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Abstract: The classification of whole slide images (WSIs) provides physicians with an accurate
analysis of diseases and also helps them to treat patients effectively. The classification can be linked
to further detailed analysis and diagnosis. Deep learning (DL) has made significant advances in
the medical industry, including the use of magnetic resonance imaging (MRI) scans, computerized
tomography (CT) scans, and electrocardiograms (ECGs) to detect life-threatening diseases, including
heart disease, cancer, and brain tumors. However, more advancement in the field of pathology is
needed, but the main hurdle causing the slow progress is the shortage of large-labeled datasets of
histopathology images to train the models. The Kimia Path24 dataset was particularly created for
the classification and retrieval of histopathology images. It contains 23,916 histopathology patches
with 24 tissue texture classes. A transfer learning-based framework is proposed and evaluated on
two famous DL models, Inception-V3 and VGG-16. To improve the productivity of Inception-V3
and VGG-16, we used their pre-trained weights and concatenated these with an image vector, which
is used as input for the training of the same architecture. Experiments show that the proposed
innovation improves the accuracy of both famous models. The patch-to-scan accuracy of VGG-16 is
improved from 0.65 to 0.77, and for the Inception-V3, it is improved from 0.74 to 0.79.

Keywords: deep learning; transfer learning; histopathology

1. Introduction

In the field of medical science, automatic analysis of histological images has created
great convenience for doctors and scientists. Experts from different fields of computing
and machine learning are able to contribute to medical science due to the availability of
labeled data and technology that can digitize the data used in everyday analysis. Recently,
in the field of pathology, it has become technologically easy to digitally scan the sample
on the slides that are used for microscopy analysis and use it for computer-aided analysis
and diagnosis. The digital scan of the sample on the slide is called a whole slide image
(WSI) that enables the storage of the sample digitally on the computer in the shape of
a digital image. The WSI can be used for detailed analysis and diagnosis by experts
remotely or as a reference for future predictions. The saved WSI can easily be shared
with experts in entirely different corners of the world for their swift analysis of the image.
WSI processing has provided huge convenience for practitioners and has also motivated
scientists to make more robust and reliable automatic analysis diagnostic models. Medical
image analysis software is powered by machine learning, particularly, deep learning-
based models. Deep learning with a convolutional neural network (CNN) is a quickly
expanding field in histological image analysis. In a variety of image analysis fields, machine
learning using a CNN has recently drawn the research community’s interest [1,2]. It
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provides physicians with an accurate analysis of diseases and helps them to correlate
with previously stored samples, which leads to more effective medical decisions. For
computerized applications, preliminary CNN-based architectures are proposed: including
the use of magnetic resonance imaging (MRI) scans, computerized tomography scans,
and electrocardiograms (ECGs) to detect life-threatening diseases, including heart disease,
cancer, and brain tumors. Training deep learning models from scratch creates problems
because state-of-the-art CNN requires a significant training size [3] and computational
resources, as the WSI samples are comprised of gigapixels information [2]. CNNs, such as
DenseNet [4], when trained on ImageNet, obtained high accuracy [5] because ImageNet
has a huge databank of images for the training of CNN models. Deep features and transfer
learning have allowed these deep models to be used in a variety of domains, including
medical applications [5,6]. The methods for extracting features from histopathological
images based on similarities between the feature vectors can be difficult when extracting
data from a large database. Therefore, more advancement in the field of digital pathology
is expected and needed. Microscopic analysis of histopathology images is time-consuming
and difficult. Automated histopathology image diagnosis reduces pathologists’ workload
and helps them to concentrate on more sensitive cases.

Deep neural network (DNN) architecture is a versatile technique that has learned to
perform complex tasks such as classification and facial recognition using a wide collection
of images (ImageNet). Using “pre-trained” networks in medical image classification is a
realistic way to use them. This solves the problem of not having a massive, well-labeled,
and well-balanced image dataset. Babaie et al. have introduced the Kimia Path24 dataset.
They applied LBP, the bag of visual word model, and two famous deep learning models.
The highest accuracy based on their experiments was 41.80% from CNN models [7].

