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Abstract: We propose a novel fault-diagnosis approach for rolling bearings by integrating variational
mode decomposition (VMD), refined composite multiscale dispersion entropy (RCMDE), and support
vector machine (SVM) optimized by a sparrow search algorithm (SSA). Firstly, VMD was selected
from various signal decomposition methods to decompose the original signal. Then, the signal
features were extracted by RCMDE as the input of the diagnosis model. Compared with multiscale
sample entropy (MSE) and multiscale dispersion entropy (MDE), RCMDE proved to be superior.
Afterwards, SSA was used to search the optimal parameters of SVM to identify different faults.
Finally, the proposed coordinated VMD–RCMDE–SSA–SVM approach was verified and evaluated
by the experimental data collected by the wind turbine drivetrain diagnostics simulator (WTDS). The
results of the experiments demonstrate that the proposed approach not only identifies bearing fault
types quickly and effectively but also achieves better performance than other comparative methods.

Keywords: fault diagnosis; variational mode decomposition (VMD); refined composite multiscale
dispersion entropy (RCMDE); sparrow search algorithm (SSA); support vector machine (SVM)

1. Introduction

Rolling bearings are widely used in transmissions, generators, machine tools, and
other high-speed rotating machinery. Once the bearing fails, the performance of the
rotating mechanism will be affected [1]. The operational environment of the bearing is
complex, and various types of faults can easily appear in the long-term work, causing
potential danger to the mechanical operations [2]. However, in the field of bearing fault
diagnosis, many similar algorithms have the disadvantages of low classification accuracy
and long calculation time. These shortcomings lead to the poor effect of fault diagnosis
in practical application. How to identify fault types quickly and effectively has become
an important topic. Therefore, this paper proposes a new bearing-fault diagnosis method,
which integrates several algorithms to help quickly detect bearing faults and reduce losses.
This paper obtains fault information from the vibrational signals of rolling bearings [3,4]:
feature extraction and fault classification.

Feature extraction is a way to show the representative fault information in the form
of a feature vector. Only by selecting effective feature extraction methods and improving
the quality of feature set can a good fault-classification effect be achieved [5]. Selecting
an effective feature-extraction method can improve the quality of feature set and achieve
a good fault classification effect. Bearings have operated in complex working conditions
for a long time, and the fault features in the original vibration signal collected are often
submerged by noise and redundant signals, which cause great interference relative to fault
diagnosis. Meanwhile, the fault-vibration signals of rolling bearings have nonstationary
and nonlinear characteristics [6]. To solve these problems, many scholars have developed
many solutions. Li [7] applies modified ensemble empirical mode decomposition (MEEMD)
to feature extraction. Although MEEMD reduces the influence of noise in ensemble em-
pirical mode decomposition (EEMD), it needs further processing to reduce the number of
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pseudo components. Smith [8] proposed another adaptive signal decomposition method
called local mean decomposition (LMD). However, it has the problems of large amounts of
iterative calculations and endpoint effects [9]. The variational mode decomposition (VMD)
method proposed by Dragomiretskiy [10] not only deals with nonlinear and nonstationary
signals effectively, but also suppresses modal aliasing and endpoint effects effectively, and
the performance of signal decomposition is better. Therefore, this work selected VMD to
process the original vibration signal.

The vibration-signal data obtained by VMD decomposition needs further processing
to extract effective fault-feature information. A series of feature-extraction methods based
on entropy are widely used in the field of fault diagnosis, such as sample entropy (SE) [11],
permutation entropy (PE) [12], and fuzzy entropy (FE) [13]. However, the above meth-
ods are based on single-scale analysis of time series and cannot reflect complex features.
Therefore, scholars have proposed the corresponding multiscale analysis method. Azami
et al. [14] proposed enhanced multiscale permutation entropy (EMPE) to compensate for
the deficiencies of MPE in the coarsening process. Zheng et al. [15] successfully applied
multiscale sample entropy (MSE) to rolling-bearing-fault diagnosis, but MSE has high
time cost and is easily affected by mutation signals. To overcome the defects of the above
methods, M. Rostaghi et al. [16] proposed the dispersion entropy (DE) method. Through
experimental comparison, DE has faster operational speed and higher stability. Based
on this, Azami et al. [17] proposed the refined composite multiscale dispersion entropy
(RCMDE) method. Compared with MSE and other methods, it was found that MDE and
RCMDE had faster calculation speeds and better stability than MDE for noisy signals.
Therefore, RCMDE was selected as the bearing-fault feature-extraction scheme.

