulla, M.A.; Harley, J.B.; Furse, C.M. Quantifying the Window of Uncertainty for SSTDR Measurements of a Photovoltaic System. IEEE Sens. J. 2021, 21, 9890–9899. [Google Scholar] [CrossRef]
- Mitchem, S. Mapping of Metallic Conductors by Applying Radar Imaging Techniques to Spread Spectrum Time Domain Reflectometry Returns. U.S. Patent US10365315B2, 30 July 2019. Available online: https://patents.google.com/patent/US10365315B2 (accessed on 22 March 2021).
- Abboud, L. Time Reversal Techniques Applied to Wire Fault Detection and Location in Wire Networks. Supélec. 2012. Available online: https://tel.archives-ouvertes.fr/tel-00771964/file/Abboud_Layane_VF.pdf (accessed on 9 April 2021).
- Kafal, M. Imaging Techniques for Soft Fault Detection and Location in Wiring Networks; Université Paris-Saclay: Gif-sur-Yvette, France, 2016. [Google Scholar]
- Prada, C.; Fink, M. Eigenmodes of the time reversal operator: A solution to selective focusing in multiple-target media. Wave Motion 1994, 20, 151–163. [Google Scholar] [CrossRef]
- Kafal, M.; Cozza, A.; Pichon, L. Locating Faults with High Resolution Using Single-Frequency TR-MUSIC Processing. IEEE Trans. Instrum. Meas. 2016, 65, 2342–2348. [Google Scholar] [CrossRef]
- Abboud, L.; Cozza, A.; Pichon, L. A Matched-Pulse Approach for Soft-Fault Detection in Complex Wire Networks. IEEE Trans. Instrum. Meas. 2012, 61, 1719–1732. [Google Scholar] [CrossRef] [Green Version]
- Shi, Q.; Kanoun, O. A New Algorithm for Wire Fault Location Using Time-Domain Reflectometry. IEEE Sens. J. 2013, 14, 1171–1178. [Google Scholar] [CrossRef]
- Waddoups, B.; Furse, C.M.; Schmidt, M. Analysis of reflectometry for detection of chafed aircraft wiring insulation. In Proceedings of the 5th Joint FAA/DoD/NASA Aging Aircraft Conference, Orlando Kissimmee, FL, USA, 10–13 September 2001. [Google Scholar]
- Jani, A.B. Location of Small Frays Using Time Domain Reflectometry; Utah State University: Logan, UY, USA, 2003; Available online: http://search.proquest.com/pqdtglobal/docview/305299136/abstract/8EDD37B991494049PQ/1 (accessed on 4 December 2019).
- Zhang, Q.; Sorine, M.; Admane, M. Inverse Scattering for Soft Fault Diagnosis in Electric Transmission Lines. IEEE Trans. Antennas Propag. 2010, 59, 141–148. [Google Scholar] [CrossRef] [Green Version]
- Franchet, M.; Ravot, N.; Picon, O. Soft fault detection in cables using the cluster time-frequency domain reflectometry. IEEE Electromagn. Compat. Mag. 2013, 2, 54–69. [Google Scholar] [CrossRef]
- Shi, Q.; Kanoun, O. Application of iterative deconvolution for wire fault location via reflectometry. In Proceedings of the 2012 International Symposium on Instrumentation Measurement, Sensor Network and Automation (IMSNA), Hainan, China, 25–28 August 2012; Volume 1, pp. 102–106. [Google Scholar] [CrossRef]
- Auzanneau, F. Natural Amplification of Soft Defects Signatures in Cables Using Binary Time Domain Reflectometry. IEEE Sens. J. 2019, 21, 937–944. [Google Scholar] [CrossRef]
- Smail, M.K.; Pichon, L.; Olivas, M.; Auzanneau, F.; Lambert, M. Detection of Defects in Wiring Networks Using Time Domain Reflectometry. IEEE Trans. Magn. 2010, 46, 2998–3001. [Google Scholar] [CrossRef] [Green Version]
- Smail, M.K.; Hacib, T.; Pichon, L.; Loete, F. Detection and Location of Defects in Wiring Networks Using Time-Domain Reflectometry and Neural Networks. IEEE Trans. Magn. 2011, 47, 1502–1505. [Google Scholar] [CrossRef]
- Smail, M.K.; Pichon, L.; Olivas, M.; Auzanneau, F.; Lambert, M. Reconstruction of faulty wiring networks using reflectometry response and genetic algorithms. Int. J. Appl. Electromagn. Mech. 2011, 35, 39–55. [Google Scholar] [CrossRef]
- Smail, M.; Bouchekara, H.R.E.-H.; Pichon, L.; Boudjefdjouf, H.; Mehasni, R. Diagnosis of wiring networks using Particle Swarm Optimization and Genetic Algorithms. Comput. Electr. Eng. 2014, 40, 2236–2245. [Google Scholar] [CrossRef]
- Boudjefdjouf, H.; Mehasni, R.; Orlandi, A.; Bouchekara, H.R.E.-H.; DE Paulis, F.; Smail, M.K. Diagnosis of Multiple Wiring Faults Using Time-Domain Reflectometry and Teaching–Learning-Based Optimization. Electromagnetics 2014, 35, 10–24. [Google Scholar] [CrossRef]
- Boudjefdjouf, H.; Bouchekara, H.R.; de Paulis, F.; Smail, M.K.; Orlandi, A.; Mehasni, R. Wire Fault Diagnosis Based on Time-Domain Reflectometry and Backtracking Search Optimization Algorithm. Appl. Comput. Electromagn. Soc. J. 2016, 31, 15143416. [Google Scholar]
- Ahamed, S.S.; Dangeti, S.R.; Pesala, N.R.; Peddaiah, T.; Vedicherla, S.R.; Subramanyam, V.; Liu, Z. Methods for Detecting a Hidden Peak in Wire Fault Location Applications—Improving the Distance Range Resolution. U.S. Patent US8324906B2, 4 December 2012. Available online: https://patents.google.com/patent/US8324906B2/en?oq=US8324906B2 (accessed on 11 May 2021).