Deep models have performed well in several domains including medical applications
and deep characteristics in medical images. There are alternatives for transfer learning,
given domain data and a network that has been trained to differentiate on large nonspecific
datasets (e.g., ImageNet, which has a huge databank of objects with more than 10,000 cate-
gories), the classification model must be adapted to the current domain using one of these
methods: (a) The architecture is conditioned for several epochs after being initialized with
random weights. The model learns characteristics from the data and computes weights
using backpropagation at every single epoch. If the dataset isn’t large enough, this method
will not be able to produce the most accurate results. It should be used as a reference point
for the other two methods. (b) This approach uses weights trained on a wider dataset to
initialize the model. A pre-trained CNN can be used as a feature extractor by freezing
all convolutional blocks and then training the connected layers with the new dataset;
it assumes that the layer just before the classifier is a feature layer instead of using the
classifier of the pre-trained CNN; the classifier-like support vector machine and neural
network can be used for the classification purpose. (c) This approach involves fine-tuning a
pre-trained CNN as a classifier by retaining only the pre-trained network’s final layers (the
domain layers) or by training models from scratch, in addition to retraining the classifier
at the end of the fully connected network. The following are the major advantages of this
research work:

i. All of the images in the Kimia Path24 database were used for training and testing
purposes and were further classified into 24 classes for grayscale histopathology images.

ii. Training the entire VGG16 and Inception-V3 [8,9] models from scratch after transfer-
ring the pre-trained weights of the same model has improved classification accuracy
as compared to fine-tuning (by training the last few layers of the base network) or
using high level feature extractor techniques for the classification of grayscale images
in the Path24 dataset.

iii. The proposed pre-trained CNN models have fully automated the end-to-end structure
and do not need any hand-made feature extraction methods.

In this paper, we analyze and assess the effectiveness of Inception-V3 and VGG-
16 pre-trained models for Kimia Path24 using the transfer learning approach, which
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involves full training of the pre-trained models by fine-tuning early layers for the automatic
classification of histopathology images. Following is a review of the paper’s structure:
Section 2 presents a concise overview of the applicable literature. Section 3 explains the
Dataset and Methodology in detail. The Experiment, Results, and Discussion are given in
Section 4. Section 5 covers the conclusion.

2. Related Works

Pre-trained models, which have been trained on a huge databank of images, are
used as feature extractors or weight initializers for the classification of histopathological
images [6–10]. The high dimensionality of digital pathology images makes processing and
storage difficult [2]; therefore, using soft-computing approaches and understanding regions
of importance in an image helps in quicker diagnosis and identification [11]. Scanning
and segmentation, as well as detection and retrieval, are all traditional image processing
tasks that have increased in importance over time. It can be seen that cell structures such as
nuclei, glands, and lymphocytes have outstanding features, which can be used as indicators
to identify cancer cells, especially in histopathology [12]. However, digitization of whole
slide images is setting a landmark for laboratory standards, for more accurate and speedy
diagnoses of diseases [13].

Image extraction and image classification are the main components of pathological
images in histopathology whole slide image (WSI) analysis [14,15]. These help medical doc-
tors to make more specific and accurate decisions on the patient’s medical condition. There
are several benefits of digitizing pathology images. Additionally, the better presentation of
image processing algorithms can make the retrieval of images more efficient. Clinicians
and quality management staff can take advantage of this property. The digitized version
of pathology glass slides is one of the most recent and prominent examples of extensive
automated evidence [16]. The size of whole scan images of pathology samples can be in
gigabytes [2,17]. As a result, storing, processing, and transferring images in real-time is
complicated. Yet, learning deep features from massive, digitized histopathology scans
is a decent way to discover secret patterns that humans cannot recognize. Furthermore,
pathology image processing is now considered the “gold standard” of diagnosing multiple
diseases involving all forms of cancer [18].

