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Abstract: Over the past few decades, video quality assessment (VQA) has become a valuable
research field. The perception of in-the-wild video quality without reference is mainly challenged by
hybrid distortions with dynamic variations and the movement of the content. In order to address
this barrier, we propose a no-reference video quality assessment (NR-VQA) method that adds the
enhanced awareness of dynamic information to the perception of static objects. Specifically, we
use convolutional networks with different dimensions to extract low-level static-dynamic fusion
features for video clips and subsequently implement alignment, followed by a temporal memory
module consisting of recurrent neural networks branches and fully connected (FC) branches to
construct feature associations in a time series. Meanwhile, in order to simulate human visual habits,
we built a parametric adaptive network structure to obtain the final score. We further validated
the proposed method on four datasets (CVD2014, KoNViD-1k, LIVE-Qualcomm, and LIVE-VQC)
to test the generalization ability. Extensive experiments have demonstrated that the proposed
method not only outperforms other NR-VQA methods in terms of overall performance of mixed
datasets but also achieves competitive performance in individual datasets compared to the existing
state-of-the-art methods.

Keywords: video quality assessment; multidimensional features; convolutional neural network;
recurrent neural networks

1. Introduction

With the recent popularity of smart devices, video-based application services have
become popular, resulting in an increase in the demand for high-quality video. Therefore,
the accurate perception of video quality is of essential importance for video sharing and
streaming platforms. As the foundation of inpainting and enhancement of low-quality
videos, video quality assessment (VQA) methods have become a promising research field
in the past few decades. Quality evaluation methods contain two categories: subjective
ones and objective ones. In general, subjective video quality evaluation by human experts
is considered to be the most accurate method [1]. The scores obtained from subjective
methods are often taken as the ground truth of objective evaluation during the training
process [2]. However, this approach is quite time-consuming and expensive, which renders
it impractical to test a large number of videos transmitted in real-time. By contrast, objective
quality assessment by a computer is cheap and efficient. Objective VQA methods can mimic
the human visual system (HVS), distinguish distortion in the video, and thus reasonably
perceive the quality of the video. Depending on the availability of reference videos, VQA
methods contain three categories: full reference (FR) [3–6], reduced-reference (RR) [7,8], and
no-reference (NR) [9,10]. Since videos without distortions can be used as the evaluation
criterion, in most cases the video scoring results of the FR/RR methods can achieve
satisfactory similarity to the results of human perception. When evaluating the quality
of videos captured in real-time, however, it is difficult to obtain distortion-free videos as
references. Thus the importance of NR-VQA methods can never be overemphasized.
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Among the existing studies, one category of NR-VQA methods perceives artificial
distortions generated in the laboratory, while the other category perceives real distortions.
Current NR-VQA methods for synthetically distorted videos have achieved phenomenal
success. Nevertheless, a significant proportion of videos in real life are obtained by shooting
in the wild. Hence, NR-VQA metrics for authentically distorted videos have become a
matter of concern. Compared to videos with manual distortions, the frames of the in-the-
wild videos contain various types of objects, some of which are beyond the cognitive scope
of existing models. Meanwhile, due to camera movement, abnormal exposure, and being
out of focus, distortions are randomly distributed in the video, causing difficulties during
the feature extraction process. We believe that the NR-VQA method for authentic distortion
currently has two challenges: firstly, the selection of features; and secondly, the formation
of temporal memory.

In recent years, the application of deep learning in video processing tasks (e.g., action
recognition) has gradually attracted attention. Unlike image processing tasks, video
analysis tasks focus not only on the information contained in a single frame but also on
the association among frames in a certain period, which are referred to as spatial and
temporal information, respectively. Spatial features are usually extracted by using 2D
convolutional networks such as AlexNet [11], VGG [12], and ResNet [13], while optical
flow networks [14–17], 3D convolution [18–21], recurrent neural networks [22,23], etc., are
often used to obtain temporal features or associations. These experiences inspire objective
VQA. Since research has proven that image quality assessment results are intrinsically
associated with the awareness of content [24], we can instinctively assume that there is a
correlation between video quality evaluation and motion esthesia.

Based on this intuition, we propose a multi-dimensional hybrid feature network to
process static spatial features and dynamic temporal features for NR-VQA. Specifically,
spatial features are content-related features formed by 2D convolutional networks, and tem-
poral features include motion-related features between adjacent frames (or a clip) formed
by high-dimensional convolutional networks. The characteristics (spatial and temporal)
contain a wealth of underlying information. For the purpose of extracting the information
from a long-term sequence and modeling temporal memory, we employ a structure con-
taining recurrent neural networks, which is called the temporal memory module (TMM)
in this article. In order to better fit the subjective scoring data set, we simulate the time
hysteresis effect in human visual habits by using a self-generated parametric network and
controlling the impact of historical quality for the overall evaluation accordingly. Apart
from these, we use multiple datasets for network training, thereby ensuring that the model
has a better generalization performance.

The main contributions of this paper are as follows: (i) unique multi-dimensional
spatiotemporal feature extraction and integration strategies for objective NR-VQA; (ii) the
design of a time-memory module containing recurrent neural networks for long-term
sequence-dependence modeling; and (iii) adaptive parameter networks to imitate the
impact of historical quality on assessment score predictions.