- Lo, C.; Nagoti, K.; Mahoney, A.W.; Chung, Y.; Furse, C. Detection and Mapping of Branched Wiring Networks from Reflectometry Responses. In Proceedings of the Joint FAA/DoD/NASA Conference on Aging Aircraft, Palm Springs, CA, USA, 31 January–3 February 2005. [Google Scholar]
- Lo, C. Wire Network Mapping Method and Apparatus Using Impulse Responses. U.S. Patent US7282922B2, 16 October 2007. Available online: https://patents.google.com/patent/US7282922B2 (accessed on 22 May 2021).
- Lundquist, E.J.; Nagel, J.R.; Wu, S.; Jones, B.; Furse, C. Advanced Forward Methods for Complex Wire Fault Modeling. IEEE Sens. J. 2012, 13, 1172–1179. [Google Scholar] [CrossRef]
- Harley, J.; Saleh, M.U.; Kingston, S.; Scarpulla, M.A.; Furse, C. Fast transient simulations for multi-segment transmission lines with a graphical model. Prog. Electromagn. Res. 2019, 165, 67–82. [Google Scholar] [CrossRef] [Green Version]
- Saleh, M.U.; LaCombe, J.; Jayakumar, N.K.T.; Kingston, S.; Harley, J.; Furse, C.; Scarpulla, M. Signal Propagation Through Piecewise Transmission Lines for Interpretation of Reflectometry in Photovoltaic Systems. IEEE J. Photovolt. 2018, 9, 506–512. [Google Scholar] [CrossRef]
- Nagel, J.R.; Ellis, H. Modeling Signals Passing through Asymmetric Faults in Transmission Lines [Source Code]. 2020. Available online: https://doi.org/10.24433/CO.3893697.v1 (accessed on 9 April 2021). [CrossRef]
- Jayakumar, N.K.T.; Benoit, E.; Kingston, S.; Saleh, M.U.; Scarpulla, M.; Harley, J.B.; Furse, C. Post-Processing for Improved Accuracy and Resolution of Spread Spectrum Time Domain Reflectometry (SSTDR). IEEE Sens. Lett. 2019, 2, 1–4. [Google Scholar] [CrossRef]
- Han, J.J.; Park, S.R.; Noh, S. Improvement of detection performance in STDR/SSTDR using sign detector. Electron. Lett. 2015, 51, 1281–1282. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kingston, S.; Benoit, E.; Edun, A.S.; Elyasichamazkoti, F.; E. Sweeney, D.; Harley, J.B.; Kuhn, P.K.; Furse, C.M. A SSTDR Methodology, Implementations, and Challenges. Sensors 2021, 21, 5268. https://doi.org/10.3390/s21165268
Kingston S, Benoit E, Edun AS, Elyasichamazkoti F, E. Sweeney D, Harley JB, Kuhn PK, Furse CM. A SSTDR Methodology, Implementations, and Challenges. Sensors. 2021; 21(16):5268. https://doi.org/10.3390/s21165268
Chicago/Turabian StyleKingston, Samuel, Evan Benoit, Ayobami S. Edun, Farhad Elyasichamazkoti, Dawn E. Sweeney, Joel B. Harley, Paul K. Kuhn, and Cynthia M. Furse. 2021. "A SSTDR Methodology, Implementations, and Challenges" Sensors 21, no. 16: 5268. https://doi.org/10.3390/s21165268
APA StyleKingston, S., Benoit, E., Edun, A. S., Elyasichamazkoti, F., E. Sweeney, D., Harley, J. B., Kuhn, P. K., & Furse, C. M. (2021). A SSTDR Methodology, Implementations, and Challenges. Sensors, 21(16), 5268. https://doi.org/10.3390/s21165268