Over the past few years, clinicians and researchers have been interested in machine
learning techniques for the automated analysis of digital pathology scans. With advantages
of high variety, rich structures, and wide dimensionality, these images come with special
challenges. As a result, scholars have been looking at different image processing methods
and how they can be applied to digital pathology [13]. The use of deep features as image
descriptors is a fairly new advancement, mainly based on CNNs, which are trained from
initial layers or use post-training for classification to extract high-dimensional characteris-
tics embedded in the fully connected layer [19–21]. CNNs and several other discriminative
deep architectures need optimal training on a large amount of labeled (and balanced) data
without the adverse effects of overfitting [22–24]. In histopathology image extraction, deep
solutions have been widely used. In [25], to extract features from histopathology files,
a sparse autoencoder was used. The authors of [26] demonstrated a patch-based CNN
and proposed an expectation–maximization (EM) technique for training CNN. The author
of [27] purposed a CNN-based nuclei-guided feature extraction technique for histopatho-
logical imaging. In addition, there are a number of frameworks based on handcrafted
features [28–32].

The use of pre-trained networks for operations outside of their original domain has
gained attention [33]. This is especially relevant in the medical field, and the most obvious
reason for this is the lack of sufficient labeled data that is needed by a deep network for
training purposes. When it comes to using pre-trained networks for medical imaging
studies, these groups have achieved better results [33–35]. Hence, other organizations have
used ImageNet (a huge databank of images, divided into 1000+ categories) for the training
of networks [35,36]. Kieffer et al. used Kimia Path24 to look into the use of deep features by
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using pre-trained architectures, adjusting for the effects of transfer learning, and comparing
pre-trained networks against training from scratch [37].

Later in this section, some famous and recent works on deep learning-based models
for medical imaging are discussed.

In recent years, CNN has improved the accuracy of medical image classification tasks
from traditional diagnosis to automatic diagnosis, reaching different levels with excellent
performance. An example of these tasks is the diagnosis of breast cancer. Hematoxylin and
eosin-stained breast biopsy images fall into four categories: invasive carcinoma, in situ
carcinoma, benign tumor, and normal tissue. Saha et al. [38] proposed an automatic disease
detection of mitoses from breast histopathology WSIs with precision of 0.92 and recall of
0.88. Han et al. [39] proposed a framework to distinguish breast cancer histopathology
photos using a hierarchical deep learning model. Their purposed system divided the
subcategories of breast cancer imaging into three categories (lobular carcinoma, ductal
carcinoma, and fibroadenoma) with an overall accuracy of 0.93. Zheng et al. [27] created a
CNN to categorize breast cancer photographs into two groups (benign and malignant) with
precision of 0.96 on their dataset. Jia et al. [40] used a multi-instance learning algorithm to
implement a fully connected network to segment cancer areas on histopathological images.
Xu et al. [41] used the transfer learning approach; CNN was applied to segment and label
histopathology WSIs. Shi et al. [42] applied a deep hashing method to retrieve and classify
the histopathology images. The suggested model was tested on a dataset of lung cancer
by scientists, and the model reported accuracy of 0.97. Another study [43] suggested
three different CNN models to classify the coronavirus contamination in X-radiation cases,
including Inception-ResNetV2, InceptionV3, and ResNet50. In terms of detection and
identification, the ResNet50 system outperformed InceptionV3 and Inception-ResNetV2
with 0.98 accuracy, whereas InceptionV3 attained 0.97, and Inception-ResNetV2 attained
0.87. An ensemble-based framework to classify in vivo endoscopic images as normal
or abnormal using VGG, DenseNet, and inception-based networks was proposed [44].
Sari et al. [45] proposed a semi-supervised classification scheme based on a restricted
Boltzmann machines to classify histopathological tissue images. They regulate the notice-
able subregions of an image and quantify the image by employing the chrematistics of
these subregions but without considering the image locations as a whole. Wang et al. [46]
proposed a weakly-supervised learning-based framework for classification of WSIs of lung
cancer. They used a fully convolutional network to generate the potential regions that are
likely to be the cancer regions. They also demonstrated that CNN-based features are more
robust and discriminative compared to the handcrafted features.