The remainder of the paper is organized as follows. In Section 2, previous works
on NR-I/VQA are reviewed, while Section 3 contains the introduction of the proposed
approach in detail. Section 4 exhibits the experimental validation of the method and related
techniques on mainstream VQA databases with corresponding analysis. Finally, the paper
is concluded in Section 5 with possible future directions for research in this area.

2. Related Works

In this section, we provide a brief summary of the existing related methods for NR
I/VQA tasks. Similar to the image quality evaluation metrics based on classic meth-
ods [25–29] and deep learning [30–34], most of the VQA methods can be divided into
two steps: feature extraction and (feature-based) quality assessment. In addition, HVS
characteristics, such as the influence of ambient illumination level [35] and temporal hys-
teresis effect [36], are equally important. The difference is that VQA tends to emphasize
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more on spatio-temporal motion information. For instance, discrete cosine transform
(DCT) domain natural scene statistics (NSS), the motion coherency-related algorithm v-
BLIINDS by Saad et al. [37], and features in 3D discrete cosine transform (3D-DCT) domain
based on spatiotemporal natural video statistics (NVS) were also proven to be effective
[38]. Wu et al. [39] proposed an NR-VQA metric to estimate SSIM for single video frame.
For video mean subtracted contrast normalized (MSCN) coefficients and spatiotemporal
Gabor bandpass filtered outputs, [40] established an asymmetric generalized Gaussian
distribution (AGGD) model to perceive distortions. In the meantime, optical flow [4,41],
ST-chip [42], multi-scale trajectory [43], and bitstream level features [44–47] were also used
to quantify distortion in video data. Although many of these methods contribute greatly
to the perception of specific distortions without reference, they are not satisfactory for
evaluating the quality of in-the-wild videos with sophisticated distortion.

The success of CNN networks in object detection, instance segmentation, video un-
derstanding, and other fields has aroused attention in VQA researchers. Specifically, the
presence of perceptual similarity [24,48] showed that quality analysis is intrinsically linked
to object recognition, and thus it will be effective to use existing pre-trained CNN models
for video quality analysis. The authors of [49] provided an efficient deep-learning metric
called DIQM to reduce the computational complexity in mimicking the HVS. For perceiv-
able encoding artifacts (PEAs), [50] proposed a CNN network for identifying different
kinds of distortions. For convolutional neural networks and multi-regression-based eval-
uation (COME), [51] proposed a multi-regression model to imitate human psychological
perception. Concerning the limitation of HDR-VDP 2, [52] developed NoR-VDPNet to
predict global quality with substantially lower computational cost. Wei et al. utilized Se-
mantic Information related two-level network to estimate the image quality [53]. Entropic
differences learned by the CNN network were used to capture distortions in [54]. In order
to enable the model to have the ability of time-series memory, recurrent neural networks
are used in many metrics. For example, Li et al. [55] trained a GRU with CNN features
for NR-VQA in order to obtain a perception of video frame content and distortion. The
combination of 3D-CNN and LSTM was used in [56] for distortion perception. With the
help of transfer learning and temporal pooling, [57] developed a new NR-VQA architecture.
In this paper, we construct a GRU-based structure with jump connections for temporal
memory. On the one hand, this can solve long sequence dependence; on the other hand,
this reduces information loss.

For NR-I/VQA, there are already some databases suitable for training deep learning
networks, such as UPIQ [58], CVD2014 [59], KoNViD-1k [60], LIVE-Qualcomm [61], LIVE-
VQC [62], etc. Network models trained for a specific database often perform poorly in
terms of prediction in other databases due to the differences between individual databases.
In order to help the models in obtaining better generalization performance, researchers
have recently proposed some methods for cross-dataset training. Zhang et al. [63] built a
training set with image pairs in order to avoid subjective quality evaluation for different
datasets. Based on the study of different feature distributions for different datasets, UGC-
VQA [64] considered a selected fusion of BVQA models to reduce the inconsistency in
subjective assessment among datasets. Li et al. [65] divided the evaluation of network pre-
diction scores into three steps: relative quality esthesia, perceptual quality awareness, and
subjective quality generation, followed by a multi-parameter structure for the transitions
between tiers to suit different datasets.

As described in this section, the fusion of multi-dimensional CNN features, which
was proven to be quite effective in video understanding, has rarely been taken into account
in the VQA task. Therefore, exploring appropriate fusion methods and designing reason-
able processing frameworks for them in time series can be considered a promising area
of research.
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3. Proposed Method

In the proposed method, a fusion of multidimensional CNN features is considered.
Such features are very common in video understanding tasks such as action recognition but
are rarely used in VQA tasks. As shown in Figure 1, our network structure can be divided
into three parts: (i) a multidimensional feature fusion module, (ii) a temporal memory
module, and (iii) an adaptive perception score generation module. In the multidimensional
feature fusion module, different network structures and convolutional kernels are utilized
to process the video sequences and, thus, generating rich spatio-temporal features. We
then fuse these features and place them into the temporal memory module. In the temporal
memory module, in order to generate features containing previous temporal memory
information, we use a special recurrent network structure with shortcuts to form evaluation
memories over the entire video sequences. In the score generation module, we use a self-
generated parameter structure for coping with the impact of image frame quality variations
on overall quality perception.
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Figure 1. A visual illustration of our proposed multi-dimensional feature fusion network: feature ex-
traction module, temporal memory module, and adaptive perception score generation module.