After obtaining the fault feature vectors, to improve the classification accuracy and
calculation speed, in this work we selected a support vector machine (SVM) as the classifier.
The key step of the SVM algorithm is to determine the optimal values of penalty factor c
and kernel parameter σ. The swarm-intelligence optimization algorithm achieves a global
optimization effect by simulating the behavior of social animals. Zhang et al. [18] used
particle swarm optimization (PSO) to optimize the parameters of SVM, which improved
the fault-recognition rate. Compared with PSO, the Beetle Antennae search algorithm (BAS)
used in reference [19] shows faster calculation speed and does not fall easily into the local
optimal solution. The results show that the fault-recognition accuracy of the salp swarm
optimization support vector machine (SSO-SVM) in reference [20] reaches 100%, which is
superior to PSO and the grey wolf optimizer (GWO). Inspired by the group behavior of
sparrows, Xue et al. [21] proposed the SSA, which has strong optimization ability and fast
convergence speed. In this paper, SSA was selected for parameter optimization of SVM.

In summary, the main contributions of this paper are as follows. First, a fault feature-
extraction method based on VMD and RCMDE is proposed to construct feature vectors
for training and testing. Second, the SSA is applied to optimize the SVM, and the rolling-
bearing-fault classifier is constructed. Last, this paper proposes a rolling-bearing-fault
diagnosis model based on VMD, RCMDE, and SSA-optimized SVM. Experimental re-
sults show that the fault-diagnosis accuracy of the proposed method is 100%, and the
classification efficiency is better than that of other similar methods. At the same time,
the introduction of SSA in this paper will help other scholars better to understand the
swarm-intelligence algorithm.

2. Methodology
2.1. Variational Mode Decomposition

This work selects VMD to process the original vibration signal. The center frequency
and bandwidth of each component are determined by iteratively searching the optimal
solution of the variational model, so as to realize the frequency domain division of the
signal and the effective separation of each component. The calculation processes of VMD
are as follows.
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By introducing the quadratic penalty factor c and Lagrange multiplication operator,
the constrained variational problem is transformed into an unconstrained variational
problem. The extended Lagrangian expression is as follows:

L({uk}, {ωk}, λ) =

α∑
k

∥∥∥∥∂t

(
δ(t) + j

πt

)
uk(t)e−jwkt

∥∥∥∥2

2
+

∥∥∥∥ f (t)−∑
k

uk(t)
∥∥∥∥2

2
+

〈
λ(t), f (t)−∑

k
uk(t)

〉 (1)

It uses ADMM to calculate the best solution to the augmented Lagrangian function
and uses VMD to calculate the original signal into k narrow-band intrinsic mode function
components [5]. The VMD algorithm steps:

(1) Initialization parameters
{

u1
k
}

,
{

ω1
k
}

, θ̂1, and n, n = 0;
(2) n = n + 1, start the cycle;
(3) Update the spectrum of each mode according to the following formula:

ûn+1
k (ω) =

f̂ (ω)−∑
k

ûk(ω) + θ̂(ω)
2

1 + 2C(ω−ωk)
2 , (2)

(4) Update the center frequency:

ωn+1
k =

∫ ∞
0 ω|ûk(ω)|2dω∫ ∞

0 |ûk(ω)|2dω
, (3)

(5) Update the Lagrange multiplier as follows:

θ̂n+1(ω)← θ̂n(ω)← τ

[
f̂ (ω)−∑

k
ûn+1

k (ω)

]
, (4)

where the parameter τ is used to update the Lagrange multiplier.
(6) For the given discrimination accuracy, repeat steps (2)–(5) and e > 0 until the iterative

condition is satisfied:

∑
k

∥∥∥ûn+1
k − ûn

k

∥∥∥2

2

‖ûn
k ‖

2
2

< e, (5)

2.2. Refined Composite Multiscale Dispersion Entropy

The vibration-signal data obtained by VMD decomposition needs further processing
to extract effective fault-feature information. In this work, RCMDE was selected to extract
feature vectors. Then, the obtained feature vectors were used as samples for training and
testing. The solution processes of RCMDE are as follows.