Pathologists examine pathology slides at various resolutions and fields of view in a
similar manner. Nonetheless, like many others, we use a deep learning approach on minor
portions of the image. By doing this, the classifier is expanded to each element of the entire
slide. This study used WSIs from the Kimia Path24 dataset, which is specially designed
to examine the classification and retrieval of histopathology images. In total, there were
1325 images for the test and 22,590 for training because the DNN work on raw pixel values
requires no extra efforts from humans and can learn a variety of graphical characteristics
from the data held for training.

3. Material and Methods

Transfer learning is widely used for various applications. Pre-trained models learn
small patterns such as shapes and diagonals in the initial layer and then combine these
components in subsequent layers to learn multipart features. By using patterns learned
from previous layers, the models make meaningful constructs in the final layer.

3.1. Proposed Model

We take two famous models for feature extraction and then use those features to train
the models. The two models are VGG16 [8] and Inception-V3 [9]. The VGG16 was proposed
for ImageNet competition in 2014. The main appealing factor of this model is the use of a
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filter size of 3 × 3 with stride 1 rather than having a very large number of hyperparameters.
The last layer before the concatenation layer contains the feature of length 4096. The
Inception network was proposed by Google in 2014 with 22 layers comprised of 5 million
parameters with different filter sizes of 1 × 1, 3 × 3, and 5 × 5. These filters were used
with different scales to extract the features. Later, in 2015, Google proposed Inception-V3
with reduced parameters without hurting the accuracy of the model [47]. Both models,
VGG-16 and Inception-V3, are widely used for various applications.

The difference between existing practices and the proposed methodology is that we
concatenate the features extracted from existing models with the processed images and
then train the model from scratch, as shown in Figure 1. It can be seen that weights
from previously trained models are transferred to the same architecture by infusing the
weights with raw image pixel values. To project weights and the pixel values in the same
feature space, unit normalization before concatenation and after concatenation is performed.
Feature concatenation during training is widely used [48]. However, we concatenate pre-
trained weights with image raw pixel values. We trained all of the network’s layers because
of their ability to extract both common and individual functions. By doing so, we are able
to pass to the new model information (weights values) about simple features gained in the
first and middle layers. Histopathology images are classified using the basic constructs
that purposed CNN models have learned in order to distinguish various images from the
ImageNet. The following are the major contributions of this work:

• Inception-V3 and VGG16 are evaluated for classifying histopathology images auto-
matically.

• The classification effectiveness of purposed pre-trained models is tested by infusing
the features vectors from pre-trained network with image pixels normalized. We used
grayscale histopathology images.
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features are extracted, later, that feature is concatenated with the same image which is vectorized by unit normalization.

By training Inception-V3 and VGG16 models by transferring the weights of the same
models that are trained on very large and independent datasets, the accuracy of classifi-
cation of histopathology images was increased. Fine-tuning and feature extractor-based
experiments have already been conducted by many recent papers. However, we take the
features from pre-trained models and concatenate them with an original image before
training the model form scratch. Our framework is inspired by the feature concatenation
approach of [48].