3.1. Multidimensional Features Fusion

The purpose of multi-dimensional fusion is to obtain rich features that are subse-
quently propagated to the network for characterizing spatio-temporal information by
using different convolutional kernels/different network structures when processing orig-
inal video clips. The feature maps generated by convolutional networks with different
dimensions are shown in Figure 2. We used ResNet networks [13], R(2+1)D networks,
and R3D networks [21], which have similar structures. In addition to 2D-CNN, we select
two different multi-dimensional features because, on the one hand, their temporal and
spatial meanings are different; on the other hand, it is necessary to prevent spatiotemporal
information imbalance.

In the image/video quality evaluation task, subjective evaluation results are shown
to be correlated with content such as scenes and objects [55]. Advances in deep 2D con-
volutional neural networks in fields such as object recognition suggests that 2D-CNN
can competently mimic the human perception of static content in video sequences. Si-
multaneously, the deep features generated by such networks have been proved to be
distortion-sensitive [66]. Therefore, 2D-CNN backbones for image recognition, such as
ResNet, are regularly used in image/video quality assessment. Typically, these networks
are initially pre-trained on image classification databases such as ImageNet to generate
feature maps related to static content/distortion. Evaluation scores are then obtained by
using the deep feature maps after subsequent processing. In addition, it is fairly common
to generate evaluations by using transfer learning. As for video tasks, in parallel to static
scenes and objects, human perceptual content also consists of temporally manifested mo-
tion. When imitating the human visual system, in addition to focusing on 2D scene/object
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features, a 3D convolutional network can be used to pay attention to the effect of low-level
motion content on the evaluation results.

Original frames

ResNet

R(2+1)D

R3D

Conv1 Conv2_x Conv3_x Conv4_x Conv5_x

Figure 2. Feature maps generated by convolutional networks with different dimensions.

Suppose the video V contains n image frames Ii(i = 1, 2, ..., n), each adjacent t frames
form a clip (generally, t = 3). Then, there are m image clips Clij(j = 1, 2, ..., m), where
m = n/t. Then the features extracted by CNN models of different dimensions can be
denoted as follows(FD denotes 2D-CNN features, FP denotes (2+1)D-CNN features and
FT denotes 3D-CNN features):

FDi = 2DCNN(Ii), (1)

The 2D-CNN convolves individual image frames, while 3D-CNN convolves a clip of
several image frames.

FPj = (2 + 1)DCNN
(
Clij

)
, (2)

FTj = 3DCNN
(
Clij

)
. (3)

After the convolution operation is the Global Average Pooling (GAP) layer, which
transforms the feature maps FD, FP, and FT into feature vectors f d, f p, and f t, thus,
enabling the recurrent neural network to be used for memorization. In order to avoid
excessive information loss from GAP operations on 2D convolutional features, we also
use global standard deviation pooling (GSP) to obtain variation information. Finally, the
outputs of two pooling layers are concatenated as follows.

f pj = GAP
(

FPj
)
, (4)

f tj = GAP
(

Ftj
)
. (5)

f di = GAP(FDi)⊕ GSP(FDi), (6)

The concatenation operation is denoted by ⊕.
For each frame, the network generates a 2D convolutional feature vector; however,

for t frames, there is only one 3D feature vector and one (2+1)D feature vector, which
results in the feature-length difference in time sequence. As shown in Figure 3, in order to
align vectors for the concatenation operation, we consider two kinds of rescaling methods:
shortening the long vector and amplifying the short vector. Shortening methods include
long vector sub-sampling and sum-pooling, while amplification methods include nearest-
neighbors upsampling and global upsampling.
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Figure 3. Feature vector size alignment. (a) Long vector sub-sampling (SS). (b) Long vector
sumpooling (SP). (c) Short vector nearest-neighbors upsampling (NU). (d) Short vector global up-
sampling (GU).

The long vector sub-sampling means selecting only the vector generated in one of the
t image frames as the representative vector for the concatenation operation. In sumpooling,
we sum the t features in a clip to avoid information attenuation caused by subsampling.
The nearest-neighbors upsampling alignment is implemented by replicating t times for
each clip-generated feature, and the global upsampling alignment copies the feature
vector of all clips in a video t times to make the long and short vectors the same length.
In subsequent experiments, we find that long vector sub-sampling loses a large amount
of two-dimensional perceptual information, resulting in poor model performance, while
the global upsampling method performs relatively better. Let the vector length be L; after
aligning the three vectors, we perform a concatenation operation on them to obtain the
features f containing spatio-temporal information.

f = fd ⊕ GU
L=n

( fp)⊕ GU
L=n

( ft). (7)

3.2. Temporal Memory Module

In the above subsection, we use 3D-CNN to model the connection between adjacent
frames. The feature f can be considered as an encoding of low-level motion characteristics.
In order to further develop a long-time series modeling for high-level features, we use
recurrent neural networks (RNN). GRU [23] is one of the typical recurrent neural networks
that use a gating mechanism to control input, memory, and other information to make
predictions based on the current time step. It has the advantage of preserving information
in long-term sequences and will not remove it even if it is not correlated with the prediction
results. In the network, we implement a multi-level cascade of fully connected layers and
recurrent networks. On top of GRU, we add a short path to enhance the learning ability of
the network, the structure of which is depicted in Figure 4. This temporal memory block
(TMB) is composed of a GRU branch and a shortcut branch, representing historical quality
memory and current quality perception, respectively, and thus avoiding an excessive loss of
information. Specifically, we concatenate the GRU hidden state h(s) at the current moment
s with the input information x after dimension reduction and finally feed the result into
the nonlinear activation layer.