Dispersion entropy (DE) is a nonlinear dynamic method used to characterize the
complexity and degree of irregularity of time series. Its calculation method is detailed in
reference [22]. Similar to the MDE, RCMDE also scales the raw data, but the difference is
that MDE divides data isometrically and then averages them, while RCMDE refines them
on the basis of MDE. First, the raw data is divided into segments with τ length from (1,
τ)—several different initial points. The average value of each segment is calculated, and
then these average values are arranged in order as a coarse-grained sequence. A total of
τ coarse-grained sequences were obtained. Then the probability of each coarse-grained
sequence’s distribution pattern is calculated, and the average of the probability is calculated.
Finally, RCMDE is calculated according to Equation (7) [23]. RCMDE not only reduces the
loss of information in the coarse-grained process of the MDE algorithm but also effectively
solves the influence of the initial point position on the signal-processing results.
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According to the analysis of reference [16], this paper sets the RCMDE parameters
as: embedding dimension m = 3, the number of classes c = 6, and time delay d = 1. The
appropriate scale was selected according to the needs of the experimental analysis.

The RCMDE algorithm steps:
For the raw data, the kth coarse-grained sequence x(τ)k =

{
x(τ)k,1 , x(τ)k,2 , . . .

}
is given by

the following formula: 
x(τ)k,j = 1

τ

k+jτ−1
∑

b=k+τ(j−1)
ub

j = 1, 2, . . . , L/τ
k = 1, 2, . . . , τ,

(6)

For each scale τ, the RCMDE entropy is defined as follows:
E(RCMDE)(X, m, c, d, τ) =

−
cm

∑
π=1

P(πv0v1 ...vm−1) ln(P(πv0v1 ...vm−1))

P(πv0v1 ...vm−1) =
1
τ

τ

∑
k=1

Pk
(t)

, (7)

where P(πv0v1 ...vm−1) is the average probability of the distribution pattern of the coarse-
grained sequence.

2.3. Sparrow Search Algorithm

As a kind of swarm-intelligence optimization algorithm, SSA has strong optimization
ability and fast convergence speed. SSA simulates the sparrow’s foraging process. As a
social animal, sparrows have an efficient division of labor within the population. Some
sparrows, as discoverers, are responsible for discovering food-rich areas and providing
guidance for other sparrows. Another grouping is the participants, who are sent a signal
by the discoverer to find food and bring it home. The poorer the fitness of each sparrow,
the hungrier the sparrows are, and the more they need to go to other places for food. The
initial position of the watchman is randomly generated in the population. They can warn
of the dangers and decide whether the population wants to give up food. Among them,
discoverers and participants can exchange identities. When a participant finds a better
source of food, it can change from a participant to a discoverer. However, the proportion of
sparrows of each status in the population remains unchanged. At the same time, to respond
to the danger in time, the population will randomly select an appropriate proportion of
sparrows as watchmen to monitor and remind the population to adjust the search strategy
and quickly move closer to the safe area [24]. The optimal parameters of SSA are penalty
parameter c and kernel function parameter σ in SVM. The fitness function is the prediction
accuracy of SVM.

The sparrows’ positions are represented by the following matrix:

X =


x1,1 x1,2 . . . x1,d
x2,1 x2,2 . . . x2,d
. . . . . . . . . . . .
xn,1 xn,2 . . . xn,d

, (8)

where n is the sparrow number and d is the dimension of the variable to be optimized. The
fitness values of sparrows are represented by the following vectors:

FX =


f (
[

x1,1 x1,2 . . . x1,d
]
)

f (
[

x2,1 x2,2 . . . x2,d
]
)

. . .
f (
[

xn,1 xn,2 . . . xn,d
]
)

, (9)
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The discoverer updates the location as follows:

xt+1
ij =

 xt
ij· exp( −i

α·itermax
), R2 < ST

xt
ij + QL, R2 ≥ ST

, (10)

where itermax is the maximum number of iterations; α is a uniform random number between
(0,1]; Q is a random number that obeys the standard normal distribution; L is a matrix
of 1 × d whose elements are all 1; R2 and ST represent the alarm value and the safety
threshold, respectively.