3.2. Dataset

We used Kimia Path24, an open-source dataset with histopathology images, to an-
alyze our tests. It was designed with digital pathology image classification and re-
trieval in mind. The dataset was created using 350 whole scan images (WSIs) of dif-
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ferent body parts. Different staining techniques were applied such as immunohisto-
chemical (IHC), hematoxylin and eosin (H&E), and Masson’s trichrome staining. Tissue-
Scope LE 1.0 was used to record the images in the bright field with a 0.75 NA lens
http://www.hurondigitalpathology.com/tissuescope-le-3/ (accessed on 8 August 2021).
A total of 24 WSIs were chosen for nonmedical experts based on visual differentiation.
There were 22,591 training instances and 1325 testing instances provided each of resolution
of 1000 × 1000 pixels (0.5 mm × 0.5 mm) from 24 classes [49]. The dataset is quite chal-
lenging and computationally expensive due to high dimensions of the images. Figure 2
shows some colored images from the dataset; the dataset is freely available online
https://kimialab.uwaterloo.ca/kimia/index.php/pathology-images-kimia-path24/ (ac-
cessed on 8 August 2021).
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Figure 2. Random sample images from training set and test of Kimia Path24 dataset.

3.3. Accuracy Calculation

The final accuracy calculation for the Kimia Path24 dataset is based on two types of
accuracy calculation, namely path-to-scan and whole-scan accuracies, established by [7].

The total number of test patches is denoted by ntot and for the dataset ntot = 1325. There are
24 different classes (one for each whole slide image) denoted by set S, i.e., S = {c0, c1, . . . , c23}.
Any given test patch from the dataset is denoted by Pi

s, where s ∈ S represents its class and
i ∈ [1, nΓs] is index to identify it among all the patches associated with class s. The Γs is set of
patches Pi

s that belongs to class s such that Γs =
{

Pi
s
∣∣s ∈ S, i = 1, 2 . . . , nΓs

}
with nΓs is number

of patches in sth class.
Patch-to-scan accuracy ηp is calculated using Equation (1), where R represents the

retrieved images for each experiment

ηp =

∑
s∈S
|R ∩ Γs|

ntot
(1)

and the whole-scan precision ηw, which is expressed as Equation (2).

ηw =
1
24 ∑

s∈S

|R ∩ Γs|
ηΓs

(2)

http://www.hurondigitalpathology.com/tissuescope-le-3/
http://www.hurondigitalpathology.com/tissuescope-le-3/
https://kimialab.uwaterloo.ca/kimia/index.php/pathology-images-kimia-path24/
https://kimialab.uwaterloo.ca/kimia/index.php/pathology-images-kimia-path24/
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Overall precision is calculated, as shown in the Equation (3) [7].

ηtotal = ηp.ηw (3)

4. Experiments and Results

VGG-16 and Inception-V3 were employed to categorize Kimia Path24 grayscale
histopathology into 24 categories. Later in this section, the experimental setup is explained
supported by the results and discussion.

4.1. Experimental Setup

As stated earlier, transfer learning was used to train the models, i.e., VGG16 and
Inception-V3. The pre-trained models were trained on very large datasets; we provided
the image as input to that layer and extracted the features from the n-1 layer, then, that
feature was concatenated with the unit normalized image. To normalize the values in
the concatenated vector, the whole vector was unit normalized again, as demonstrated
in Figure 1.

During training, Adamax was used to refine the network parameters. The learning
rate of 10−6 was selected. To regularize the deep models, a dropout ratio of 0.25 was
chosen. All hyperparameters were selected based on experimental trials. Initial values
were taken as suggested by their original papers. In the case of VGG-16, the suggested
value of dropout ratio is 0.5, which was not optimal in our validation trial. The different
batch sizes were trialed during learning, the batch sizes were chosen from 30 to 150 due
to hardware constraints, and the optimal batch size we obtained was 140. The larger
batch size can also be taken if the training size is increased, either by expert annotation or
data augmentation.