In order to enhance the understanding of the time series information, we link several
TMB blocks and then use a fully connected layer to generate a history-related quality score
for each clip. The scores of all clips in a video form a video rating vector qc.
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h(s)

Relu

Linear
+

GRU

Figure 4. Temporal memory block consists of a GRU branch and a linear branch.

3.3. Adaptive Perception Score Generation

By processing all clips in the video, we generate an array of scores associated with
the historical quality impact. In this subsection, we introduce a parameter-adaptive video
score generation strategy. Research has shown that a decrease in video quality compared to
an enhancement results in the scorer being more impressed. This phenomenon is referred
to as the temporal hysteresis effect [36]. It can be inferred that when there are poor quality
clips in the video sequence, the rating perception will drop significantly, while it is not so
sensitive to rising quality. Based on this, we try to generate video quality scores Q using
clip scores qc (see Figure 5). As mentioned in [55], the final evaluation score consists of
two components: memory of the historical worst perceptions Qm and the current rating
status Qc.

Qm = min(qc), (8)

Qc = ∑
m∈qc

mw, (9)

Qm is generated by a Min pooling block, Qc is generated by a Softmin-weighted
average pooling, w is a parameter generated by a differentiable Softmin function. Subjective
frame quality scores can be approximated by linearly combining the Qm and Qc with
parameter α, as follows.

q′c = αQm + (1− α)Qc. (10)

In the human visual system, the memory of history is also affected by the current
status. If the current clip has exceptional performance (relatively good or relatively poor),
the test subjects will be impressed, while if the current frame performance is relatively
mediocre, the test subject will recall the previous scenes more often. Thus, the proportion
of these two components in the final evaluation system should be dynamic. Therefore,
we design an adaptive weight α generation structure using an FC layer and a nonlinear
activation layer.

α = FC(Relu(qc)). (11)

During the training process, the network can learn the weight α on its own with the
help of the score vector qc.

Min

Pooling

Average

Pooling

FC

Relu



Memory
Quality

Current
Quality

+



1 

Average

Pooling

Video
Quality

Clip Quality
Perceptions

Figure 5. Adaptive Perception Score Generation. Parameter α is generated by clip-level quality
perception scores with a fully connected layer and a nonlinear layer.
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3.4. Implementation Details

In this paper, we use ResNet50 pre-trained on the ImageNet [67] dataset and later fine
tuned the image quality evaluation task [68] as a 2D-CNN feature extractor for a better
perception of the distortions. We extract 2D features from the ‘res5c’ layer in ResNet50
and then set the feature size to 4096 after pooling. R(2+1)D-18 and R3D-18 [21], which
are pre-trained on the human action recognition dataset Kinetics [69] from the ‘conv5_x’
layer, are chosen for multidimensional feature extraction, which provides the ability to
perceive motion information. After the pooling operation, the feature sizes are both 512.
The feature extraction module is separated from the model training process in order to
avoid excessive computing time consumption. In order to form temporal memory, we
consider third-order TMB blocks. The dimensions of each block are shown in Table 1. The
learning rate in our work is set to 1× 10−4 and Adam is used as the optimizer to train our
model for 40 epochs, with a batch size of 32. As in [65], the model loss is defined as the
softmax weighted average of the numerical summation of L1 loss, monotonicity-related
loss, and accuracy-related loss in each dataset. We implement our model using PyTorch
and conduct training as well as testing on a single NVIDIA 1080Ti GPU.

Table 1. TMB architectures considered in our experiments. Each FC layer of the TMB block place
the feature into GRU after shrinking. The left and right side of the arrow represent the feature size
before and after shrinking, respectively. The output vector of width 64 is finally fed to a FC layer that
outputs a quality score in the regression block.

Block Name Output Size GRU FC

Block 1 384 256→128 5120→256
Block 2 160 128→32 384→128
Block 3 64 32→32 160→32

Regression 1 − 64→1

4. Experiments and Discussion

In this section, we present a study of NR-VQA with the framework mentioned in
the previous section on four benchmark datasets, as they are all authentically distorted.
We introduce four benchmark databases with mixed distortions in detail firstly. Then, we
conduct a performance comparison and result analysis on our method and several popular
NR-VQA models. After that, ablation experiments and temporal strategies experiments
are conducted.

4.1. Experimental Setups
4.1.1. Experimental Datasets

In order to improve the generalization ability and performance of the model, we train
and validate the model on four public authentically distorted video datasets: Camera
Video Database (CVD2014) [59], Konstanz Natural Video Database (KoNViD-1k) [60],
LIVE-Qualcomm [61], and LIVE Video Quality Challenge (LIVE-VQC) [62]. The main
characteristics of these four datasets are summarized in Table 2.