The position update formula for the participant is described as follows:

xt+1
ij =

 Q· exp(
xt

wj−xt
ij

i2 ), i > NP/2

xt+1
pj +

∣∣∣xt
ij − xt+1

pj

∣∣∣, A+L, otherwise
, (11)

where xt
pj is the best location of the discoverer at iteration t + 1; xt

wj denotes the current
global worst location at iteration t; NP is the population size; and A represents a matrix of
1×d for which each element inside is randomly assigned 1 or −1, and A+ = AT(AAT)

−1.
The watchman updates the position as follows:

xt+1
ij =


xt

ij + β
∣∣∣xt

ij − xt
bj

∣∣∣, fi 6= fg

xt
pj + K

∣∣∣xt
ij−xt

wj

∣∣∣
( fi− fw)+ε

, fi = fg

, (12)

where xt
bj is the global optimal position in the tth iteration; β, as the step-size control

parameter, is a normal distribution of random numbers with a mean value of 0 and a
variance of 1; K∈[−1, 1] is a random number; fi is the fitness value of the present sparrow;
fg and fw are the current global best and worst fitness values, respectively.

The specific steps of the SSA are as follows:

(1) Initialize the sparrow population. Define the algorithm parameters and maximum
number of iterations.

(2) The fitness values of the initial population are calculated and sorted.
(3) Use formulas (5)–(7) to update the locations of discoverers, participants, and watchmen.
(4) Obtain the current optimal value, if the iteration effect is better, then update. Then

repeat steps 2 to 6 until the maximum number of iterations is reached.
(5) The global optimal value and optimal fitness value are outputted.

3. Proposed Approach

Based on the above research, we propose a novel fault-diagnosis approach for rolling
bearings by integrating VMD, RCMDE, and SVM optimized by SSA. The technical roadmap
of fault classification is shown in Figure 1. The fault-classification sequence is as follows.

(1) The k parameter of VMD is selected, and then the original vibration signal is decom-
posed into k intrinsic mode functions (IMFs) by VMD.

(2) The best IMF component is selected.
(3) The best IMF components are grouped and the RCMDE values of each group are calcu-

lated. The appropriate scale feature vectors are selected to represent the fault features.
(4) The sparrow search algorithm is used to optimize the penalty factor c and kernel

parameters σ of SVM.
(5) The extracted fault feature vectors are inputted into the classifier for training.
(6) The test set is inputted into the trained classifier for fault classification to verify the

effectiveness of the proposed method.
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4. Experiment and Discussion
4.1. Experimental Data

The experimental data of this study consists of two parts. One part is from the bearing
database of Case Western Reserve University [25], which was used to select the parameters



Sensors 2021, 21, 5297 7 of 17

of the algorithm and establish the diagnosis model. The other part of the experimental data
was collected from the WTDS in the laboratory to verify the effectiveness of the algorithm.

For the bearing database of Case Western Reserve University, the driving-end fault
data of the 6205-2RSJEMSKF deep-groove ball bearing is selected, where the fault diameters
are 0.007 inch and 0.014 inch, respectively; the motor speed is 1750 rpm; the sampling
frequency is 12 kHz; and the sampling time is 8 s. The vibration data of bearings under
seven working conditions were collected, including one healthy bearing and six fault
bearings. The fault types include inner race fault, outer race fault, and ball fault. Forty-
eight groups of data were collected in each state, and each group contained 2000 sampling
points. The detailed parameters of the bearing are shown in Table 1. The original vibration
signal of the first 3 s is shown in Figure 2. For these seven kinds of fault data, we give them
different classification labels according to different properties of bearings: NR, IR7, IR14,
B7, B14, OR7, OR14.

Table 1. Details of the experimental data.

Fault Type Image Classification
Label

Fault Size
(Inches)

Training
Sample Number

Testing
Sample Number

Normal
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4.2. Signal Decomposition by VMD