Moreover, the Inception-V3 and VGG16 original models with their default configu-
ration were also trained from scratch on the same dataset. Python, version 3.7.11, with
Keras Chollet, F. “Keras”, https://github.com/fchollet/keras, 2015 (accessed on 8 Au-
gust 2021), version 2.5.0, were used on Google Colab. Kimia Path24 contains a total
of 23,915 images; the dataset is divided by the publishers into two sets, a training set
that contains 22,590 images, and a test set that contains 1325 images. The test set is
5.5% of the whole dataset. To make training more robust, the training dataset is fur-
ther divided into two sets: training that is 80% of the 22,590 images and validation
which is 20% of the 22,590 images. The scripts and models can be accessed online
https://github.com/shakil1987/transfer_learning_on_WSI (accessed on 8 August 2021).

4.2. Results

The Inception-V3 and VGG16 pre-trained CNN models were trained to catego-
rize grayscale histopathology images for 50 epochs. All images with a resolution of
128 × 128 pixels were used to test each pre-trained model. Figure 3 illustrates the train-
ing and validation failure curves for VGG16 and Inception-V3, as well as the validation
precision. The experiments show that there was no accuracy gain after 50 epochs, instead,
accuracy started to deteriorate.

According to the results of the evaluation, Inception-V3 provided better classification
accuracy for grayscale images than VGG-16. Figure 4 illustrates the confusion matrices
obtained using the Inception-V3 and VGG16 models.

In the grayscale test dataset, the Inception-V3 model correctly classified 1058 out of
1325 images, while the VGG16 model correctly classified just 1025 out of 1325 images.
Table 1 shows the accuracy, recall, and F1-score values of the Inception-V3 and VGG16
models for grayscale test-set images. Inception-V3 yielded 80 percent for the average
precision, recall, and F1 score for grayscale histopathology images. On the other hand,
VGG16 achieved 77 percent using the same assessment criterion.

https://github.com/fchollet/keras
https://github.com/shakil1987/transfer_learning_on_WSI
https://github.com/shakil1987/transfer_learning_on_WSI
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It can be seen that a few of the classes have zero precision and, among them, there are
a small number of instances for the training and testing sets.

Table 1. The grayscale research dataset was used to create a classification report for the Inception-V3 model.

Classes Amount of Data
Precision Recall F1-Score

Inception-V3 VGG16 Inception-V3 VGG16 Inception-V3 VGG16

c0 64 0.83 0.70 0.84 0.81 0.84 0.75
c1 65 0.92 0.94 1.00 0.95 0.96 0.95
c2 65 0.80 0.80 0.91 0.85 0.85 0.82
c3 75 0.64 0.66 0.91 0.83 0.75 0.73
c4 15 0.00 0.00 0.00 0.00 0.00 0.00
c5 40 0.80 0.52 0.20 0.42 0.32 0.47
c6 70 0.90 0.83 0.89 0.86 0.89 0.85
c7 50 0.63 0.70 0.74 0.56 0.68 0.62
c8 60 0.79 0.79 0.77 0.77 0.78 0.78
c9 60 0.93 0.76 0.87 0.87 0.90 0.81

c10 70 0.90 0.83 0.90 0.83 0.90 0.83
c11 70 0.87 0.82 0.87 0.90 0.87 0.86
c12 70 0.76 0.70 0.93 0.87 0.84 0.78
c13 60 0.85 0.84 0.87 0.77 0.86 0.80
c14 60 0.97 0.84 0.97 0.93 0.97 0.88
c15 30 0.00 0.93 0.00 0.43 0.00 0.59
c16 45 0.81 0.76 0.64 0.56 0.72 0.64
c17 45 0.65 0.68 0.93 0.80 0.76 0.73
c18 25 0.00 0.89 0.00 0.32 0.00 0.47
c19 25 0.91 1.00 0.40 0.52 0.56 0.68
c20 65 0.68 0.74 1.00 0.98 0.81 0.85
c21 65 0.80 0.77 0.91 0.83 0.85 0.80
c22 65 0.84 0.80 0.65 0.74 0.73 0.77
c23 65 0.78 0.82 0.94 0.71 0.85 0.76

4.3. Discussion

Kieffer et al. [37], to categorize histopathology WSIs in Kimia Path24, used Inception-
V3 and VGG-16 models with fine-tuning and feature extraction approaches. On the same
dataset (Kimia Path24), Table 2 provides a comparison of our work with state-of-the-
art frameworks.