• CVD2014 [59] database consists of 234 videos recorded by real cameras, which results
in distortion complexity. For every distorted video, there is a mean opinion score in
the range [−6.50, 93.38]. The resolution of the video in the database includes both
640× 480 and 1280× 720.

• KoNViD-1k [60] database is the largest in terms of video volume among these four,
containing 1200 videos with diversity in terms of semantics, context, and types of
visual distortions. In addition to scenes shot directly with a camera, video samples of
KoNViD-1k also include other content such as animation and time-lapse photography.

• LIVE-Qualcomm [61] mainly focuses on video content generated by users. What
renders it different from other databases is that LIVE-Qualcomm only provides full
HD videos of resolution 1920× 1080 shot by several mobile phones. Six types of
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in-capture distortions are modeled in LIVE-Qualcomm: artifacts, color, exposure,
focus, sharpness, and stabilization.

• LIVE-VQC [62] includes 585 videos of unique content with a wide range of complex
and authentic distortions. Videos in this database are captured by mobile camera
users without restrictions on content or capture style. Moreover, in order to collect
a large number of MOS, thousands of participants took part in the assessment task,
generating over 205,000 opinion scores by crowdsourcing.

Table 2. Comparison of four video quality benchmark datasets: CVD2014, KoNViD-1K,LIVE-
Qualcomm, and LIVE-VQC.

CVD2014 [59] KoNViD-1k [60] LIVE-Qualcomm [61] LIVE-VQC [62]

Number of Videos 234 1200 208 585
Video Resolutions 640 × 480, 1280 × 720 960 × 540 1920 × 1080 320 × 240–1920 × 1080

Video Length 11–28 s 8 s 15 s 10 s
Video Frame Rate 9–30 frames/sec 23–29 frames/sec 30 frames/sec 19–30 frames/sec

Number of Devices 78 >164 8 101
Format AVI MP4 YUV MP4

Distortion Type Camera capture Diverse distortions Camera capture Diverse distortions
Test Environment Laboratory Crowdsourcing Laboratory Crowdsourcing

Number of Test Subjects 210 642 39 4776
Rating Scale [−6.50, 93.38] [1.22, 4.64] [16.5621, 73.6428] [6.2237, 94.2865]

4.1.2. Evaluation Metrics

Similar to image quality evaluation, Spearman’s rankordered correlation coefficient
(SROCC) and Pearson’s correlation coefficient (PLCC) between the predicted and the
ground truth scores are commonly calculated as the evaluation criteria in VQA. These two
indices, ranging from−1 to 1, provide a good representation of the prediction monotonicity
and accuracy. The larger the indices, the better the performance. During the training and
testing stages, we randomly split these four datasets into independent training and testing
sets: 80% is set for training, and 20% is set for testing. Moreover, 25% of the training data
is used for validation. We repeat experiments on split data 10 times, and the mean indices
are given as the algorithm performance evaluation.

4.2. Experimental Results and Comparisons
4.2.1. Single Database Evaluations

First of all, we test the cross-dataset adaptability of the method. We present all metric
results of training on a single dataset and testing on another single dataset. The average
SROCC scores are listed in Table 3. Of the nine combinations of training and test datasets,
our method outperforms the existing state-of-the-art methods in seven cases, performing
second in the rest. In particular, our method delivers favorable properties when the test
sets are CVD2014, KoNViD-1K, and LIVE-VQC. The superior performance proves that our
model is highly adaptable to training across datasets, which, on the other hand, justifies
exploring the internal links between video quality evaluation datasets by fusing the features
of different dimensions and using different temporal memory structures.

We proceed to present a study of no-reference video quality assessment performance
on a single training/testing database for the multidimensional feature fusion method
presented in the previous section. Table 2 reports the metric comparison of our method
with other methods. Instinctively, the model behaves best when the train set and the
test set are sourced from the same video database. Performances on a single database
training/testing process are given in Figure 6, which indicates that our network has a fairly
good perception of video quality.
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Table 3. Performance of the cross-dataset quality evaluation. The largest values marked in bold stand
for the best results. The results of FRIQUEE, VBLIINDS, CRONIA, and TLVQM reported in [2] are
shown here for reference.

Training Database CVD2014 KoNViD-1k

Testing Database KoNViD-1k LIVE-Qualcomm LIVE-VQC CVD2014 LIVE-Qualcomm LIVE-VQC

TLVQM [2] 0.54 0.38 - 0.34 0.47 -

FRIQUEE [70] 0.49 0.09 - 0.62 0.38 -

VBLIINDS [37] 0.30 0.06 - 0.16 0.49 -

MDTVSFA [65] 0.6051 0.3919 0.4950 0.6474 0.6732 0.7160

Ours 0.650 0.389 0.624 0.712 0.616 0.728

Training Database LIVE-Qualcomm LIVE-VQC

Testing Database CVD2014 KoNViD-1k LIVE-VQC CVD2014 KoNViD-1k LIVE-Qualcomm

CORNIA [71] 0.36 0.38 - - - -

MDTVSFA [65] 0.5879 0.6128 0.6214 0.4819 0.7059 0.6550

Ours 0.615 0.688 0.716 0.603 0.694 0.665
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Figure 6. SROCC/PLCC performance on single video database.