The main parameters of VMD are the decomposition number K and penalty factor α.
If the K value is too small, there will be mode aliasing or mode loss. If the K value is too
large, there will be over decomposition. Taking the inner ring fault with a fault size of 0.014
inch as an example, the penalty factor is set to 2000, and the optimal K value is obtained
by the center frequency observation method [26]. Figure 3 shows the center frequency
curves when K is equal to 3, 4, 5, and 6, respectively, in the VMD iteration process. It can
be seen from Figure 3 that when K = 5 or 6, the two curves move closer, which means
mode aliasing. When K = 4, the center frequency curves of each modal component do not
affect each other. Meanwhile, combined with the inner ring fault time domain diagram
and frequency domain diagram given in Figure 4, there is no modal aliasing phenomenon,
so K = 4 was selected in this paper.
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large, there will be over decomposition. Taking the inner ring fault with a fault size of 
0.014 inch as an example, the penalty factor is set to 2000, and the optimal K value is ob-
tained by the center frequency observation method [26]. Figure 3 shows the center fre-
quency curves when K is equal to 3, 4, 5, and 6, respectively, in the VMD iteration process. 
It can be seen from Figure 3 that when K = 5 or 6, the two curves move closer, which means 
mode aliasing. When K = 4, the center frequency curves of each modal component do not 
affect each other. Meanwhile, combined with the inner ring fault time domain diagram 
and frequency domain diagram given in Figure 4, there is no modal aliasing phenomenon, 
so K = 4 was selected in this paper. 

Figure 2. Original vibration signal.
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Figure 4. K = 4 result of VMD of IR.

Lower entropy values lead to lower dispersion degrees of the data. The modal compo-
nent with a minimum entropy value in each fault state signal is selected for subsequent
research. The entropy values of modal components of each fault type are shown in Table 2.
The minimum modal components of each fault type are selected and highlighted in bold.
The data of seven fault types are selected respectively: IMF3, IMF4, IMF4, IMF4, IMF4,
IMF3, and IMF4.

Table 2. The entropy of IMF1–IMF4.

Classification Label IMF1 IMF2 IMF3 IMF4

NR 3.9651 3.1130 2.0256 2.1682
IR7 3.8240 2.7877 2.2784 2.1812
IR14 4.3341 2.7363 2.2760 2.2113
B7 4.2778 3.1388 2.2618 2.1427

B14 4.2357 2.7653 2.2930 2.1689
OR7 3.9152 2.1466 2.1199 2.1342
OR14 4.1615 3.2886 2.1772 2.1546

4.3. Feature Extraction by RCMDE

MSE, MDE, and RCMDE were used to extract the features of the best modal compo-
nents selected in the previous section and then compared, as shown in Figure 5. Compared
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with Figure 5a,b, the MDE method is more discriminative than the MSE method, so it
was chosen for feature extraction. Further comparison shows that the three methods can
identify whether the bearing is faulty. However, when MDE and MSE are used for feature
extraction, the extracted fault signals overlap and crisscross each other, so it is difficult to
distinguish between fault types. When RCMDE is used for feature extraction, the entropy
distribution curve has better discrimination, so the extraction effects are enhanced. How-
ever, RCMDE can only distinguish two fault types, so it is necessary to use a classifier to
classify the data.

Sensors 2021, 21, x FOR PEER REVIEW 11 of 19 
 

 

bold. The data of seven fault types are selected respectively: IMF3, IMF4, IMF4, IMF4, 

IMF4, IMF3, and IMF4. 

Table 2. The entropy of IMF1–IMF4. 

Classification Label IMF1 IMF2 IMF3 IMF4 

NR 3.9651 3.1130 2.0256 2.1682 

IR7 3.8240 2.7877 2.2784 2.1812 

IR14 4.3341 2.7363 2.2760 2.2113 

B7 4.2778 3.1388 2.2618 2.1427 

B14 4.2357 2.7653 2.2930 2.1689 

OR7 3.9152 2.1466 2.1199 2.1342 

OR14 4.1615 3.2886 2.1772 2.1546 

4.3. Feature Extraction by RCMDE 

MSE, MDE, and RCMDE were used to extract the features of the best modal compo-

nents selected in the previous section and then compared, as shown in Figure 5. Com-

pared with Figure 5a, b, the MDE method is more discriminative than the MSE method, 

so it was chosen for feature extraction. Further comparison shows that the three methods 

can identify whether the bearing is faulty. However, when MDE and MSE are used for 

feature extraction, the extracted fault signals overlap and crisscross each other, so it is 

difficult to distinguish between fault types. When RCMDE is used for feature extraction, 

the entropy distribution curve has better discrimination, so the extraction effects are en-

hanced. However, RCMDE can only distinguish two fault types, so it is necessary to use 

a classifier to classify the data. 