Table 2. Comparison of proposed innovation with famous state-of-the art models.

Paper Model Method ηp (%) ηw (%) ηtotal (%)

Babaie et al. [7] CNN Train from scratch 64.98 64.75 42.07
Kieffer et al. [37] VGG-16 Feature Extractor 65.21 64.96 42.36
Kieffer et al. [37] VGG-16 Fine-tuning 63.85 66.23 42.29
Kieffer et al. [37] Inception-V3 Feature Extractor 70.94 72.24 50.54
Kieffer et al. [37] Inception-v3 Fine-tuning 74.87 76.10 56.98

Simonyan et al. [8] VGG-16 base model Train from scratch 69.89 71.09 49.68
Szegedy et al. [9] Inception-V3 base model Train from scratch 72.65 73.00 53.03
Proposed model VGG-16 Feature Extractor 77.41 71.27 55.17
Proposed model Inception-V3 Feature Extractor 79.90 71.33 57.00

To categorize grayscale histopathology images, Babaie et al. suggested a bag of words
(BoW), local binary pattern (LBP) histograms, and a CNN model in 2017. For the BoW, LBP,
and CNN methods, the absolute accuracy value (η total) was recorded as 39.65 percent,
41.33 percent, and 42.07 percent, respectively.

Kieffer et al. [37] employed Inception-V3 and VGG16 pre-trained CNN models to cate-
gorize histopathology images using transfer learning techniques. For grayscale histopathol-
ogy images, Inception-V3 with 74.87 percent obtained maximum precision.
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It can be seen from Table 2 that the Inception-V3 and VGG16 accuracy improved after
concatenating their pre-trained weights with image pixel values. Before concatenation,
the pre-trained feature vector and image are unit normalized so that they are on the
same Euclidean space, even after concatenation, and the final vector is unit normalized.
Transferring of the pre-trained weights to the same model for training actually improves
the accuracy of the same model. The results for total accuracy on the test set were 57.00%
for the Inception-V3 and 55.17% for VGG16. The accuracy of the original VGG-16 and
Inception-V3 is also competitive without transfer learning. The main reason that VGG-16
and Inception-V3 gave better performance compared to the work of Babaie et al. is the
fact that both of these models are deep and also the training dataset was comparatively
small for these two. The proposed model, on the other hand, uses the same two models
but achieves a better performance, and also is comparatively more generalized as, besides
the dataset used in the experiments, the weights from these two models, which are trained
on millions of images, are also incorporated during the training.

5. Conclusions

The adoption of deep learning in digital pathology would be extremely beneficial
as it would move human appraisal of histology to higher quality, nonrepetitive takes.
Deep learning provides pathologists with the ability to analyze data at high speeds while
maintaining accuracy. For the automatic classification of histopathology images, this paper
proposes training the entire pre-trained model from pre-trained weights concatenated
with image raw pixels. According to the findings, the pre-trained models, Inception-V3
and VGG-16, outperformed existing studies in the literature for Kimia Path24 grayscale
histopathology scans. Both models had better patch-to-scan accuracy: VGG-16 had a
noticeable increase in total accuracy whereas Inception-V3 had a slight improvement.

The main limitations of the study are the size of the concatenated vector and the size
of the dataset used for the training of pre-trained models. We may have obtained better
accuracy if we had been able to access to a larger number of samples, such as millions of
histopathology WSIs, and also if the purposed models were trained in medical imaging
because the architecture was adjusted appropriately for research work. The training dataset
is also imbalanced as some of the classes had only a few examples. In future work, we
are interested in exploring deep models for data augmentation to address the imbalanced
nature of the dataset.
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