4.2.2. Generalization Ability

In order to evaluate the effectiveness of the proposed model, we first analyze the
general performance of our model with five prominent NR-VQA models (BRISQUE [26],
VIIDEO [72], VBLIINDS [37], TLVQM [2], and MDTVSFA [65]) on CVD2014, KoNViD-
1k, and LIVE-Qualcomm. All the models are trained with mixed databases, and the
indices are calculated by weighted average, with the weight generated by the database size.
As shown in Table 4, our approach (the seventh column) demonstrated the best overall
performance on three benchmark databases, especially in SROCC metrics, i.e., the proposed
multi-dimensional network presents a favorable prediction of monotonicity in NR-VQA.
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Table 4. General performance comparison with state-of-the-art on CVD2014, KoNViD-1k, and
LIVE-Qualcomm.

BRISQUE [26] VBLIINDS [37] VIIDEO [72] TLVQM [2] MDTVSFA [65] Ours

PLCC 0.603 0.613 0.235 0.77 0.792 0.799
SROCC 0.661 0.663 0.237 0.77 0.786 0.799

We further present a performance comparison of our approach on an individual
database (see Table 5). It should be mentioned that, with the exception of MDTVSFA
and our proposed model, other methods are individually trained on a single database.
Among the performances on the four authentically distorted video databases, our method
performs favorably versus the state-of-the-art NR-VQA methods. In particular, we have
made significant progress on the LIVE-VQC database and CVD2014 database, which
validates the effectiveness of our model. The authors of [56,57] outperform our metic
on KoNViD-1K, while [56] underperforms ours on LIVE-Qualcomm, and [57] benefits a
lot from transfer learning (values in brackets are transfer-learning induced performance
increases). Compared to these methods, our method, without transfer learning, performs
well for mixed datasets training.

Table 5. Overall performance evaluation on four VQA databases. Results not reported are replaced
with the “-” symbol.

Methods
CVD2014 KoNViD-1K LIVE-Qualcomm LIVE-VQC

SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC

BRISQUE [26] 0.709 0.715 0.654 0.626 0.504 0.516 0.569 0.587

CORNIA [73] 0.614 0.618 0.610 0.608 0.460 0.494 0.595 0.593

VBLIINDS [37] 0.746 0.753 0.695 0.658 0.566 0.568 0.702 0.712

VIIDEO [72] 0.023 −0.025 0.298 0.303 0.127 −0.001 0.150 0.245

TLVQM [2] 0.83 0.85 0.78 0.77 0.78 0.81 - -

MDTVSFA [65] 0.831 0.841 0.781 0.786 0.802 0.822 0.738 0.772

VIDEVAL [64] - - 0.783 0.780 - - 0.752 0.751

3D-CNN+LSTM [56] - - 0.800 0.808 0.687 0.792 - -

Temporal pooling [57] - - 0.676 (+0.173) 0.717 (+0.136) - - - -

Ours 0.847 0.849 0.789 0.788 0.807 0.823 0.776 0.789

In addition, Figure 7 presents the scatter plots of the subjective MOSs in four datasets
versus the predicted scores of the proposed method. We used the trained model to perform
score prediction on the test sets of the four datasets. It can be observed from Figure 7
that, for each test set, the predicted scores and ground-truths are evenly distributed on a
diagonal line from the bottom left to the top right, showing a good linear relationship.
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Figure 7. Scatter plots of the subjective scores provided by the dataset versus the objective scores
provided by our method.

In order to better visualize the training phase, we report the decrease in loss when the
number of iterations increases in Figure 8 and the change of SROCC with the increase in
epochs on each dataset in Figure 9.
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Figure 8. The relationship between loss value and the number of iterations in the training phase.
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Figure 9. SROCC performance in each dataset over the training and validation epochs.

4.3. Ablation Experiments
4.3.1. Integration of Different Dimensions Feature

In order to verify the effectiveness of the fusion features proposed in this paper,
we tested the performance of single features and their various combinations on the four
datasets (see Table 6).

Table 6. Comparison of different input features and their fusions (Res50* refers to the model finetuned
in the IQA task).

Feature
SROCC PLCC

CVD2014 KoNViD-1k LIVE-Qualcomm LIVE-VQC CVD2014 KoNViD-1k LIVE-Qualcomm LIVE-VQC

Res50 0.842 0.768 0.782 0.737 0.841 0.772 0.811 0.770

Res50* 0.842 0.768 0.787 0.768 0.843 0.766 0.809 0.791

R(2+1)D 0.803 0.721 0.743 0.693 0.801 0.714 0.779 0.709

R3D 0.789 0.678 0.745 0.720 0.804 0.671 0.766 0.736

R3D+R(2+1)D 0.802 0.734 0.805 0.732 0.818 0.732 0.826 0.737

Res50+R3D 0.836 0.776 0.796 0.772 0.844 0.778 0.807 0.791

Res50+R(2+1)D 0.839 0.788 0.784 0.772 0.848 0.784 0.802 0.789

Ours 0.847 0.789 0.807 0.776 0.849 0.788 0.823 0.789

Our feature extractor includes two categories: content-sensitive ResNet50 and motion-
sensitive R3D, R(2+1)D features. From Table 6, we find that dynamic features alone cannot
achieve a good perception of video quality. When a certain type of feature is used as an
input, content-aware Resnet50 is better than motion-aware features. When mixing two
types of features, the performance of the spatio-temporal feature fusion is better than the
fusion of the temporal features. Moreover, the combination of the three features performs
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best. We can conclude that our multi-dimensional feature fusion metric helps the model
improve its ability to analyze the dynamic and static distortions present in video clips.