Fault
Normal

 

Fault

Normal

 

(a) (b) 

Sensors 2021, 21, x FOR PEER REVIEW 12 of 19 
 

 

Fault

Normal

 

 

(c)  

Figure 5. Entropy distribution of all samples (scale = 15): (a) MSE; (b) MDE; (c) RCMDE. 

To further verify the superiority of RCMDE in feature extraction, the first five scale-

feature vectors extracted by MSE, MDE, and RCMDE were inputted into the SVM classi-

fier for classification. The classification accuracy and calculation time were recorded. To 

reduce the experimental error, the average values of 10 experiments were taken, and the 

results are shown in Table 3. It can be seen from the table that the feature-extraction effect 

of RCMDE is the best. Its classification accuracy is 99.92%. Combined with the confusion 

matrix of different feature extraction methods in Figure 6, it further verifies that RCMDE 

achieves good results. When processing noisy signals, the composite multiscale entropy 

can improve the stability of entropy results [27]. Under actual working conditions, the 

bearing is affected by the factors such as fitting accuracy, component damage, and impu-

rity pollution, so noise and vibration often exist at the same time. Therefore, RCMDE is 

selected to extract fault features. As shown in Figure 7, the feature vectors of the first three 

scales extracted by RCMDE were taken to generate a 3D projection, and it was found that 

the fault types were well-differentiated. 

  
(a) (b) 

Figure 5. Entropy distribution of all samples (scale = 15): (a) MSE; (b) MDE; (c) RCMDE.

To further verify the superiority of RCMDE in feature extraction, the first five scale-
feature vectors extracted by MSE, MDE, and RCMDE were inputted into the SVM classifier
for classification. The classification accuracy and calculation time were recorded. To reduce
the experimental error, the average values of 10 experiments were taken, and the results
are shown in Table 3. It can be seen from the table that the feature-extraction effect of
RCMDE is the best. Its classification accuracy is 99.92%. Combined with the confusion
matrix of different feature extraction methods in Figure 6, it further verifies that RCMDE
achieves good results. When processing noisy signals, the composite multiscale entropy
can improve the stability of entropy results [27]. Under actual working conditions, the
bearing is affected by the factors such as fitting accuracy, component damage, and impurity
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pollution, so noise and vibration often exist at the same time. Therefore, RCMDE is selected
to extract fault features. As shown in Figure 7, the feature vectors of the first three scales
extracted by RCMDE were taken to generate a 3D projection, and it was found that the
fault types were well-differentiated.

Table 3. Classification results of various entropies.

Entropy Method Classification Algorithm Accuracy (%) CPU Time of Classification (s)

MSE SVM 98.57 74.51
MDE SVM 99.05 74.11

RCMDE SVM 99.92 75.27
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4.4. Parameter Setting of SSA

The parameters of SSA are set in Table 4. After SSA optimization, the penalty parame-
ter c of SVM is 7.3559, and the kernel function parameter σ is 1.2238.

Table 4. Parameters of SSA.

Population
Size

Maximum Number
of Iterations

Proportion of
Discoverers

Proportion of
Watchmen

Security
Threshold

Search Range
of Parameter c

Search Range
of Parameter σ

10 20 70% 20% 0.6 [1100] [1100]

4.5. Results and Discussion in CWRU Bearing Dataset

To verify the effectiveness of the proposed fault-classification model, the first five
scales of RCMDE were selected as feature vectors and inputted into ELM, SVM, and SSA-
SVM. The classification accuracy and CPU times were recorded. Among them, there were
48 samples in each state, a total of 336 samples. Each group of samples randomly selected
30 samples as the training set, and the remaining 18 samples were utilized as the test set.
The kernel function of SVM is the radial basis function [28].

The classification results of various models are shown in Table 5. To reduce the
influence of randomness, the experiments were repeated 10 times. The results show
that the classification accuracy of the proposed method is 100%. Moreover, after SSA
optimization, the CPU times of SVM were significantly reduced. As shown in Figure 8, the
proposed method can distinguish between seven types of bearing faults.

Table 5. Classification results of different methods.

Different Methods
Accuracy (%)

Standard Deviation
CPU Time of

Classification (s)Max Min Mean

VMD+MDE+SVM 99.21 98.41 99.05 0.25 74.11
VMD+RCMDE+SVM 100 99.76 99.92 0.09 75.27
VMD+RCMDE+ELM 99.21 96.83 98.41 0.87 1.11
The proposed method 100 100 100 0 3.78
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5. Experimental Verification
5.1. Bearing Vibration Experiment of WTDS

To verify the universality of this bearing-fault-classification model, the vibration
experiment on the rolling bearings was carried out using the WTDS. The acceleration
sensor was installed on the bearing seat to collect the acceleration data in the radial and
vertical direction. The structure of the WTDS is shown in Figure 9. The acceleration sensor
model is PCB 333b40, and its relevant parameters are shown in Table 6.
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transducer and encoder; 3—parallel shaft gearbox; 4—planetary gearbox; 5—programmable magnetic
brake; 6—radial bearing loader.
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Table 6. Sensor parameters.

Sensor Model Sensitivity Frequency Range Temperature Range Weight

PCB 333B40 500 mV/g 0.5 Hz~3 kHz −18~+66 ◦C 7.5 g

In this experiment, the deep-groove ball bearing of parallel shaft gearbox is selected
as the test object. The load current is 0.8 A, the motor speed is 1500 rpm, the sampling
frequency is 20,480 Hz, and the sampling time is 5 s. The vibration data of bearings under
five working conditions were collected, including one healthy bearing and four faulty
bearings. The fault types include inner race fault, outer race fault, ball fault, and mixed fault.
Fifty groups of data were collected in each state, and each group contained 2048 sampling
points. Then the 250 sets of data are divided into training sets and test sets. Each group of
samples randomly selected 30 samples as the training set, and the remaining 20 samples
were utilized as the test set. In total, the training set contained 150 groups of data, and the
test set contained 100 groups of data. The original vibration signal of the first 1 s is shown
in Figure 10. For these five kinds of fault data, we gave them different classification labels
according to different properties of bearings: NOR, IF, BF, OF, MF.
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5.2. Results and Discussion in Bearing Vibration Experiment of WTDS

The method proposed in this paper was used to classify the data collected by the
WTDS. To reduce the influence of randomness, the experiments were repeated 10 times.
The results are shown in Table 7 and Figure 11. The effect of fault classification is better
than that achieved by other methods, which shows that the proposed method is universal
and effective. We noticed that the performance of the classification model will drop with a
change in working conditions [29]. The working conditions of the laboratory are different
from those of CWRU, and the accuracy of the classification model cannot reach 100%.
However, the proposed method still achieves good classification accuracy and is superior
to other methods.
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Table 7. Classification results of the data collected by the WTDS.

Different Methods
Accuracy (%)

Standard Deviation CPU Time (s)
Max Min Mean

VMD+MDE+SVM 83.0 74.0 78.8 3.75 53.5
VMD+RCMDE+SVM 92.0 88.0 89.9 1.40 54.8
VMD+RCMDE+ELM 93.0 88.0 89.7 1.42 2.2
The proposed method 96.0 94.0 95.0 0.77 3.7
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6. Conclusions

To identify different fault states of rolling bearing accurately and efficiently, a novel
fault-classification model for rolling bearing was proposed by integrating VMD, RCMDE,
and SSA-optimized SVM. Experimental analysis shows that the method has excellent
performance. The main results and innovation of this paper are as follows:

(1) A new method of rolling-bearing-fault diagnosis was proposed. SSA was innovatively
applied to optimize the parameters of SVM. Through experimental analysis and
comparison, it was proven that this method not only identifies bearing-fault types
quickly and effectively, but also has better performance than other similar methods.

(2) Through experimental analysis, it is proved that the fault feature-extraction method
based on VMD and RCMDE can fully mine the fault information.

(3) The vibration experiment of rolling bearing is carried out using a WTDS to collect
the acceleration signal, which further proves the effectiveness and universal of the
proposed method.

In the future, we will further study entropy theory and apply a similar method to the
fault diagnosis of planetary gear box and other mechanical equipment. At the same time,
we will realize the fault diagnosis method of webpages via programming and combine
that information with the former project, and ultimately realize the integration of signal
acquisition, signal transmission, and fault diagnosis. The proposed method should be
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robust when faced with changes of working conditions or unseen conditions during the
training of the model. In the future research, we will explore a reliable method to improve
the generalization and robustness of the classification model.
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