Table 7 compares our concatenate method with another fusion method: sum fusion.
Sum fusion calculates the sum of spatio-temporal features over the time series. The result
shows that concatenation fusion preserves temporal and spatial information wholly and
separately, while the sum method loses the unique nature of characteristics.

Table 7. Performance of sum fusion compared with concatenation fusion. The decline in average
performance is shown in parentheses.

CVD2014 KoNViD-1K LIVE-Qualcomm LIVE-VQC

SROCC 0.817 (−0.03) 0.744 (−0.045) 0.788 (−0.019) 0.728 (−0.048)
PLCC 0.819 (−0.03) 0.740 (−0.048) 0.803 (−0.020) 0.740 (−0.049)

4.3.2. Two-Dimensional Feature Extractor Comparison

In order to verify the effectiveness of our content-aware part, we further used different
spatial feature extractors to replace the 2D feature extractor in this paper. We used four
data sets for joint training and evaluated the content perception ability of each network by
comparing the average SROCC. In particular, we tested the difference in the performance
of the Resnet50 model before and after fine-tuning. The result is shown in Figure 10.
Our 2D feature extractor performs the best overall. VGG-16 and ResNet152 achieved the
best results on CVD2014 and LIVE-VQC, respectively, but performed poorly on the other
three datasets. Our model performed the second-best on CVD2014 and LIVE-VQC but
obtained the highest mean value on the remaining two datasets. Moreover, the results on
all datasets show that our ResNet50 is more suitable for quality perception than the one
without fine-tuning.

AlexNet VGG-16 ResNet18 ResNet50(ImageNet) ResNet152 Ours0.72
0.74
0.76
0.78
0.80
0.82
0.84
0.86

CVD2014
KoNViD-1k
LIVE-Qualcomm
LIVE-VQC

Figure 10. Mean SROCC performance after replacing different 2D feature extractors, including
AlexNet, VGG-16, ResNet18, ResNet50 (pre-trained on ImageNet), ResNet152, and ResNet50 fine-
tuned on [68].

4.3.3. Evaluation on Long-Term Dependencies Modeling

Establishing long-term dependencies is an equally important part of feature extraction
in our framework. In temporal memory modeling, LSTM and GRU usually perform
similarly. However, GRU can converge more easily in the training phase because of owning
fewer parameters. We further evaluated the effect of using the self-attention mechanism
in long-sequence modeling by Transformer [74]. In Table 8, we report the comparison of
using GRU, LSTM, and Transformer. It is clear from the table that GRU shows the best
long-term modeling ability on most datasets, while LSTM performs slightly worse. In the
meantime, the long-term dependency modeling ability of the Transformer is not as good as
RNN in our framework.

4.3.4. Evaluation on Adaptive Parameter

We also conducted further experiments on four datasets in order to verify the effec-
tiveness of the adaptive parameter α. The average SROCC and PLCC values are given in
Figure 11. Relaxing the parameters in order to be trainable allows the model performance
to improve on all datasets. Although in [43] α was set to 0.5 as the optimal choice, the
results demonstrate that our approach of generating the weight parameter based on the
current frame quality results in improved model performance.
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Table 8. Comparison of different long-term dependency models.

Transformer LSTM GRU

SROCC PLCC SROCC PLCC SROCC PLCC

CVD2014 0.798 0.734 0.841 0.847 0.847 0.849
KoNViD-1K 0.775 0.765 0.786 0.784 0.789 0.788

LIVE-Qualcomm 0.797 0.746 0.798 0.815 0.807 0.823
LIVE-VQC 0.746 0.724 0.778 0.791 0.776 0.789

CVD2014 KoNViD-1K LIVE-Qualcomm LIVE-VQC
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Figure 11. Performance of CP vs. AP on four benchmark databases. Abbreviations CP for constant
parameters and AP for adaptive parameters (In CP, α is set to be 0.5).

4.4. Temporal Features Related Strategies

In this subsection, we investigate the temporal alignment of spatio-temporal features
and the selection of the number of TMB blocks. We conduct experiments on the KoNViD-1k
dataset because it has the largest number of videos.

4.4.1. Feature Alignment Strategy

As presented in Section 3.1, 2D features have been generated for each frame in the
proposed method, while it takes three frames to generate a 3D feature, which results in a
temporal mismatch of features with different dimensions. The experimental results show
that the mean SROCC value is 0.785 when the sub-sampling strategy is used and 0.795
after sumpooling; this then rises to 0.796 when the nearest-neighbors upsampling strategy
is used and 0.798 with global upsampling is observed. As for PLCC, it is 0.785 when sub-
sampling 2D features, 0.792 after sumpooling, 0.795 when nearest-neighbors upsampling,
and 0.797 when global upsampling. Box plots of the three strategies’ performance are
provided in Figure 12. The two short horizontal lines at the top and bottom of the box plot
represent the maximum and minimum values, respectively, and the short horizontal line
in the middle represents the median. The shorter the vertical direction is, the larger the
median is, which suggests a better model performance. As can be observed from the graph,
the global upsampling method performs significantly better than the other three methods in
terms of median, while it performs similarly to the nearest-neighbors upsampling method
in terms of extreme deviation. The sub-sampling and pooling methods perform relatively
poorly, which may be because the sub-sampling method loses too much information, and
the pooling method fails to retain the difference and other information. Intuitively, the
global upsampling operation does not add new information, but it preserves and enhances
short features coherently, which may facilitate the modeling of long-term dependencies.

On balance, the global upsampling method outperforms the other three alignments
on the KoNViD-1k database. As a consequence, we chose to upsample the 3D vector so
that it has the same width as the 2D features in terms of temporal order in order to perform
the concatenation operation.
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Figure 12. Comparison of box plots for the four alignment methods. (a) SROCC of four alignment
strategies. (b) PLCC of four alignment strategies.

4.4.2. Choice of Temporal Memory Modules

In order to explore what kind of temporal memory module is the most appropriate for
the fused multidimensional features, we conducted experiments here for different temporal
memory modules. Our choice is mainly based on two aspects: perceptual accuracy and the
time consumption of the training stage. Figure 13 illustrates the model performance and
the time consumption during the training phase when the number of TMBs is changed (the
number of 0 means that only a single GRU is used). As can be observed from the graph,
the model performance does not increase incrementally as the number increases, but the
time consumption rises gradually. One possible reason for the drop in performance at
number 2 is that model performance may also be affected by dimensionality of TMB, which
results in their values being non-monotonic. There is a small increase in time consumption
when changing individual GRU to TMB and a larger increase when adding more TMBs.
Considering both the time efficiency and model performance, we chose the number of
TMBs to be three.
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Figure 13. Evaluation of indicators for the selection of TMB. (a) Performance indices. (b) Training
time efficiency on the same database.

4.5. Computational Complexity

The increase in time consumption over the whole training phase caused by the num-
ber of TMBs has been investigated in Figure 13b. Moreover, changes in training time
consumption by using different features are reported in Figure 14. The time spent on the
training phase mainly depends on the length of feature vectors. The introduction of multi-
dimensional features does not significantly increase the time for mixed datasets training.
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Figure 14. Time consumption in the whole training phase (40 epochs) when using different temporal
or spatial features and their combinations.

Finally, the computational complexity of quality-aware algorithms is tested by compar-
ing the time consumption of evaluating videos. All tests were run on a computer with Xeon
Gold 5220R CPU, 2x Quadro RTX6000 GPU, and the operating system is Ubuntu 18.04.
We first considered the effect of different video resolutions on the evaluation time. The
computation time consumed on videos with 300 frames from 480p to 4K can be observed
in Figure 15a. For comparison with other metrics, a sample video with a resolution of
640 × 480 and 364 frames was chosen from the CVD2014 dataset for the test. As the results
in Figure 15b are observed, the proposed method has the best performance without exces-
sive increase in computational complexity. It is worth mentioning that feature extraction
and fusion results in an increase in computation time. The timing module and dynamic
parameters, however, have almost no influence on the overall evaluation time because it
takes only about 0.02 s in the features processing network.
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Figure 15. Runtime comparison. (a) Time costs in evaluating videos with different resolutions.
(b) Time costs and overall performance comparison with different metrics.

5. Conclusions and Future Work

In this paper, we have presented an empirical study of the temporal effects in objective
NR-VQA. Many current approaches are based purely on the content-aware or motion-
aware feature while ignoring other equally important features. In addition, finding a better
temporal network for perceiving video quality is also worth investigating. With these
motivations, we creatively fuse content-oriented 2D-CNNs with motion-oriented 3D-CNNs
and complement them with (2+1)D-CNNs to form convolutional features containing both
static spatial and dynamic temporal information. As the extracted dynamic features contain
only low-level temporal information generated among image frames, we further used a
modified recurrent network structure for high-level quality perception through a long
time scale. In an attempt to simulate the temporal hysteresis effect of the human visual
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system, a weighted average evaluation model with adaptive weighting parameters was
developed to generate the final scores. In order to verify the validity and generalization
performance of the model, we conducted experimental validation on four public video
quality datasets (CVD2014, KoNViD-1k, LIVE-Qualcomm, and LIVE-VQC) using SROCC
and PLCC as metrics. The results reveal the superiority of the proposed method over the
current state-of-the-art methods, which demonstrates that it is perfectly feasible to fuse
multidimensional information followed by reasonable temporal sequencing in NR-VQA.

Current 3D convolution is computationally intensive and time-consuming, making
it challenging to train evaluation networks end-to-end, and thus hindering further im-
provements in network performance. In the future, it will be important to find a more
lightweight multidimensional feature extraction module for video quality awareness to
enable end-to-end network training.
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